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Abstract
Aim: Tidal marsh ecosystems are heavily impacted by human activities, highlighting 
a pressing need to address gaps in our knowledge of their distribution. To better un-
derstand the global distribution and changes in tidal marsh extent, and identify op-
portunities for their conservation and restoration, it is critical to develop a spatial 
knowledge base of their global occurrence. Here, we develop a globally consistent 
tidal marsh distribution map for the year 2020 at 10- m resolution.
Location: Global.
Time period: 2020.
Major taxa studied: Tidal marshes.
Methods: To map the location of the world's tidal marshes at 10- m resolution, we 
applied a random forest classification model to Earth observation data from the year 
2020. We trained the classification model with a reference dataset developed to sup-
port distribution mapping of coastal ecosystems, and predicted the spatial distribu-
tion	 of	 tidal	marshes	 between	60° N	 and	60° S.	We	 validated	 the	 tidal	marsh	map	
using standard accuracy assessment methods, with our final map having an overall 
accuracy score of 0.85.
Results: We estimate the global extent of tidal marshes in 2020 to be 52,880 km2 
(95%	CI:	32,030	to	59,780	km2)	distributed	across	120	countries	and	territories.	Tidal	
marsh	distribution	is	centred	in	temperate	and	Arctic	regions,	with	nearly	half	of	the	
global	 extent	 of	 tidal	marshes	 occurring	 in	 the	 temperate	Northern	Atlantic	 (45%)	
region.	At	the	national	scale,	over	a	third	of	the	global	extent	(18,510	km2; CI: 11,200–
20,900)	occurs	within	the	USA.
Main conclusions: Our analysis provides the most detailed spatial data on global tidal 
marsh distribution to date and shows that tidal marshes occur in more countries and 
across a greater proportion of the world's coastline than previous mapping studies. 
Our map fills a major knowledge gap regarding the distribution of the world's coastal 
ecosystems and provides the baseline needed for measuring changes in tidal marsh 
extent and estimating their value in terms of ecosystem services.
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1  |  INTRODUC TION

Tidal marsh ecosystems are vegetated coastal wetlands located in 
areas of regular to occasional tidal inundation, formed by a broad 
variety	 of	 herbaceous	 and	 woody	 vascular	 plants	 (Adam,	 2002).	
Whilst dominated by saline and brackish marshes, they include 
areas	 of	 freshwater	 tidal	 marsh	 (Barendregt,	 2018; Mitsch & 
Gosselink, 2015).	They	occur	along	many	of	 the	world's	sheltered,	
sediment- dominated coastlines, particularly in temperate and arc-
tic	regions	 (Tiner	&	Milton,	2018).	They	are	also	an	 important,	yet	
frequently overlooked, coastal ecosystem in many arid and tropical 
regions	 (Viswanathan	 et	 al.,	2020).	 Tidal	marsh	 vegetation	 occurs	
between mean high water neaps up to the limits of the highest astro-
nomical	tide	(Adam,	2002),	often	with	distinct	zonation	across	the	
tidal	 frame	 (Mitsch	&	Gosselink,	2015; Scott et al., 2014a, 2014b; 
Tiner & Milton, 2018).	 Tidal	 marshes	 show	 close	 ecological	 and	
physical linkages with adjacent coastal ecosystems, including un-
vegetated intertidal flats, shellfish beds and reefs and seagrass beds 
lower	 in	the	tidal	 frame	 (Adam,	2002).	The	term	salt	marsh	 is	also	
widely used and broadly overlaps with tidal marsh; however, the for-
mer may include non- tidal and inland marshes, while tidal marshes, 
in some places can be freshwater systems. Tidal marshes often 
form part of mosaicked environments together with mangroves or 
salt	pans,	particularly	in	warm	temperate	to	tropical	regions	(Lopez-	
Portillo & Ezcurra, 1989; Rodriguez et al., 2016).

Tidal marshes are subject to a multitude of anthropogenic 
pressures, primarily because they are often located close to the 
most	 densely	 populated	 coastal	 areas	 of	 the	 planet	 (Neumann	
et al., 2015).	Their	loss	and	degradation	have	been	caused	by	a	range	
of	factors,	tracing	back	over	centuries	and	even	millennia	(Airoldi	&	
Beck, 2007;	Allen,	2000).	These	 include	 land	 reclamation	 for	con-
version	to	agriculture	and	coastal	infrastructure	(Davy	et	al.,	2009; 
Gedan & Silliman, 2009; Gu et al., 2018; Melville et al., 2016; Shi- lun 
& Ji- yu, 1995),	aquaculture	and	salt	production	(Almeida	et	al.,	2014)	
and invasion of Spartina alterniflora	outside	its	native	range	(Zheng	
et al., 2018).	In	addition,	tidal	marshes	are	likely	to	be	impacted	by	
the multifaceted threats linked to climate change, including sea 
level rise and associated coastal squeeze, increased magnitude and 
frequency of extreme weather events and changes in precipitation 
and	temperature	(Adams,	2020; Silliman et al., 2005).	The	evidence	
of climate change impacts has already been detected with the re-
duction in extreme cold events allowing the poleward expansion of 
mangroves	into	tidal	marsh	habitat	(Cavanaugh	et	al.,	2014, 2019).

Recently, tidal marshes, alongside other coastal wetlands such 
as mangroves and seagrass, have garnered significant attention for 
their conservation value and restoration potential. In addition to 
their significance for biodiversity, tidal marshes have been recog-
nized as supporting multiple ecosystem services, including carbon 

sequestration	(Friess	et	al.,	2020; zu Ermgassen et al., 2021).	Tidal	
marshes are highly productive, with sequestration rates greater than 
some	other	terrestrial	ecosystems	 (on	average,	210 g	CO2 m−2 yr−1)	
(Chmura	et	al.,	2003; Hopkinson et al., 2012),	with	potential	global	
carbon stocks in the top metre of tidal marsh soil estimated at 
1.22 ± 0.20	Pg	C	(Maxwell	et	al.,	2023).	Tidal	marsh	vegetation	also	
helps	 attenuate	wave	 energy	 (Möller	 et	 al.,	2014),	 therefore,	 pro-
viding	storm	protection	benefits	to	coastal	communities	(Costanza	
et al., 2008; Shepard et al., 2011).	For	example,	wetlands	are	esti-
mated to have avoided $625 Million in property damage during 
Hurricane	 Sandy	 (Narayan	 et	 al.,	 2017).	 They	 are	 important	 areas	
for	tourism	and	recreation	(Barbier	et	al.,	2011)	and	they	help	sup-
port healthy fisheries that provide food and income for millions of 
people	(Baker	et	al.,	2020; Jänes et al., 2020).	However,	our	ability	
to comprehensively estimate the value of tidal marshes and develop 
coordinated strategies for their protection and restoration at large 
scales is hindered by limited knowledge of their global distribution.

Tidal	marshes	 can	 be	 identified	 from	 satellite	 images	 (Tiner	&	
Milton, 2018);	 however,	 unlike	 other	 coastal	 ecosystems	 such	 as	
coral	 reefs	 (Li	 et	 al.,	 2020),	 mangroves	 (Bunting	 et	 al.,	 2022; Giri 
et al., 2011)	 and	 tidal	 flats	 (Murray	 et	 al.,	 2019),	 spatial	 mapping	
of tidal marshes has generally been conducted at local or regional 
scales. Until now, there has been no globally consistent map of tidal 
marshes, and their total extent has been poorly quantified as a result 
(McLeod	et	al.,	2011; Pendleton et al., 2012).

Efforts to map tidal marshes have utilized different methods, 
across different time periods, making comparisons across time and 
space unreliable. Where larger scale assessments exist, they tend 
to	 focus	on	well-	studied	 regions	 such	as	 the	U.S.A.	 (U.S.	Fish	and	
Wildlife Service, 2021),	China	(Hu	et	al.,	2021),	Australia	and	parts	
of	South	America	 (Isacch	et	al.,	2006).	The	most	 recent	global	 as-
sessment of tidal marsh spatial distribution collated Geographic 
Information	System	(GIS)	data	from	peer-	reviewed	articles	and	grey	
literature, including spatial data from government agencies, non- 
governmental	 organizations	 and	 research	 institutions	 (Mcowen	
et al., 2017).	 In	 total,	 the	 authors	 identified	 almost	 55,000 km2 of 
tidal marshes across 43 countries and territories, although they 
also identified several large regions—Canada, Northern Russia, 
South	 America	 and	 Africa—for	which	 data	were	 lacking	 (Mcowen	
et al., 2017).	In	a	global	assessment	of	all	wetlands,	Zhang	et	al.	(2023)	
also included a category of tidal salt marsh, mapping approximately 
75,000	km2, with other estimates from the literature ranging from 
22,000	to	400,000 km2	(McLeod	et	al.,	2011; Pendleton et al., 2012).	
Other efforts to characterize tidal marsh dynamics globally have 
typically	focused	on	change	analyses	(Campbell	et	al.,	2022; Murray, 
Worthington, et al., 2022)	or	simulation	(Schuerch	et	al.,	2018);	how-
ever, a consistent medium- resolution map baseline has yet to be 
established.

K E Y W O R D S
coastal ecosystems, Earth observation, global distribution, remote sensing, salt marsh, tidal 
marsh
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Here, we create a globally consistent tidal marsh distribution map 
for the year 2020 at 10- m resolution. To do this, we leverage the ex-
tensive archive of analysis- ready, publicly available remote- sensing 
imagery, combining optical and radar images from the European 
Space	Agency's	Sentinel	missions	(Berger	et	al.,	2012).	This	is	cou-
pled with an open- access global repository of global training and val-
idation	data	(Murray,	Bunting,	et	al.,	2022).	This	wealth	of	data	was	
analysed using the high- performance processing capabilities of the 
Google Earth Engine platform, which supports rapid planetary- scale 
remote-	sensing	data	analyses	(Gorelick	et	al.,	2017).	The	tidal	marsh	
distribution dataset provides a critical baseline for future analyses of 
changes in tidal marsh distribution and condition, and valuation of 
tidal marsh ecosystem services.

2  |  MATERIAL S AND METHODS

To map the distribution of the world's tidal marshes facilitat-
ing more accurate estimates of extent and underpinning future 
analyses of tidal marsh change, we developed a supervised clas-
sification of globally comprehensive Earth observation data 
(Supporting	 Information	 Figure S1).	 We	 used	 10-	m	 resolution	
active	(Sentinel	1)	and	passive	(Sentinel	2)	data	acquired	in	2020	
(Berger	et	al.,	2012)	and	an	open	access	reference	dataset	(Murray,	
Bunting, et al., 2022)	 to	parameterize	a	random	forest	classifica-
tion model that enabled the prediction of tidal marsh occurrence 
over the study area.

2.1  |  Covariate data

To develop a covariate set suitable to support the classification 
model, we filtered all images in the Sentinel 1 and 2 archives for the 
year 2020, retaining all images within our mapping area. The mapped 
area	was	 confined	between	60° N	 and	60° S,	 and	within	 a	 coastal	
zone	data	mask	 (after	Murray,	Worthington,	et	 al.,	2022).	 In	 total,	
287,320	optical	and	143,067	radar	images	were	processed.

Sentinel 2 Level 2 data from the Google Earth Engine Data 
Catalogue were used and represent atmospherically corrected sur-
face	reflectance	processed	using	sen2cor	 (Main-Korn	et	al.,	2017).	
Sentinel 2 imagery contains 12 spectral bands, with pixel resolu-
tions	between	10	and	60 m,	 and	band	data	 values	 ranging	 from	0	
to	1	 (albeit	with	a	scale	 factor	of	0.0001	 in	Google	Earth	Engine).	
Global scale remote sensing necessitates automated methods for 
addressing known sources of map commission and omission error. 
As	a	prime	source	of	these	errors	and	to	promote	computational	ef-
ficiency, we opted to remove images where metadata indicated a 
high	proportion	of	cloudy	pixels	(≥20%).	Further	masks	were	applied	
to remove pixels flagged in image metadata as clouds, cloud shadow 
or snow. Three spectral indices that represent either vegetation 
or water dynamics, and are, therefore, useful to discriminate tidal 
marshes from other land classes in a classification model, were cal-
culated for every image. The normalized difference vegetation index 

(NDVI)	is	the	normalized	ratio	of	the	near-	infrared	(NIR)	band	which	
is reflected by vegetation and the red band which is absorbed by 
vegetation	(Pettorelli	et	al.,	2005).

Values	range	between	−1	and	+1, with values closer to +1 repre-
senting areas of dense green vegetation. The enhanced vegetation 
index	 (EVI)	was	developed	to	reduce	the	 influence	of	atmospheric	
conditions	 and	 decouple	 the	 canopy	 background	 signal	 (Huete	
et al., 2002).	 In	 addition	 to	 the	NIR	 and	 red	 bands	 used	 in	NDVI,	
EVI	uses	the	blue	band	to	reduce	the	impact	of	atmospheric	effects	
(Schultz	et	al.,	2016).

The coefficient L is the canopy background adjustment and C1 
and C2 are used with the blue band to reduce aerosol influences 
on	the	red	band	(Huete	et	al.,	2002).	Values	of	L = 1,	C1 = 6,	C2 = 7.5	
and G = 2.5	were	 used	 (Huete	 et	 al.,	2002).	 The	 automated	water	
extraction	 index	 (AWEI)	 combines	 the	 green,	NIR	 and	 short-	wave	
infrared	(SWIR)	bands	to	identify	areas	of	water	(Feyisa	et	al.,	2014).

An	 annual	 composite	 of	 the	 optical	 images	 was	 created	 by	
taking	 the	median,	 the	10th,	25th,	75th	and	90th	percentiles,	 the	
standard	deviation	and	the	5th–95th,	10th–90th	and	25th–75th	in-
terval	means	of	 the	NDVI,	EVI	and	AWEI	spectral	 indices	and	 the	
raw NIR band, resulting in an initial set of 36 covariates. Composite 
indices were developed from five of the 12 bands of the Sentinel 
2	data.	Annual	composite	 indices	were	used	 to	 reduce	 the	 impact	
of clouds, cloud shadow or snow on the indices, as they represent 
complex spectral dynamics in a manner suitable for a pixel- based 
classification model, and have been shown to be effective in esti-
mating the distribution of a range of other coastal ecosystem types 
(Murray	et	al.,	2019; Murray, Worthington, et al., 2022).	These	indi-
ces	were	used	to	discriminate	between	vegetated	areas	(NDVI,	EVI)	
and	water	 (AWEI),	while	 the	NIR	 band	 has	 been	 used	 extensively	
to	 identify	mangroves	 (Kuenzer	 et	 al.,	 2011),	 a	 closely	 associated	
coastal ecosystem.

Exploratory analysis of 41,138 training points annotated with 
data values from the 36 predictors revealed high collinearity be-
tween	the	covariates	derived	from	the	optical	data.	A	priori	we	re-
tained the median and standard deviation covariates, and used the 
findCorrelation	 function	from	the	 ‘caret’	R	package	(Kuhn,	2021)	 in	
R to remove highly correlated covariates from the remaining 28 co-
variates. Based on a threshold of r < 0.9,	we	removed	17	highly	cor-
related covariates from the covariate set, resulting in a final set of 
19	 covariates	 for	 the	 classification	model	 (Supporting	 Information	
Table S1).	While	the	inclusion	of	highly	correlated	predictor	variables	
can impact the identification of variables of importance within ma-
chine	learning	models	(Nicodemus	&	Malley,	2009),	as	the	focus	of	

(1)NDVI =
(NIR − Red)

(NIR + Red)

(2)EVI = G ×
(NIR − Red)

(
NIR + C1 × Red − C2 × Blue + L

)

(3)AWEI = 4∗
(Green − SWIR)

(0.25∗NIR + 2.75∗SWIR)
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this analysis was developing the most accurate tidal marsh map, we 
allowed a less stringent correlation coefficient threshold than has 
been	previously	advocated	(e.g.	Dormann	et	al.,	2013).

Each Sentinel 1 scene in Google Earth Engine is pre- processed 
using	the	Sentinel-	1	Toolbox	(Veci	et	al.,	2014).	This	pre-	processing	
consists of the following steps: removal of discontinuities between 
sub- swaths for scenes in multi- swath acquisition mode using ther-
mal noise removal, application of radiometric calibration values and 
application of terrain correction in high latitudes using the SRTM 
or	ASTER	DEMs.	The	Sentinel	1	 radar	data	were	 filtered	 to	 those	
images	with	VV	and	VH	polarizations,	and	indices	that	represented	
the span and total of the scattering power, the difference between 
co-		 and	 cross-	polarized	 observations	 and	 the	 ratio	 of	 the	VV	 and	
VH	polarizations	(Mahdianpari	et	al.,	2019),	were	calculated	for	each	
image.	An	annual	composite	of	the	radar	images	was	created	by	tak-
ing	 the	median	of	 the	 raw	VV	and	VH	polarizations	and	 the	span,	
difference	and	ratio	indices,	resulting	in	five	covariates	(Supporting	
Information Table S1).

In addition to the radar and optical data, three covariates were 
included to assist in differentiating tidal marshes from other land 
classes	that	occur	 in	coastal	environments.	Firstly,	a	global	map	of	
the probability of occurrence of tidal wetlands derived from over 
1.1	 million	 satellite	 images	 acquired	 by	 Landsat	 5	 to	 8	 (Murray,	
Worthington, et al., 2022)	was	used	to	 inform	the	potential	distri-
bution	 of	 tidal	 marsh	 ecosystems.	 A	 global	 elevation	 model	 that	
combines	 land	 topography	 and	 ocean	 bathymetry	 (Amante	 &	
Eakins, 2009)	was	used	to	inform	the	classification	model	about	real	
features of coastal environments that influence the distribution of 
tidal marshes, while an annual composite of monthly nightlight data 
from	the	year	2020	(Elvidge	et	al.,	2017)	was	included	to	assist	dif-
ferentiation of urban and industrial areas.

The optical and radar data and the three additional covariates 
(Supporting	Information	Table S1)	were	combined	into	a	single	com-
posite image. Within Google Earth Engine, superpixel clustering 
based on the Simple Non- Iterative Clustering image segmentation 
algorithm	 was	 then	 applied	 to	 the	 composite	 image	 (Achanta	 &	
Süsstrunk, 2017).	The	image	segmentation	clusters	areas	of	homog-
enous pixels and helps to reduce false positives in terms of individual 
pixels of the prediction class being predicted across the image. The 
pixel values for each band within a cluster are converted into the 
mean value of the band across the cluster, and as such the predic-
tion of each pixel within a cluster results in the same classification. 
Such object- based approaches have been shown to have a superior 
predictive power to pixel- based classification when mapping coastal 
environments	(Lyons	et	al.,	2020; Mahdianpari et al., 2019).

2.2  |  Training data

To parametrize the random forest classification model, we collated 
a training dataset consisting of the known locations of five classes: 
tidal	wetland	ecosystems	(tidal	marshes,	mangroves	and	tidal	flats)	
and	 non-	tidal	 wetland	 types	 (permanent	 water	 and	 other	 terres-
trial	 areas).	 The	 training	 set	 was	 assembled	 from	 three	 sources.	
Firstly,	136,404	points	from	the	coastTrain	dataset	(Murray,	Bunting,	
et al., 2022),	which	was	created	to	provide	reference	data	for	coastal	
ecosystem remote- sensing classification models. Secondly, a further 
8789	points	were	developed	to	map	coastal	ecosystems	in	Australia	
(A.	Navarro,	personal	communication).	Finally,	754	tidal	marsh	loca-
tions	were	collected	specifically	for	this	analysis.	The	754	tidal	marsh	
points were targeted at regions that had reduced coverage in the 
coastTrain	dataset,	such	as	South	Africa,	East	Asia	(outside	China),	
the	Middle	East	and	 the	Pacific	 coast	of	South	America.	Potential	
locations of tidal marshes in these regions were identified from pub-
lished	 literature	 and	 online	 sources.	 Visual	 interpretation	 of	 high-	
resolution satellite images available from Google Earth, alongside 
NIR and false colour composites from Landsat imagery were used to 
select pixels that represented tidal marshes. The combined training 
dataset consisted of a high number of mangrove locations from the 
coastTrain dataset; therefore, a random sample of only 10,000 of the 
mangrove points was used to balance the training data. This resulted 
in	a	final	training	dataset	of	41,762	points,	including	9811	tidal	marsh	
locations	(Supporting	Information	Figure S2).

2.3  |  Tidal marsh distribution model

To map the global distribution of tidal marshes, we developed a 
random forest classification model. Machine learning approaches 
such as random forest have been applied to a variety of ecological 
and remote- sensing topics due to their high classification accuracy 
and ability to rapidly model large datasets with complex interac-
tions	 between	 predictor	 variables	 (Belgiu	 &	 Drăgu,	 2016; Cutler 
et al., 2007).	Machine	 learning	 approaches	 have	 been	 effectively	
applied to mapping coastal ecosystems such as intertidal wetlands 
(Murray,	Worthington,	et	al.,	2022),	tidal	flats	(Murray	et	al.,	2019),	
mangroves	(Bunting	et	al.,	2018)	and	coral	reefs	(Lyons	et	al.,	2020).	
Future	application	of	more	complex	deep	learning	or	neural	network	
models, or classifiers such as XGBoost which have been shown to be 
effective	at	detecting	coastal	vegetated	ecosystems	(Fu	et	al.,	2022)	
may further increase prediction accuracy.

2.3.1  | Model	tuning

The training data were combined into two classes, tidal marshes and 
non-	tidal	marshes	 (permanent	water,	 other	 terrestrial	 areas,	man-
groves	 and	 tidal	 flats).	 Before	 parametrizing	 the	model	 in	 Google	
Earth Engine, we firstly tuned the random forest hyper- parameters 
using iterative testing of a hypergrid of potential values. Models 

(4)Span = ||SVV||
2
+ ||SVH||

2

(5)Difference = ||SVV||
2
− ||SVH||

2

(6)Ratio =
||SVV||

2

||SVH||
2
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    |  5 of 13WORTHINGTON et al.

were	fitted	using	the	training	data	and	R	package	‘ranger’	(Wright	&	
Ziegler, 2017).	The	hypergrid	consisted	of	375	potential	model	pa-
rameterizations with differing values for the number of trees grown, 
the number of covariates sampled at each split, the fraction of ob-
servations sampled at each split and the minimum node size. To ac-
count	for	minimal	differences	in	the	model	fits	(based	on	out-	of-	bag	
error	rate)	between	the	best	fitting	parametrizations,	the	median	of	
the top 10 models based on the hypergrid search was used in Google 
Earth Engine.

An	initial	model	was	fitted	to	the	training	data	in	Google	Earth	
Engine	with	a	random	80:20%	training:	validation	split.	Exploratory	
analysis	 suggested	high	overall	 accuracy	 (96.4%)	on	 the	validation	
dataset,	 with	 a	 Kappa	 coefficient	 of	 0.90,	 and	 an	 omission	 error	
for	 the	different	 classes	of	0.02	non-	tidal	marsh,	0.09	 tidal	marsh	
and a commission error for the different classes of 0.03 non- tidal 
marsh, 0.06 tidal marsh. Owing to this high initial model accuracy, 
a final random forest classification model was then fitted in Google 
Earth Engine using all the training data. The final random forest 
classification model was then applied to the segmented composite 
image	(containing	the	optical,	radar	and	three	additional	covariates,	
Supporting Information Table S1),	 and	each	pixel	was	 classified	as	
either tidal marsh or not.

2.3.2  |  Post-	processing

The initial predicted distribution of tidal marshes was then refined 
using a post- processing procedure consisting of several steps. 
Areas	 that	 were	 predicted	 to	 have	 a	 low	 probability	 (<50%)	 of	
being a coastal wetland based on the work of Murray, Worthington 
et	al.	(2022)	were	removed,	as	were	areas	greater	than	10 m	in	eleva-
tion	using	the	MERIT	Digital	Elevation	Model	(Yamazaki	et	al.,	2017)	
and those areas that overlapped with the predicted 2020 mangrove 
distribution	(Bunting	et	al.,	2022).	The	minimum	mapping	unit	of	the	
global	tidal	marsh	map	was	tested	for	two	areas	(1	ha	vs.	10	ha)	by	
identifying areas that had a minimum of either 100 or 1000 con-
nected pixels.

2.3.3  |  Validation

This post- processed model prediction was validated using 2300 
randomly sampled points developed using the following stratified 
sampling procedure. Points were sampled equally across 10 of the 
11 biogeographical realms in the Marine Ecoregions of the World 
(Spalding	et	al.,	2007).	One	hundred	points	were	sampled	from	the	
non- tidal marsh class, as were a further 100 points classified as 
tidal marsh in both the 1- hectare and 10- hectare minimum map-
ping	unit	map	versions.	Finally,	an	additional	30	points	classified	
as tidal marsh only in the 1- hectare minimum mapping unit version 
were	sampled.	A	single	image	analyst	used	Google	Satellite,	Bing	

Maps and Google Earth Pro imagery to assess each point of the 
validation set and assign it to one of three groups, ‘tidal marsh’, 
‘other’	 or	 ‘unknown’	 using	 the	 Class	 Accuracy	 plugin	 in	 QGIS	
(Bunting,	2020).	The	model	prediction	for	the	point	was	concealed	
from the reviewer during the validation process. The ‘unknown’ 
assignment in the validation set was used for points where no con-
fident assignment of the ecosystem type was possible, primarily 
due to poor reference imagery or a lack of information available 
about tidal marshes in particular regions, predominantly in parts 
of the tropics.

Accuracy	 statistics	 were	 calculated	 for	 the	 different	 realms	
using	the	‘caret’	R	package	(Kuhn,	2021)	in	R	(R	Core	Team,	2023).	
Only validation points assigned to the groups ‘tidal marsh’ and 
‘other’	 were	 used	 to	 calculate	 the	 accuracy	 statistics	 (n = 1708).	
For	overall	and	commission	errors,	the	validation	statistics	for	the	
vast majority of realms were higher for the 10- hectare minimum 
mapping	unit	version	(Supporting	Information	Table S2)	in	compar-
ison	to	the	1-	hectare	minimum	mapping	unit	version	(Supporting	
Information Table S3),	 and	 this	was,	 therefore,	 the	 version	 used	
for	the	final	mapping	product.	Accuracy	was	very	variable	across	
the realms, with temperate regions generally achieving higher 
overall map accuracy. The commission errors were always higher 
than the omission errors, which in the tropics was very high. To 
address the issues identified during the map validation, we under-
took two final post- processing procedures. We removed areas of 
tidal marsh that had been identified as aquaculture ponds in 10 
countries	 in	 Asia,	 following	 Murray,	Worthington,	 et	 al.	 (2022),	
and manually corrected misclassifications. Manual correction was 
carried out by visually assessing the map outputs and removing 
obvious misclassifications. Misclassifications were generally re-
lated to areas of aquaculture and flooded agriculture such as rice 
fields and rocky shorelines.

The	1708	previously	classified	validation	points	were	then	com-
pared to the final version of the map, and accuracy statistics were 
again calculated. The manual corrections greatly improved the over-
all accuracy across the realms, with the largest improvements in 
tropical regions, although commission errors remained much greater 
in	 those	 regions	 (Table 1).	We	used	 resampling	procedures	 to	cal-
culate the confidence intervals around our global accuracy statis-
tics	(Lyons	et	al.,	2018),	which	were	used	to	propagate	uncertainty	
around derived estimates of global and regional tidal marsh extent. 
We	resampled	 (n = 1000	 iterations)	 the	validation	points	using	 the	
mean of the samples as our estimates of accuracy, and the 0.025 and 
0.975	percentiles	to	create	the	95%	confidence	intervals	(Supporting	
Information Table S4).	Our	final	map	had	an	overall	accuracy	of	0.85	
(95%	 confidence	 interval	 (CI):	 0.84–0.87).	 The	 resampling	 proce-
dure allowed for asymmetry in the confidence intervals around our 
tidal marsh extent estimates, which better represent the uneven-
ness in the omission and commission errors identified in our map 
(Supporting	 Information	Tables S4 and S5).	We	used	the	0.05	per-
centile of the commission and omission error estimates from the 
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6 of 13  |     WORTHINGTON et al.

resampled distribution to calculate the upper and lower bounds of 
all area estimates using the formulas:

where areaTM is the area of tidal marsh, commission5 and omission5 are 
the 0.05 percentile of the commission and omission error estimates 
respectively.

2.3.4  |  Extent	statistics

Tidal marsh area was summarized at the marine ecoregion realm 
level	 (Spalding	 et	 al.,	 2007)	 and	 for	 countries	 and	 territories	 using	
the union of the ESRI world country database and the Exclusive 
Economic	Zones	version	11	 (Flanders	Marine	 Institute,	2020).	 The	
percentage of the tidal marsh contained within protected areas in 
each country was calculated using The World Database on Protected 
Areas	 (WDPA;	 UNEP-	WCMC	 and	 IUCN,	 2023).	 The	 WDPA	 was	
cleaned	 following	 standard	 procedures	 (Hanson,	 2022),	 which	 in-
cluded removing polygon vertices, removing protected areas where 
the status was proposed or unknown and dissolving protected area 
polygons to prevent double counting of overlapping protected areas.

3  |  RESULTS AND DISCUSSION

Knowledge of the distribution of tidal marsh ecosystems is essen-
tial to understand fundamental drivers of their dynamics, estimate 
risks to their persistence, establish baselines for assessing a range of 
national- to- global conservation targets and to provide a basis for ac-
counting for their ecosystem service provisioning. Our study reports 
the development of the first global, 10- m resolution thematic map of 
tidal marsh distribution, and allows a range of analyses that can fill 
these important knowledge gaps.

3.1  |  Global and regional estimates

We estimate the global extent of tidal marshes in 2020 to be 
52,880 km2	 (CI:	32,020	to	59,780 km2).	This	estimate	 is	 lower	than	
many earlier estimates generated by diverse mapping approaches 
and confirms that tidal marshes occupy a considerably smaller 
area than other coastal ecosystems such as, for example, man-
groves	147,359 km2	(Bunting	et	al.,	2022)	and	tidal	flats	127,921 km2 
(Murray	et	al.,	2019).

Table 2 shows the estimates of tidal marsh extent by biogeographic 
realm	(Spalding	et	al.,	2007).	The	findings	highlight	the	predominance	
of	these	ecosystems	in	the	temperate	and	Arctic	realms,	and	the	par-
ticular	 importance	 of	 the	 temperate	 Northern	 Atlantic.	 This	 single	
realm	hosts	45%	of	 the	world's	 tidal	marshes,	with	extensive	areas	
along	the	Atlantic	and	Gulf	of	Mexico	coasts	of	the	U.S.A	and	in	the	
Northern	European	Seas	province	(Figure 1).	The	widespread	distri-
bution of marshes in this region is likely to be a product of multiple 
geological and geomorphological factors influencing the abundance 
of extensive, protected and low- elevation coastal sediments. Climate 
too is important—it is too cold for mangroves, but not influenced by 
ice	scour.	(Scott	et	al.,	2014a).	As	noted	by	previous	authors,	this	realm	
is	also	the	centre	of	floristic	diversity	for	tidal	marshes	(Adam,	1990; 
Chapman, 1974).	We	estimate	 that	 the	 temperate	Northern	Pacific	
Realm also has significant areas of tidal marshes, especially around 
the	coasts	of	southern	Alaska	and	the	Russian	coasts	of	the	Sea	of	
Okhotsk,	an	area	that	was	unmapped	by	Mcowen	et	al.	(2017).

The area of tidal marshes in the southern hemisphere is 
8380 km2	 (CI:	5080	to	9480 km2)	representing	only	16%	of	the	full	
extent of coastal tidal marsh we detected in our analysis. However, 
the	Atlantic	coast	of	South	America	in	particular	supports	extensive	
tidal	marshes	on	estuaries	with	large	discharges	(Hatje	et	al.,	2023).	
Isacch	et	al.	(2006)	estimated	some	2133 km2 of tidal marshes in the 
area	between	southern	Brazil	and	central	Argentina,	which	is	lower	
than	our	estimate	of	3060 km2 for that region. Our prediction for 
Temperate	Southern	Africa	confirms	prior	observations	that	 these	
are	indeed	scarce	habitats	in	this	realm	(Adams,	2020).

areaTMlower = areaTM −
(
areaTM ∗commission5

)

areaTMupper = areaTM +
(
areaTM ∗omission5

)

Realm
Overall 
accuracy Kappa

Omission 
error

Commission 
error N

Temperate	Northern	Atlantic 0.88 0.76 0.05 0.20 200

Temperate Northern Pacific 0.81 0.60 0.12 0.36 171

Tropical	Atlantic 0.80 0.38 0.20 0.66 129

Western Indo- Pacific 0.73 0.13 0.29 0.89 151

Central Indo- Pacific 0.91 0.69 0.23 0.27 171

Eastern Indo- Pacific 0.93 0.43 0.14 0.68 190

Tropical Eastern Pacific 0.85 0.09 0.00 0.94 114

Temperate	South	America 0.80 0.59 0.10 0.37 188

Temperate	Southern	Africa 0.89 0.78 0.11 0.16 197

Temperate	Australasia 0.88 0.75 0.08 0.18 197

Note: Omission and commission error statistics given for tidal marsh class only. The number of 
sample	points	(N)	within	each	realm	is	the	maximum	number	assessed	(n = 200)	minus	those	
classified as unknown during the validation assessment.

TA B L E  1 Realm	level	accuracy	
statistics for the final tidal marsh map.
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    |  7 of 13WORTHINGTON et al.

Our	map	 indicated	 tropical	 realms	 support	7410 km2	 (CI:	 4450	
to	8380 km2)	of	 tidal	marshes.	 In	 the	 tropics,	coastal	wetlands	are	
typically dominated by mangroves; however, tidal marshes are still 
found	 in	 most	 areas	 (e.g.	 Almahasheer,	 2021; Hena et al., 2007; 
Viswanathan	 et	 al.,	 2020),	 albeit	 often	 within	 spatially	 confined	
areas.	Viswanathan	et	al.	 (2020)	 estimated	290 km2 of ‘salt marsh’ 
around	the	coast	of	India,	considerably	more	than	the	50 km2 from 
our analysis; however, the density of salt marsh vegetation in the 
Indian	study	(19 ± 1	plants	per	m2)	was	lower	than	the	average	den-
sity of tidal marshes in temperate regions, highlighting the challenge 
of identifying tidal marshes with different structures in different re-
gions of the world. Within the Indo- Pacific Realms, our maps show a 
larger distribution of tidal marsh around the coasts of Mozambique, 
Madagascar	 and	 northern	 Australia.	 These	 are	 somewhat	 arid	

macrotidal regions where tidal marshes typically occur behind 
mangroves,	high	in	the	tidal	frame	(Saintilan,	2009).	In	the	Tropical	
Atlantic,	tidal	marshes	are	widespread—notably	in	Central	America	
and Cuba—again in close proximity to mangroves, and usually in the 
upper reaches of the tidal frame.

3.2  |  National estimates

Political contexts set the scene for conservation action and hence 
understanding distribution and spatial statistics at national levels is 
important. Such information also serves to provide data for National 
Biodiversity	 Strategies	 and	 Action	 Plans	 and	 the	 United	 Nations'	
System	of	Environmental-	Economic	Accounting.	Our	map	identifies	

Realm Area (km2) 95% confidence interval
% of global 
Total

Arctica 9210 5580–10,410 17.4

Central Indo- Pacific 600 360–670 1.1

Eastern Indo- Pacific <10 – <0.01

Southern Ocean – – –

Temperate	Australasia 2040 1230–2300 3.9

Temperate	Northern	Atlantic 23,760 14,390–26,860 44.9

Temperate Northern Pacific 6580 3980–7440 12.4

Temperate	South	America 3790 2300–4290 7.2

Temperate	Southern	Africa 80 50–100 0.2

Tropical	Atlantic 4810 2920–5440 9.1

Tropical Eastern Pacific 80 50–90 0.2

Western Indo- Pacific 1920 1170–2180 3.6

Total 52,880 32,020–59,780

Note:	95%	confidence	intervals	created	by	resampling	(n = 1000)	the	validation	points	and	using	the	
0.05 percentile of the commission and omission error estimates.
aN.B.	our	map	does	not	extend	beyond	60° N	and	60° S;	therefore,	the	total	area	for	the	Arctic	
realm	is	an	underestimate.	For	the	Southern	Ocean,	there	are	no	records	of	tidal	marshes	on	
mainland	Antarctica	(Greenberg	et	al.,	2006),	and	our	map	does	not	classify	any	of	the	limited	
coastal	wetlands	on	the	sub-	Antarctic	islands	as	tidal	marshes.

TA B L E  2 The	extent	of	tidal	marshes	
by	biogeographic	realm	(Spalding	
et al., 2007).

F I G U R E  1 The	2020	distribution	of	tidal	marshes,	with	darker	colours	representing	greater	extents	of	tidal	marshes	(km2)	within	a	0.5°	
grid cell.
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8 of 13  |     WORTHINGTON et al.

tidal marsh ecosystems in 120 countries, and Figure 2 shows the 
extents	for	the	20	countries	with	the	largest	areas	of	tidal	marsh.	At	
the	national	scale,	over	a	third	of	the	global	extent	(18,510 km2; CI: 
11,210–20,930)	is	estimated	to	be	found	within	the	U.S.A.	(Figure 2),	
with tidal marshes across all coastlines, but most extensive on the 
Atlantic	 and	Gulf	 of	Mexico	 coasts.	Canada	 (8530 km2;	 CI:	 5170–
9650)	and	Russia	(5140 km2;	CI:	3110–5810)	are	also	important,	and	
the combined extent of just these three countries makes up over 
60%	of	global	tidal	marsh	extent.	Any	future	inclusion	of	data	from	
above	60° N	would	further	highlight	this	dominance.	An	additional	
six countries are estimated to have tidal marsh extents in excess of 
1000 km2	(Supporting	Information	Table S6).

In Europe, tidal marshes are extensive, with a combined total of 
~5000 km2,	 concentrated	along	 the	Atlantic	coasts,	 the	North	and	
Baltic Seas. With its microtidal regime, and influenced by millennia 
of	human	conversion	(Airoldi	&	Beck,	2007),	the	Mediterranean	has	
only limited tidal marsh areas and many are fragmented. Our maps 
also show tidal marsh in the northern Black Sea, particularly in the 
major river deltas of the Danube and Dnepr and along the eastern 
shore	of	the	Azov	Sea	(Figure 1).

3.3  |  Comparison to other global estimates

While our total extent closely matches the global estimate of 
Mcowen	et	al.	(2017;	54,951 km2),	there	are	notable	differences	in	

the distribution between the two maps. We identify tidal marshes 
in	an	extra	17	countries,	while	our	maps	include	spatial	extents	for	
a	 further	 71	 countries	 where	Mcowen	 et	 al.	 (2017)	 provide	 only	
point	locations.	Our	extent	is	also	in	line	with	a	45,000 km2 estimate 
for	non-	arctic	tidal	marshes	(Greenberg	et	al.,	2006).	However,	our	
extent	 is	 58–71%	of	 the	 estimates	of	Murray,	Worthington,	 et	 al.	
(90,800	 km2; 2022)	 and	 Zhang	 et	 al.	 (74,910	 km2; 2023)	 respec-
tively. The former was a more broadly based study of intertidal wet-
land	dynamics	and	thus	not	directly	comparable.	Zhang	et	al.	(2023)	
is	a	lower	resolution	(30 m)	global	assessment	of	all	wetlands,	which	
includes “coastal saltmarsh”. The larger extent predicted is some-
what	 explained	 by	 the	 inclusion	 of	 4800 km2	 along	 Arctic	 coast-
lines	which	were	precluded	from	our	study	(see	below).	In	addition,	
the	study	of	Zhang	et	al.	 (2023)	predicts	 the	presence	of	 “coastal	
saltmarsh” over a far greater proportion of the global coastline; 
however, this is partly explained by the fact that it does not apply 
an	area	filter	to	remove	the	noise	(predictions	of	wetland	distribu-
tion	confined	to	single	pixels)	 in	 their	maps.	No	recent	maps	have	
come	close	to	the	highest	previous	global	estimates	of	400,000 km2 
(Duarte	et	al.,	2005).

The strength of our approach is that it was targeted to the map-
ping of tidal marshes using training sets that conform to a single class 
definition	(e.g.	Keith	et	al.,	2022)	and	was	developed	via	deep	liter-
ature review and image interpretation. The image covariates were 
designed	for	the	purpose	of	mapping	tidal	marshes	(not	all	wetlands),	
and underpin a classification approach shown to perform well in 

F I G U R E  2 The	area	of	tidal	marsh	in	the	countries	with	the	largest	extents.	95%	confidence	intervals	were	estimated	by	resampling	the	
validation	set	(n = 1000)	and	using	the	0.05	percentile	of	the	commission	and	omission	error	estimates.	The	resampling	procedure	allowed	
for asymmetry in the confidence intervals around our tidal marsh extent estimates, which better represent the unevenness in the omission 
and commission errors identified in our map.

0 5000 10000 15000 20000

Uruguay
Spain

Germany
Honduras

Chile
United Kingdom

Nicaragua
Romania

France
Cuba

Ukraine
Brazil
China

Mexico
Mozambique

Australia
Argentina

Russian Federation
Canada

United States

Estimated area of tidal marsh (km2)

 14668238, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/geb.13852 by C

ochraneA
ustria, W

iley O
nline L

ibrary on [17/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



    |  9 of 13WORTHINGTON et al.

coastal environments which is essential for resolving the uncertainty 
in tidal marsh distribution.

3.4  |  Protected areas

We	estimate	that	over	45%	(24,200 km2)	of	the	world's	52,880 km2 
of tidal marshes are found within the boundaries of protected areas. 
This is approximately equivalent to the extent of mangroves that 
occur	within	protected	areas	(42%;	Leal	&	Spalding,	2022)	and	greater	
than	 the	 current	 area	 of	 coral	 reefs	 (32%;	 Marine	 Conservation	
Institute, 2018)	or	tidal	flats	(31%;	Hill	et	al.,	2021).	Such	extensive	
protection of coastal ecosystems likely reflects a growing percep-
tion of their immense value for biodiversity and for people. In this 
regard, tidal marshes are among the few ecosystem types globally 
that	 already	met	 the	30%	protection	 threshold	of	Target	3	of	 the	
Kunming–Montreal	Global	Biodiversity	Framework;	however,	other	
aspects of Target 3 such as protected areas being effectively man-
aged, well- connected and equitably governed are yet to be fully 
assessed	 (CBD,	2022).	 Further,	 it	 is	 important	 to	 be	 aware	 that	 if	
we could measure original tidal marsh extent, this figure would be 
considerably	 lower.	 The	 USA	 and	 Canada	 are	 critical	 in	 securing	
these	levels	of	coverage	with	some	6600	and	3500 km2 in protected 
areas,	or	35%	and	41%	of	their	national	tidal	marsh	extent	respec-
tively	(Figure 3).	In	Europe,	the	proportional	coverage	is	particularly	
high, with 14 European countries having >90%	of	their	extant	tidal	
marshes	within	their	protected	area	network	(Figure 3; Supporting 
Information Table S6),	although	it	is	noteworthy	that	our	knowledge	
of losses in this region suggests that most countries have lost be-
tween	50%	and	90%	of	historical	cover	(Airoldi	&	Beck,	2007).

3.5  |  Challenges and limitations

One of the main challenges in developing a global map of tidal 
marshes is the considerable variability in an ecosystem that is glob-
ally distributed, ranging from monospecific reedbeds, salt- tolerant 
grasses and low, succulent shrubs, and that exists under highly vari-
able	environmental	 settings	 (Keith	et	 al.,	2022).	 The	habitats	 cap-
tured in our analysis maps are highly diverse: many are extensive 
near- continuous areas dominating the upper reaches of wide inter-
tidal frames. Elsewhere they are part of a tight mosaic with other 
habitats such as mangroves in tropical regions, or in complexes of 
dunes, lakes, marshes and drylands in the higher latitudes. In most 
areas, tidal flushing is likely to be regular, but in some settings, such 
as in microtidal regimes, and in intermittently closed and open la-
goons, such inundation may be more seasonal or intermittent.

In large part, the tidal marshes in our maps conform to the defi-
nition	of	salt	marsh	developed	by	Adam	(2002),	which	is	close	to	
that	of	Keith	et	al.	(2022)	for	“Coastal	saltmarshes	and	reedbeds”.	
By contrast, the Ramsar Convention recognizes several habitat 
types within tidal marshes including salt marshes, salt meadows, 
saltings,	 tidal	 brackish	 and	 freshwater	 marshes	 (Department	 of	
Climate Change Energy the Environment and Water, 2021).	Even	
so, any mapping practice of this sort is, in part, constrained by 
what can be distinguished remotely from imagery or associated 
interpretation. In this study, our mapped distribution includes a 
considerable number of brackish to freshwater tidal marshes 
alongside the more strongly halophytic communities that have 
been described by others. This is a potential limitation of the 
research as it is currently not possible to differentiate such sys-
tems based on salinity using remote sensing methods; however, 

F I G U R E  3 The	percentage	of	the	country	or	territory's	tidal	marsh	extent	within	the	boundaries	of	a	protected	area.
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10 of 13  |     WORTHINGTON et al.

it ensures that we incorporate the entirety of an ecotone that is 
rarely,	 if	ever,	 a	 sharp	boundary	 (Maltby	&	Barker,	2009; Phelan 
et al., 2011).

The	use	of	a	global	training	dataset	(Murray,	Bunting,	et	al.,	2022)	
was intended to include tidal marsh ecosystems present across all 
latitudes and representing very different tidal and climatic regimes; 
however, training data for the model were most comprehensive 
in areas where more tidal marshes occur, primarily temperate re-
gions. This resulted in a potential bias in our prediction towards tidal 
marshes with physical features reflected by the training set and, 
aside from showing the distributional range of tidal marshes, it is 
noteworthy that our map also shows gaps—stretches of coastlines or 
regions where tidal marshes are rare to absent. These include many 
oceanic islands, but also some wet tropical regions in Southeast 
Asia.	Gaps	 associated	with	 hypersaline	 flats	 of	 northern	Australia	
and the Middle East are also notable—these areas may have sparse 
salt	marsh	plants	fringing	the	margins	of	sabkha	ecosystems	(Barth	
&	Böer,	2002),	but	these	areas	of	very	sparse	fringing	marsh	vegeta-
tion were specifically not included in the training set.

Assessment	of	the	accuracy	of	our	map	indicated	greater	com-
mission	errors	 in	comparison	to	omissions	errors	 (see	also	Murray,	
Worthington, et al., 2022),	with	high	values	in	many	tropical	regions	
(Table 1).	 This	 highlights	 that	 our	 analysis	 is	 overpredicting	 tidal	
marsh	presence	 (false	positives),	with	 the	errors	particularly	prev-
alent	 in	 those	areas	 lacking	extensive	data	 for	model	 training	 (see	
above).	Visual	assessment	of	the	map	identified	the	chief	causes	of	
these false positives were human modification of the coastal zone 
for aquaculture and flooded agriculture such as rice fields, while in 
northern latitudes rocky shorelines proved challenging for the clas-
sifier. While manual correction removed many of these misclassifica-
tions, errors will still persist in the final product.

The latitudinal limits to our study do not affect the south-
ern hemisphere where tidal marsh is thought not to occur on the 
Antarctic	 continent	 (Greenberg	 et	 al.,	2006);	 however,	 they	mean	
we	underestimate	the	overall	tidal	marsh	extent	 in	the	Arctic.	Our	
map	covers	the	southern	parts	of	the	Arctic	realm	in	Canada,	USA	
and Russia, the areas that are likely to host a large proportion of 
arctic tidal marshes because they are less impacted by extreme 
conditions of temperature, snow and ice cover, ice scour, high wave 
energy and isostatic uplift compared to the higher latitude coasts. 
Despite the gap in our coverage, the very large areas we show, no-
tably in southern Baffin Bay in Canada, mean that this realm has 
the second highest tidal marsh coverage, globally. Moving north, 
beyond the reach of our maps, it is likely that tidal marshes will be 
less extensive owing to the impact of ice abrasion and the harsh 
climate	 (Adam,	2002; Scott et al., 2014a).	Zhang	et	al.	 (2023)	map	
4800 km2	in	the	high	Arctic	area;	however,	given	the	differences	in	
our mapping approaches, we would predict a much smaller extent 
than this in these high latitudes. It is important to note that while 
the tidal marshes in these high northern latitudes tend to be limited 
in distribution with low diversity, they are extremely vulnerable to 
environmental	change	(Adam,	1990, 2002; Chapman, 1974; Martini 
et al., 2019; Sergienko, 2013).

4  |  CONCLUSIONS

This research presents the first consistent medium- resolution tidal 
marsh distribution map for the world. Compared to previous stud-
ies, it identifies tidal marshes in more countries and across a greater 
proportion of the world's coastline and provides the higher reso-
lution view of the extant distribution of this globally widespread 
coastal ecosystem. While there are opportunities to improve the 
map,	particularly	 in	the	high	Arctic	and	some	tropical	and	arid	re-
gions, it already provides an invaluable baseline against which to 
measure change and to quantify the value of important ecosystem 
services.

Historic losses of tidal marshes have been considerable, with 
some areas continuing to experience land use conversion and tidal 
marsh degradation. With a globally consistent method that focuses 
solely on tidal marshes to develop a strong baseline, it should be 
possible to use our map to identify recent losses, following the 
methods	established	for	wetland	ecosystems	(Bunting	et	al.,	2022; 
Campbell et al., 2022; Murray, Worthington, et al., 2022).	 Our	
map will, therefore, enable better tracking of ongoing changes, 
which may represent natural dynamics, the impacts of sea level 
rise	 (Saintilan	 et	 al.,	2022)	 or	 direct	 human	modifications	 includ-
ing tidal marsh conversion or the impact of marsh restoration ef-
forts	(Murray,	Worthington,	et	al.,	2022).	Other	work	is	ongoing	to	
better	quantify	the	carbon	stocks	in	tidal	marsh	soils	(e.g.	Maxwell	
et al., 2023)	and	coastal	protection	functions,	while	it	is	hoped	that	
others may be able to develop improved maps of fisheries enhance-
ment and other benefits. Tidal marshes, although spatially limited, 
represent ecosystems of critical importance to biodiversity and to 
people. By establishing an open- access, global baseline, we hope 
to encourage greater efforts to secure a long- term future for these 
ecosystems, and indeed for the millions of people who depend 
upon them.
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