

Simulating future Food Value Chain components through the integration of biophysical and techno-economic spatial model

Edmar Teixeira^{1,2,3}; Sylvain Leduc³; **Shubham Tiwari³**, Florian Kraxner³; Jing Guo⁴; Sam McNally⁴, Richard Yao⁵; Xiumei Yang¹, Paul Johnstone¹; Thomas Sowersby¹; Richard Edmonds¹; Shane Maley¹; Abha Sood⁶; James Bristow¹, Derrick Moot²

Design the plant-protein supply-chain with lucerne

Methods

Results

Protein productivity (kg/ha per year) Annual supply of lucerne biomass to processing plants (kg per year)

Processing plant locations

Estimated production areas to supply processing industry

Estimate of lucerne for protein area per region

Estimated location of processing plants

1. It was possible to spatially represent food supply chain components with APSIM/ATLAS/BeWhere

2. Supply and processing plant locations were allocated in high yielding areas close to demand points

3. Demands (amounts and location) were a key driver of spatial model results

4. For next steps after this first sensitivity test run, focus will be on revised parameterisation of costs

Ngā mihi ...Thanks !

tiwaris@iiasa.ac.at

edmar.teixeira@plantandfood.co.nz

teixeira@iiasa.ac.at

The New Zealand Institute for Plant and Food Research Limited