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A B S T R A C T   

The climate in the Mediterranean region is expected to become warmer and drier but future projections of 
precipitation are uncertain, especially in the Northern part. Additionally, the difficulty in determining the plant 
physiological responses caused by CO2 rising complicates the estimation of future evaporative demand, 
increasing the uncertainty of future aridity assessments. Vegetation responses to rising CO2 are expected to in
crease radiation use efficiency and reduce stomatal conductance, hence increasing plant’s water use efficiency. 
These effects are often neglected when estimating future drought and aridity. Hence, the main objective of this 
study is to estimate the effect of climate change and vegetation stomatal conductance reduction on projected 
water balance components and the resulting impact on aridity in a medium-sized catchment of Central Italy. We 
validate and couple a hydrological model with climate projections from five regional climate models and perform 
simulations considering the vegetation responses or not. Results show that their inclusion significantly affects 
potential evapotranspiration. The other water balance components, namely actual evapotranspiration, water 
yield, percolation, and irrigation, are also influenced but with less significant changes. Considering or not the 
CO2 suppression effect on stomatal conductance, coupled with the uncertainty related to precipitation, highly 
affects the estimation of future aridity as the future climate classification ranges from “humid” to “semi-arid” 
depending on the simulation and climate model, even if model outputs need to be evaluated cautiously with CO2 
concentration higher than 660 ppm.   

1. Introduction 

The Mediterranean area is considered a hotspot for climate change 
since, compared to other regions, temperatures will rise 20% faster and 
precipitation will decrease 4% faster per degree warming than the global 
average (Lionello and Scarascia, 2018). Moreover, it will face increased 
extreme heat, heavy precipitation, and hydrological and agricultural 
droughts (Arias et al., 2021). Focusing on future precipitation in the 
Mediterranean region, many studies highlighted a clear North-South 

gradient, with the Southern areas facing the most severe impacts of 
climate change. Despite the great uncertainty, the zero-change line in 
precipitation is usually estimated to cross Northern and Central Italy (e. 
g., Coppola et al., 2021; Mariotti et al., 2015; Spano et al., 2020). 

Understanding future precipitation trends and their spatial patterns 
over Italy is crucial given their large socio-economic and environmental 
impact (WHO, 2018). Indeed, according to the Organisation for Eco
nomic Co-operation and Development (OECD) classification, Italy is 
currently considered a medium-high water-stressed country since more 
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than 30% of renewable water resources are used, with a large share 
dedicated to agriculture (PNACC, 2018). Furthermore, water availabil
ity and demand are very inhomogeneously distributed throughout the 
country. Past studies on precipitation variability showed that there is a 
negative trend in total annual precipitation for the whole Italian terri
tory, which is most pronounced in the winter season (Caporali et al., 
2021). Interestingly, these past trends oppose future precipitation pro
jections that simulate a reduction in summer precipitation and a slight 
increase in winter (Spano et al., 2020). More specifically, over Central 
Italy, no considerable past trends were obtained for yearly precipitation, 
while positive trends in autumn and winter were identified. At the same 
time, meteorological drought analyses revealed an increasing trend in 
both severity and frequency for two other regions in Central Italy, 
Abruzzo and Umbria (Di Lena et al., 2014; Vergni and Todisco, 2011). 

Past and future warming over land has a strong impact on the at
mospheric evaporative demand (here referred to as potential evapo
transpiration, PET), leading to a reduction in soil moisture and increased 
agricultural and ecological droughts (Douville et al., 2021; Seneviratne 
et al., 2021). Vicente-Serrano et al. (2022a) stressed the importance of 
PET changes in the observed increase in agricultural and ecological 
droughts. Temperature and humidity are strongly linked and the change 
in relative humidity is tightly related to the soil-moisture availability 
(Drobinski et al., 2020). The surface-drying effect due to increased 
temperatures will be reduced in the Northern Mediterranean due to the 
availability of sufficient soil moisture (Tramblay et al., 2020). Mariotti 
et al. (2015) inferred that in Europe future evapotranspiration changes 
over land were mainly linked to changes in projected precipitation. 
Surface insolation is projected to increase over the whole Mediterra
nean, mainly because of reduced cloudiness (Coppola et al., 2021). On 
the other hand, soil moisture is projected to decrease in many areas of 
the Mediterranean, but with high uncertainties; for example, no 
noticeable changes are projected over large parts of Italy (Mariotti et al., 
2015). 

Another major source of uncertainty when trying to assess the future 
aridity conditions is the direct effect of CO2 concentration increase 
through changes in plant transpiration and growth (Manzoni et al., 
2022; Vicente-Serrano et al., 2022b). CO2 rising boosts crop growth 
through the CO2 fertilization effect and reduces plant transpiration and 
PET through the CO2 suppression effect on stomatal conductance (Zhang 
et al., 2022). Overall, the decrease in transpiration caused by the sto
matal conductance reduction is compensated by the increase in tran
spiration caused by the CO2 fertilization effect (Manzoni et al., 2022), 
especially in dry and semi-arid climates (Fatichi et al., 2016). Increasing 
CO2, therefore, has an indirect effect on runoff which is the main factor 
explaining the discrepancy between a projected increased future runoff 
as predicted by climate models and a drying trend that is projected from 
future drought and aridity estimations (Yang et al., 2019). Globally, the 
greening effect of CO2 rising and climate change was demonstrated with 
evidence from the last ice age and the historical era (Scheff, 2018; Zhu 
et al., 2016). Assessing future aridity conditions using 
temperature-based indices without accounting for the CO2 fertilization 
and stomatal suppression effects may result in an incomplete assessment 
(Scheff, 2018; Swann et al., 2016). Nevertheless, the current increase in 
CO2 concentration is occurring at an unprecedented rate at which eco
systems might not be able to take advantage; also, nutrient availability 
might limit the positive effect of CO2 fertilization (Scheff, 2018). 
Climate models already take the CO2 fertilization mechanism into ac
count, but this effect might be overestimated, and caution is suggested 
when directly using the outputs of climate models in the estimation of 
future drought (Vicente-Serrano et al., 2022a). 

While the uncertainty related to projected precipitation is vastly 
explored in literature, the one related to PET, linked mainly to the CO2 
suppression effect on stomatal conductance, is rarely estimated. The 
objective of this study is to demonstrate the importance of considering 
the plant physiological responses to CO2, mainly stomatal conductance 
reduction, when calculating projected PET, quantifying the difference in 

simulated water balance components and aridity when considering or 
not the vegetation responses. The impacts of climate change on water 
resources such as the water balance components and river flows are 
frequently assessed by coupling climate and hydrological models 
(Tramblay et al., 2020). Among the various hydrological models, the 
Soil and Water Assessment Tool (SWAT) has been frequently used in the 
Mediterranean region, including for climate change analyses in Italy 
(Aloui et al., 2023). Here, we use as meteorological data five 
bias-corrected EURO-CORDEX Regional Climate Models (RCMs) and 
evaluate their projected trends for precipitation and temperature in the 
Ombrone catchment in Central Italy. These are then used to force the 
SWAT+ model (Arnold et al., 2018; Bieger et al., 2017) to simulate 
future water balance. We evaluate the model performance in predicting 
monthly streamflow using a multi-site calibration and validation pro
cess. We then simulate PET with constant and decreasing stomatal 
conductance and assess the effect of the plant physiological responses to 
CO2 on aridity and other water balance components. In this study, we 
also focus on the SWAT+ approach to estimate PET upon exceedance of 
the 660 ppm threshold, which is considered the maximum value at 
which the equations used by the model are valid. Understanding the 
mechanisms behind and improving the quantification of the CO2 sup
pression effect on stomatal conductance and CO2 fertilization will allow 
the development of more robust aridity projections which, in turn, are 
required to optimally plan potential adaptation measures. 

2. Methodology 

2.1. Study area: the Ombrone catchment 

Coastal, small-to-medium-sized, temporary rivers prevail in the 
Mediterranean region, accounting for more than half of the total area 
(Ducrocq et al., 2016). The Ombrone catchment, located in Central and 
Southern Tuscany, is a typical example of a Mediterranean catchment, 
with an area of 3552 km2, a maximum elevation of 1738 m.a.s.l., and the 
river outlet in the Tyrrhenian Sea (Fig. 1). The Ombrone river is the 
second longest river of Tuscany with a length of 161 km and has several 
tributaries, including the Arbia, Merse, Farma and Orcia (Diodato et al., 
2023). The Ombrone catchment is almost entirely included in the 
provinces of Siena and Grosseto. This part of Tuscany is considered 
substantially water-stressed due to the high concomitant water demand 
for agriculture and tourism, especially in the coastal areas (Villani et al., 
2022). Southern Tuscany is also the area of the region that receives less 
precipitation and is experiencing the most pronounced increases in dry 
spell occurrence (Bartolini et al., 2022). Furthermore, the analysis 
conducted by Diodato and Bellocchi (2008) classified this area as prone 
to agricultural drought. According to the Köppen classification, the 
prevalent climate can be described as a hot-summer Mediterranean 
(Csa) climate (Beck et al., 2018), characterized by hot, dry summers and 
cool, humid winters, with an annual precipitation of 600–1100 mm 
according to the data used in this study. The climate of the internal areas 
of the Ombrone catchment is more continental compared to the coastal 
areas, with slightly higher precipitation and shorter summer (Diodato 
et al., 2023). Future projections indicate that this might shift towards 
hot and cold semi-arid (BSh and BSK) climates (Beck et al., 2018). The 
Ombrone catchment is characterized by hilly and mountainous areas 
with slopes of over 20% and torrential streams (Diodato et al., 2023). 
According to the Corine Land Cover of 2018 used in this study, the main 
land covers of the catchment are forest (39%) and herbaceous annual 
crops (46.87%), and the other types of vegetation are permanent pas
tures (4.28%), vineyards (3.84%), and olive groves (1.89%). The 
remaining parts of the catchment are covered with artificial surfaces, 
shrubland and bare land. 

In the last sixty years, Tuscany has experienced considerable eco
nomic growth that led to a reduction in the number of farms and the 
abandonment of cultivated land, especially in the less productive areas 
(Napoli et al., 2017). The upland areas of the Ombrone catchment in the 
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Siena province are mainly cultivated with non-irrigated crops such as 
cereals, olives, and grapevine. Vineyards and olive groves are wide
spread in the whole of Tuscany and are prevalent in rugged and sloped 
areas prone to erosion (Napoli et al., 2014; Napoli and Orlandini, 2015). 
In the coastal areas of the Grosseto province, irrigation is more widely 
used and orchards and horticultural crops are common. Water is thereby 
pumped mainly from the coastal aquifer of the Grosseto plain, which 
suffers from overexploitation, seawater intrusion, and pollution (Aldi
nucci et al., 2012; Zucaro and Tudini, 2008). 

2.2. The SWAT+ model 

The SWAT+ model is a restructured version of SWAT that offers 
better spatial discretization of the catchment, improved code mainte
nance and more flexibility in representing management practices 
compared to the previous versions (Arnold et al., 2018; Bieger et al., 
2017). This dynamical model uses a daily time step, and represents the 
catchment with a semi-distributed approach, by dividing it into sub
basins, landscape units, and Hydrological Response Units (HRUs). The 
HRUs each have homogeneous characteristics of soil, slope, and land 
use. A key improvement in SWAT+ upon SWAT is the inclusion of de
cision tables, which allow for an improved representation and modelling 
of complex rules related to water and agricultural management (Arnold 
et al., 2018). 

The SWAT/SWAT+ modelling suite can be conveniently used to 
evaluate the impacts of the plant physiological responses to CO2, namely 
the CO2 suppression effect on stomatal conductance and the CO2 
fertilization, on streamflow and water balance components (Wang et al., 
2017; Wu et al., 2012). The modification of the Penman-Monteith 
approach to simulate the suppression effect on stomatal conductance 
included in SWAT is commonly applied (e.g., Lemaitre-Basset et al., 
2022). In the traditional Penman-Monteith equation, stomatal resis
tance, which is the inverse of stomatal conductance, is assumed to 
remain constant and is therefore unrealistic (Lemaitre-Basset et al., 
2022). Only when the Penman-Monteith method is used, SWAT+ has 
been adjusted to account for the stomatal suppression effect (Neitsch 
et al., 2011; Nkwasa et al., 2023). More specifically, in SWAT+ the 
stomatal resistance (rc) is allowed to change with Eq. 1 (Easterling et al., 

1992) based on an experiment that reached a CO2 concentration of 
660 ppm (Morison, 1987), which is much lower than the projected in
crease by the end of the century under Representative Concentration 
Pathway (RCP) 8.5. Moreover, the CO2 fertilization effect is accounted 
for in SWAT+ by simulating increased radiation use efficiency (RUE) 
with Eq. 2, which affects daily biomass accumulation (Neitsch et al., 
2011). 

rc =
rl

(0.5⋅LAI)⋅(1.4 − 0.4⋅CO2
330)

(1)  

RUE =
100⋅CO2

CO2 + exp(r1 − r2⋅CO2)
(2)  

where rl is the minimum effective stomatal resistance of a single leaf (s 
m− 1), LAI is the Leaf Area Index of the canopy, r1 and r2 are the shape 
coefficients calculated by the model for each crop. 

For the SWAT+ model setup, we used the EU-DEM (version 1.0) at 
25 m resolution and the 2018 Corine Land Cover and Land Use map 
from the Copernicus Land Monitoring Service. As soil map, we used the 
Pedological Database of the Tuscany Region. In this database, soil 
texture and organic matter content are available as average in the whole 
soil profile, while hydraulic conductivity is reported for two layers. 
Other information, such as soil depth and salinity, are reported as cat
egorical variables. To estimate soil properties, pedotransfer functions 
are typically used (Abbaspour et al., 2019). We estimated available 
water capacity with the widely used pedotransfer function of Saxton and 
Rawls (2006) as in Napoli et al. (2017), bulk density with the equation 
proposed by Manrique and Jones (1991) that performs well in Italy 
(Pellegrini et al., 2007), the soil erodibility factor with the method of 
Williams (1995), and the soil albedo with the equation introduced in 
Sugathan et al. (2014). Climate data were obtained from the Regional 
Hydrological Service (SIR) of the Tuscany Region. In SWAT+, weather 
stations are created based on climate input data and assigned to the 
HRUs. More details on climate input data are available in Table S1. 

Since agricultural land occupies a large share of the Ombrone 
catchment, we defined a simplified representation of herbaceous crop
land using the four main crops of the catchment to improve the repre
sentativeness of the model. For this, we used the land covers provided by 

Fig. 1. The Ombrone catchment with the three gauging stations, the subbasins, and the boundaries of the provinces of Siena and Grosseto.  
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the Tuscany region through the ARTEA agency, which are published 
yearly and contain detailed field-specific characteristics of crop type, 
crop variety, and crop management (ARTEA, 2018). Hence, in the 
model, we split the herbaceous cropland use into four classes: durum 
wheat as the rainfed winter crop (30%), sunflower as the rainfed spring 
crop (15%), maize as the irrigated spring crop (15%), and alfalfa as the 
forage crop (40%). We checked and slightly modified the default deci
sion tables already available in the model for sowing and harvesting 
crops to match the typical sowing and harvesting dates. We included 
mouldboard and harrow tillage in the management schedule as well as 
representative fertilization schemes. We prepared a decision table for 
automatic sprinkler irrigation of 20 mm per event triggered by a water 
stress threshold of 0.241. By using these values, we obtained volumes of 
irrigation of the same order of magnitude as compared to the most 
updated data retrieved from the National Institute of Statistics (ISTAT, 
2010). In SWAT+, the water stress is calculated comparing actual and 
potential plant transpiration (Neitsch et al., 2011). To confirm the 
consistency of the crop-management schedule, we compared it with 
reported crop schedules in the Tuscany region (Dalla Marta et al., 2010; 
Orlando et al., 2015; Giannini and Bagnoni, 2000; Tuscany region, 
2010). The impacts of climate change on crop yield in the Ombrone 
catchment are evaluated and discussed in Villani et al. (2024). 

2.3. SWAT+ setup and multi-site calibration and validation 

We set up the SWAT+ model (revision 60.5.4) in QGIS for a period 
from 2010 until 2021. Then, we used the SWAT+ Toolbox to perform 
automatic sensitivity analysis, calibration, and validation for monthly 
streamflow. The parameters considered for the automatic sensitivity 
analysis were selected from literature, but we also included other pa
rameters related to the soil map (Table S2). We considered two years of 
warm up for calibrations, validations and simulations. 

Monthly streamflow data for three flow gauging stations were 
retrieved from SIR (Fig. 1). After the automatic sensitivity analysis 
performed with the SWAT+ Toolbox, we started calibrating the selected 
parameters in the upstream flow station of Buonconvento, using five 
years of monthly flow (2017–2021). Then, for Sasso d’Ombrone we 
calibrated the parameters using the same time window and validated 
with monthly flows from 2012 to 2016, maintaining the calibrated pa
rameters for the subbasins of Buonconvento. We finally repeated the 
same procedure for Istia, where we considered three years of data for 
both calibration (2019–2021) and validation (2013–2015). The periods 
for calibration and validation were selected according to the data 
availability. Hence, the calibration was performed for all three gauging 
stations, while the validation was only in two of them since for the 
Buonconvento gauging station we could rely only on five years of 
streamflow. Nevertheless, we don’t consider this a major problem since 
Buonconvento is the most upstream gauging station. 

To perform calibration and validation, the SWAT+ Toolbox allows 
the use of the Nash Sutcliffe Efficiency (NSE), the Mean Square Error 
(MSE) and the Root Mean Square Error (RMSE). As mostly applied with 
the SWAT/SWAT+ modelling suite, we selected as objective function 
the NSE during the automatic calibration for monthly streamflow. The 
percent bias (PBIAS) and the RMSE-observations standard deviation 
ratio (RSR) were calculated as additional statistics to evaluate the per
formance of the model. We used the equations and evaluated the model 
performances following the criteria of Moriasi et al. (2015) for NSE and 
PBIAS, while those of Moriasi et al. (2007) for RSR (Table S3). 

2.4. Climate change scenarios 

To estimate future climate changes, we used five EURO-CORDEX 
climate models (Jacob et al., 2014) (Table 1) and RCPs 4.5 and 8.5 
(Moss et al., 2010). We considered two 30 year-long periods, 2041–2070 
and 2071–2100, to evaluate medium- and long-term climate change 
impacts, comparing the projected values with those of the historical 

simulations (from 1976 to 2005) of each climate model. The criteria for 
selecting the climate models were (1) the availability of both RCPs, (2) 
the availability at daily frequency of precipitation and the climate var
iables needed to calculate PET with the Penman-Monteith method 
(maximum and minimum temperatures, relative humidity, solar radia
tion, and wind speed), (3) the use of a complete (Gregorian) calendar, 
(4) a horizontal RCM resolution of 0.11◦ over the EURO-CORDEX 
domain. A bias correction of the climate-projection data is necessary 
as systematic biases are present in the meteorological data (Maraun and 
Widmann, 2018). Among the different methodologies that exist for bias 
correction of climate models, we adopted distribution mapping which is 
commonly used for climate and hydrological studies (Teutschbein and 
Seibert, 2012; Themeßl et al., 2011). 

We used the CMHyd software to bias correct temperature and pre
cipitation (Rathjens et al., 2016). The software reprojects the data and 
applies the selected bias-correction method using the station data pro
vided by the user. The CMHyd outputs can be directly used in the 
SWAT+ model without further preprocessing. Since bias correction is 
performed by comparing the historical simulation of the climate models 
with observed values before 2005, we used a lower number of stations 
compared to the calibration and validation period. The stations used for 
bias correction were included in the Ombrone catchment or very close 
and had more than 10 years of data as indicated in Fung (2018). More 
details about the climate data used for bias correction can be found in 
Table S1. To process the other climate variables, solar radiation, relative 
humidity and wind speed, we used the Climate Data Operators (CDO) 
software, version 2.0.5 (Schulzweida et al., 2021). These bias-corrected 
climate data were then used to run historical and future simulations. In 
the result section, we detected the changes comparing future and his
torical simulations for each climate model and RCP. 

In SWAT+, the crop cycle is defined with the number of days 
required to reach maturity, differently from the older version which 
used the number of heat units (Nkwasa et al., 2023). To account for the 
shortening of the crop cycles, at first we retrieved the heat units starting 
from the days to maturity used during the calibration and validation 
period. Then, we calculated the new crop cycle length considering the 
different temperatures in the historical and future periods. 

After the calibration and validation of the SWAT+ model, we per
formed simulations to assess the impacts of climate change considering 
the different climate models, RCPs, and periods. At first, we evaluated 
the magnitude and sign of the climate change signal for future precipi
tation and average temperature in the Ombrone catchment, considering 
the basin scale outputs of the SWAT+ model. To quantify the impacts of 
the plant physiological responses to CO2 on PET and other water balance 
components, we performed simulations with constant CO2 at 400 ppm, 
as in the calibration and validation, and others considering the values as 
reported by Büchner and Reyer (2022), for RCPs 4.5 and 8.5, for the 
historical, near and far future periods. We used the 30-year-average CO2 
concentration since it is a fixed input parameter in the SWAT+ model. 
The average CO2 concentration for RCP 4.5 (522 and 589 ppm for the 
near and far futures, respectively) and the near future for RCP 8.5 
(611 ppm) fall between the limit of the Morison experiment 
(330–660 ppm), while the average CO2 concentration for the far future 
of RCP 8.5 is much higher (939 ppm). 

We evaluated the impacts of climate change and vegetation 

Table 1 
The five climate models used in the study with the General Circulation Model 
(GCM) and the Regional Climate Model.   

GCM institute GCM model RCM institute RCM model  

1 CNRM-CERFACS CNRM-CM5 CNRM-CERFACS ALADIN63  
2 CNRM-CERFACS CNRM-CM5 KNMI RACMO22E  
3 ICHEC EC-EARTH KNMI RACMO22E  
4 MPI-M MPI-ESM-LR SMHI RCA4  
5 NCC NorESM1-M GERICS REMO2015  
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responses to CO2 on future PET and estimated future dryness conditions 
with the Aridity Index (AI). AI is calculated as the ratio between pre
cipitation and PET (Middleton and Thomas, 1997) and is useful to 
classify the climate following the UNEP climate classification. Despite 
the intrinsic simplifications of this method, AI is used for climate clas
sification (Massari et al., 2022) and as a benchmark for aridity condi
tions at the regional scale (He et al., 2022). Hence, AI estimation is 
useful to evaluate the uncertainty related to RCPs and the inclusion of 
the stomatal conductance reduction caused by CO2 concentration rising. 
Finally, we performed a similar analysis for the water balance compo
nents and other variables simulated with the SWAT+ model, namely 
actual evapotranspiration (ET), water yield (a direct output of the model 
defined as the sum of surface runoff, lateral soil flow, and tile flow), 
percolation, and irrigation. In the main analysis reported in the results 
section we refer to the water balance components considering average 
yearly values, but in the supplementary materials we reported other 
simulations outputs considering the 5th and 95th percentiles, summer 
and winter season values and additional variables such as streamflow. 

We applied the Wilcoxon rank-sum non-parametric test to detect 
significant differences between historical and future periods and be
tween simulations including and excluding the vegetation responses to 
CO2. We considered the yearly values of the variables considered in the 
analysis. The two samples used to test the significant differences were 
always selected from the same climate model. 

3. Results 

3.1. Multi-site calibration of SWAT+

Out of the 15 parameters pre-selected for the sensitivity analysis, we 
considered only the most sensitive, specifically cn2, esco, epco, bd, and 
revap_co. More details about the calibrated parameters are available in 
the supplementary materials (Tables S2, S3, S4). Despite overestimation 
of peak flows, we obtained more than satisfactory performances ac
cording to the criteria considered in this study (Table 2, Fig. 2). More in 
detail, the model achieved very good performances in Buonconvento 
during the calibration period for the three statistics considered, while in 
Sasso d’Ombrone we obtained very good performances considering NSE 
and RSR and good for PBIAS. For the Istia gauging station, we obtained 
very good performances for NSE and RSR during validation and good for 
PBIAS, while during the calibration period satisfactory performances for 
NSE and PBIAS and good for RSR. The reduced performance for Istia 
during calibration can be mainly attributed to a discharge peak in 
February 2019 (see Fig. 2) which might be an error in the observed 
streamflow data since it is not present in the other sites. 

3.2. Projected temperature and precipitation changes over the Ombrone 
catchment 

A positive, significant climate change signal over the Ombrone 
catchment was obtained for annual average temperatures, for all future 
periods and RCPs considered (Fig. 3, Tables 3, S5). While the increase in 

temperature under RCP 4.5 was of similar magnitudes in the near and far 
futures, under RCP 8.5 it continued to rise in the far future. In the far 
future, the highest increases of 18% and 32% were found for NorESM1- 
M – REMO2015, under RCPs 4.5 and 8.5 respectively. The ensemble- 
mean temperature increase at the end of the century was 2.1 ◦C and 4 
◦C for RCPs 4.5 and 8.5, respectively (Table S5). Temperature increases 
were largest for the summer season and daily minimum temperature. 
For average, maximum, and minimum temperatures, the increases in 
summer were higher than those in winter, particularly for RCP 8.5. The 
ensemble-mean increases were 1.9 ◦C and 3.5 ◦C for winter average 
temperature, for RCPs 4.5 and 8.5, respectively, while for summer these 
were 2.3 ◦C and 4.8 ◦C (Table S5). 

For annual precipitation, climate change projections were much 
more uncertain (Fig. 4, Tables 3, S5). The RCMs disagreed on the sign of 
change, with four RCMs predicting negligibly small changes or increases 
and one (NorESM1-M – REMO2015) a decrease (Table 3, Fig. S1). The 
ensemble-mean average annual precipitation increased at the end of the 
century by 70 and 32 mm for RCPs 4.5 and 8.5, respectively (Table S5). 
This difference is mainly caused by the significant decrease in precipi
tation by NorESM1-M – REMO2015 for RCP 8.5 (-21%) (Table 3). In RCP 
4.5 the slight increase occurred by the end of the century, in contrast to 
RCP 8.5 in which the increase was found in the near future. The in
creases in precipitation were found mainly in winter, while the models 
indicated reduced increases or even decreases in spring and summer. 
More specifically, the ensemble-mean increases in winter average pre
cipitation were 34 and 22 mm for RCPs 4.5 and 8.5 respectively, while 
the ensemble-mean changes for summer were 5 and − 7 mm for RCPs 4.5 
and 8.5 respectively (Table S5). In the far future, 3 out of 5 models 
projected significant increases in precipitation under RCP 4.5. Under 
RCP 8.5, two predicted significant increases while NorESM1-M – 
REMO2015 significant decreases (Table 3). Under RCP 4.5 in the near 
future, CNRM-CM5-RACMO22E behaved differently as compared to the 
other climate models and was the only one showing significant increases 
of 27% in precipitation (Table 3). 

3.3. Impacts of climate change and vegetation responses to CO2 on future 
potential evapotranspiration and future aridity 

Projected PET drastically changed, both in terms of magnitude and 
sign, considering RCPs 4.5 and 8.5 and due to the inclusion of the sto
matal conductance reduction effect (Fig. 5a, Table 3). Consequently, the 
other components of the water balance such as ET, water yield, perco
lation, and irrigation were similarly influenced (Fig. 6, Table 4). As 
expected, the changes in PET in the far future were particularly high for 
RCP 8.5. When not including the suppression effect, PET increased in 
line with temperature. In that case, under RCP 4.5, the average PET 
increased up to 110 mm (Table S6) mainly in the near future, while in 
the far future the increases remained of a similar magnitude. This re
flects the increase in temperature that occurred early in the near future 
and slowed down by the end of the century (Fig. 3). Under RCP 8.5, on 
the contrary, PET continued to increase until the end of the century, 
reaching an average increase of 225 mm (Table S7). The CO2 suppres
sion effect balanced the temperature-induced change in PET, quenching 
its increase under RCP 4.5 to 16 mm (Table S6). The CO2 concentration 
used in the long-term future period under RCP 8.5, on the other hand, 
was 939 ppm, far above the upper limit of 660 ppm of the Morison 
experiment. This explains the unrealistic drop in PET in the period 
2071–2100, with an ensemble-mean decrease of − 211 mm (Table S7). 

The uncertainty in future precipitation as predicted by the five 
climate models considered (Fig. 4, S1, Table 3) and the one in future PET 
as predicted by the SWAT+ model forced with the climate projections 
(Fig. 5a) escalated when considering AI. While AI was simulated to be 
around 0.65 in the historical simulations, that is the threshold that di
vides the “dry sub-humid” and “humid” climates, AI drastically disperses 
depending on the RCPs, climate models, and whether or not the CO2 
suppression effect on stomatal conductance is included (Fig. 5b). By the 

Table 2 
Model performances for monthly streamflow during calibration and validation 
for the three gauging stations considered. For Buonconvento only the calibration 
was carried out.  

Monthly streamflow Calibration Validation 

Station NSE PBIAS RSR NSE PBIAS RSR 

Buonconvento  0.86a  3.2%a  0.38a - -   
Sasso d’Ombrone  0.87a  -6.3%b  0.36a 0.80a 9.2%b  0.45a 

Istia  0.66c  13.0%c  0.58b 0.80a 8.9%b  0.44a  

a Very good; 
b Good; 
c Satisfactory. 
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end of the century, under RCP 4.5, the deviation between the different 
models will be higher as compared to the historical simulations. When 
considering stomatal conductance reduction, the AI values ranged be
tween 0.83 and 0.52, while they were slightly lower with constant sto
matal conductance, between 0.78 and 0.48. Following the more 
uncertain predictions under RCP 8.5, the projected AI ranged between 
0.72 and 0.36 when considering constant stomatal conductance and 
between 1.05 and 0.54 when analysing the simulations with stomatal 
conductance reduction. Therefore, according to the UNEP classification 
(Middleton and Thomas, 1997), the current humid/dry sub-humid 
climate is predicted to shift towards a much more humid climate for 
RCP 8.5 when considering the vegetation responses to CO2, while it 
shifts towards a much more arid climate when considering the same RCP 
but calculated with constant stomatal conductance. With the driest 
climate projections of the NorESM1-M – REMO2015 climate model, 
under RCP 8.5 and constant stomatal conductance, AI was predicted to 
be below 0.5, the threshold that divides “dry sub-humid” and “semi-
arid” climates. 

3.4. Impacts of climate change and vegetation responses to CO2 on future 
water balance components 

Since Eq. 1 used in the SWAT+ model was tested only until 660 ppm, 
we opted to analyze future impacts of climate change and vegetation 
responses to CO2 on water balance components only in the near future 
(2041–2070), with CO2 concentrations lower than the threshold. 

Changes in water yield and percolation were strictly linked to pre
cipitation. In the near future, the climate models which predicted pre
cipitation increases were CNRM-CM5-RACMO22E and MPI-ESM-LR- 
RCA4 under RCP 4.5 and all except NorESM1-M-REMO2015 under 
RCP 8.5 (Table 3). If the precipitation increases were mostly not sig
nificant, for water yield and percolation the Wilcoxon test always 
resulted in p-values lower than 5% (Table 4). The percentage changes 
were much higher for water yield and percolation as compared to pre
cipitation increases, reaching up to 105% and 73% increases for CNRM- 
CM5-RACMO22E under RCP 8.5 and with stomatal conductance sup
pression for water yield and percolation, respectively (Table 4). 

For ET and constant stomatal conductance, we observed significant 
changes (-8%) only for NorESM1-M-REMO2015 under RCP 8.5. Instead, 
we found more significant differences when including the stomatal 

Fig. 2. Multi-site calibration and validation, with the location of the gauging stations of Buonconvento (a), Sasso d’Ombrone (b), and Istia (c), and the respective 
hydrographs with simulated and observed monthly average flows. 
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conductance suppression. For example, under both RCPs, ET in MPI- 
ESM-LR-RCA4 and NorESM1-M-REMO2015 significantly decreased by 
up to − 11%. Irrigation amounts in the future will mostly decrease 
(Table 4). With constant stomatal conductance, significant decreases 
(-12% under both RCPs) were found only in MPI-ESM-LR-RCA4. 
Including stomatal conductance suppression, CNRM-CM5-ALADIN63 
and CNRM-CM5-RACMO22E showed significant decreases under RCP 
8.5, while the decreases for MPI-ESM-LR-RCA4 were up to − 23% under 
RCP 8.5. 

The variables related to temperature – PET and ET – were reduced 
when considering the plant physiological responses to CO2, while those 
related to precipitation – water yield and percolation – showed an in
crease when the vegetation responses were included. If the changes 
caused by the inclusion/exclusion of the stomatal conductance sup
pression were significant for PET (Table 3), the changes found for the 
other balance components were not significant in most cases. We ob
tained significant changes only under RCP 8.5 for ET (3 models out of 5) 
and irrigation (2 models out of 5). Fig. 6 reports the absolute values of 
the ensemble water balances for the two cases considered in this study 
and their relative percentage difference. Differences in the historical 
period were minimal (1–2%) and they increased as the CO2 concentra
tion was higher. Under RCP 8.5, irrigation changed the most with a 
difference of 10.1%, followed by percolation (-8%), soil evaporation 
(7.1%), water yield (-5.5%) and transpiration (3.2%). Canopy 

evaporation was barely affected by the change in PET driven by different 
CO2 concentrations. The magnitude of percentage changes caused by the 
vegetation responses to CO2 ranged between − 4.8% and 4.1% for RCP 
4.5, while between − 8% and 10.1% for RCP 8.5. 

4. Discussion 

4.1. Climate models’ uncertainty in the Northern Mediterranean area 

Our study further confirmed that the projected increases in temper
atures in the study region are remarkable, and especially high for RCP 
8.5 and during summer, consistent with previous research (e.g., Spano 
et al., 2020). On the other hand, results revealed even more uncertainty 
regarding the future precipitation predicted by climate models for the 
Northern Mediterranean area. The ensemble mean of the five climate 
models considered in this study indicated an increase in precipitation, 
more accentuated during winter. Central and Northern Italy are in a 
transition zone between the arid North African and the humid Central 
European climate zones, and the zero-change line predicted in past 
studies usually crosses this area (e.g., Coppola et al., 2021; Mariotti 
et al., 2015; Spano et al., 2020). A deep analysis of the literature 
regarding only the Northern Mediterranean area showed very high un
certainty, and in particular when considering Central and Northern 
Italy. For example, Mariotti et al. (2015) analysed the outputs of CMIP5 

Fig. 3. Lineplot and boxplots of future temperature (◦C). The lineplot (a) reports the absolute difference between the future years (2041–2100) and the yearly 
average of the historical period (1976–2005), for RCPs 4.5 and 8.5. The line represents the average of the five climate models, and the band is the confidence interval. 
The values of average temperature calculated with the same procedure considering annual, winter and summer values, for the near (b, 2041–2070) and far futures (c, 
2071–2100), are used in the boxplots. 
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experiments, using an ensemble of climate models for RCP 4.5, and 
found only a minor decrease of 0.2 mm/day during summer by the end 
of the 21st century, and no decrease when considering winter or annual 
precipitation over the Northern Mediterranean area. On the contrary, 
Lionello and Scarascia (2018) considered RCP 8.5 of CMIP5 experiments 
and found an overall reduction of precipitation except for winter and, to 
a lower extent, spring months in the Northern Mediterranean area. The 
analysis of the outputs of the first EURO-CORDEX RCMs ensemble 
showed that, for Italy, the climate change signal for precipitation was 
uncertain under RCP 4.5, while it was negative for Central and Southern 
Italy under RCP 8.5, again with a distinct gradient increasing southward 
(Jacob et al., 2014). More recently, Coppola et al. (2021) used a much 
larger ensemble of EURO-CORDEX RCMs and compared the outputs 
with those of CMIP5 and CMIP6 GCMs, considering RCP 8.5. The three 
ensembles agreed to show the precipitation zero-change line over the 
Northern Mediterranean during winter, while it shifted northward in 
summer, meaning that a decrease in precipitation is projected for sum
mer months over Italy. Evin et al. (2021) also used a large ensemble of 
EURO-CORDEX RCMs considering RCPs 2.6, 4.5, and 8.5 to estimate 
future temperatures and precipitation and the relative uncertainty. For 
Italy, they projected slight increases in winter precipitation and 
noticeable decreases in summer precipitation, yet with very large un
certainties. It is interesting to underline that, in this study, Italy emerged 
as the country with the lowest reduction in precipitation among the 
Mediterranean countries. Focusing only on the Italian territory, CMCC 
carried out a climate change analysis considering an ensemble of 
EURO-CORDEX RCMs (Spano et al., 2020). The main results confirmed 
the North-South gradient for precipitation since a reduction was found 
for Southern and Central Italy, mainly in summer and, to a lower extent, 
in spring months, while an increase in winter precipitation over 
Northern Italy. Moreover, an increasing trend in maximum daily pre
cipitation was found for summer and autumn. Studies summarized in the 
draft of the National Climate Change Adaptation Plan (PNACC, 2018) 
reported a reduction in total precipitation, more pronounced in the 
Southern areas, in the summer season and when considering RCP 8.5. A 
robust decrease in total precipitation with similar patterns was also 
found in the analysis carried out by Padulano et al. (2020) which also 
used an ensemble of EURO-CORDEX RCMs in Italy. The overall picture 

of increasing precipitation during winter and decreasing precipitation in 
summer is confirmed also by our analysis when considering RCP 8.5, but 
the winter increases were higher as compared to the spring and summer 
decreases, resulting in an overall, yet minor, increase. Instead, for RCP 
4.5, minor increases were found also for the summer season. Notably, 
most precipitation changes in our study were not statistically significant 
(Table 3). 

For water yield and percolation, the sign of change was in line with 
the predicted change in precipitation, consistent with other studies that 
coupled the SWAT model with climate models in Italy. For example, 
Fiseha et al. (2014) used climate variables from one GCM downscaled 
with three RCMs as input to simulate future precipitation and hydro
logical water balance components in the upper Tiber basin, in Central 
Italy, considering two different scenarios of future CO2 concentrations. 
Except for one climate model in the lower emission scenario, their re
sults showed a general decrease in precipitation and related variables, 
mostly during summer. Decreasing trends in precipitation and related 
water balance components such as water yield, groundwater recharge, 
and ET were also found for the Candelaro catchment in Southern Italy, 
considering three RCMs (De Girolamo et al., 2017). Pulighe et al. (2021) 
applied the SWAT+ model to simulate the future climate in the Sulcis 
catchment in Sardinia with two RCMs and RCPs 4.5 and 8.5. Their re
sults showed a clear decrease in precipitation only for one climate model 
with RCP 4.5, while slight increases for the other simulations. PET was 
predicted to strongly increase and the other water balance components 
such as surface runoff and percolation decreased because of the 
increased water loss to the atmosphere. In a small catchment of the Po 
River delta in Northern Italy, Pesce et al. (2019) used 10 different 
GCM-RCM combinations and found an average decrease in future pre
cipitation, although with an unclear tendency, especially for RCP 4.5 in 
the medium-term future (2041–2070). Future water flow was projected 
to increase in the wet season and decrease during spring and summer. 
Finally, Glavan et al. (2015) simulated climate change impacts with six 
different climate models in a small Slovenian catchment, very close to 
the Italian border. Their results showed that PET increased as well as ET 
if precipitation also increased. Also, precipitation was projected to in
crease with few exceptions by the end of the century, and stream flows 
showed consistent increases but higher in magnitude. This is in line with 

Table 3 
Precipitation, average temperature and potential evapotranspiration in the historical, near and far future periods for the five climate models considered in this study. 
For potential evapotranspiration, the values for both cases, constant and reduced stomatal conductance, are reported. Significance levels of the Wilcoxon test between 
future and historical periods and between the two cases considered are also included in the table.  

Climate model Precipitation (mm) Average temperature (◦C) Potential evapotranspiration (mm) 
Constant stomatal conductance Stomatal conductance suppression 

Historical 
1 711 13.8 1008 1020 
2 648 13.9 930 942 
3 716 13.7 990 1003 
4 693 13.9 1193 1211 
5 667 13.6 1203 1220 
Near Future  

RCP 4.5 RCP 8.5 RCP 4.5 RCP 8.5 RCP 4.5 RCP 8.5 RCP 4.5 RCP 8.5 
1 714 (0%) 790 (11%) 15.7 (14%)** 16.1 (17%)** 1160 (15%)** 1158 (15%)** 1118 (10%)**,†† 1076 (6%)**,††

2 700 (8%) 820 (27%)** 15.2 (10%)** 16.0 (15%)** 998 (7%)** 1013 (9%)** 958 (2%)†† 936 (-1%)††

3 712 (-1%) 801 (12%) 14.9 (9%)** 15.5 (13%)** 1066 (8%)** 1083 (9%)** 1024 (2%)† 1002 (0%)††

4 762 (10%) 752 (9%) 15.3 (10%)** 16.2 (17%)** 1275 (7%)** 1321 (11%)** 1216 (0%)†† 1206 (0%)††

5 632 (-5%) 607 (-9%) 15.6 (14%)** 16.1 (18%)** 1303 (8%)** 1331 (11%)** 1250 (2%)†† 1228 (1%)††

Far future  
RCP 4.5 RCP 8.5 RCP 4.5 RCP 8.5 RCP 4.5 RCP 8.5 RCP 4.5 RCP 8.5 

1 840 (18%)* 749 (5%) 16.1 (17%)** 18.0 (30%)** 1163 (15%)** 1290 (28%)** 1090 (7%)**,†† 891 (-13%)**,††

2 784 (21%)** 766 (18%)* 15.8 (14%)** 17.4 (26%)** 1009 (9%)** 1085 (17%)** 941 (0%)†† 733 (-22%)**,††

3 817 (14%)* 851 (19%)** 15.5 (13%)** 17.5 (28%)** 1055 (7%)** 1183 (19%)** 987 (-2%)†† 809 (-19%)**,††

4 704 (2%) 706 (2%) 15.9 (14%)** 18.1 (30%)** 1318 (10%)** 1441 (21%)** 1218 (1%)†† 924 (-24%)**,††

5 639 (-4%) 524 (-21%)** 16.0 (18%)** 17.9 (32%)** 1331 (11%)** 1456 (21%)** 1240 (2%)†† 976 (-20%)**,††

* p-value < 0.05 for the Wilcoxon rank-sum test with variables from simulations with historical and future 
** p-value < 0.01 for the Wilcoxon rank-sum test with variables from simulations with historical and future 
† p-value < 0.05 for the Wilcoxon rank-sum test with variables from simulations with constant and reduced stomatal conductance 
†† p-value < 0.01 for the Wilcoxon rank-sum test with variables from simulations with constant and reduced stomatal conductance 
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our study since we also observed that the percentage change in water 
yield was much higher as compared to the increase in precipitation. It is 
worth noting that in our study and the ones previously discussed, a 

subset of the available climate models was used, which might lead to 
under-representative estimates enhancing the uncertainty (Evin et al., 
2021). 

Fig. 4. Lineplot and boxplots of future precipitation (mm). The lineplot (a) reports the absolute difference between the future years (2041–2100) and the yearly 
average of the historical period (1976–2005), for RCPs 4.5 and 8.5. The line represents the average of the five climate models, and the band is the confidence interval. 
The same values considering annual, winter and summer values, for the near (b, 2041–2070) and far futures (c, 2071–2100), are used in the boxplots. 

Fig. 5. Potential evapotranspiration (PET) and Aridity Index (AI) with constant or decreased stomatal conductance. (a) Lineplot of projected PET (mm), reported as 
the absolute difference between the future years (2041–2100) and the yearly average of the historical period (1976–2005), for RCPs 4.5 and 8.5, considering constant 
and decreasing stomatal conductance. The line represents the average of the five climate models, and the band is the confidence interval. The abrupt change 
occurring in 2070 is due to the fact that the CO2 concentration value was averaged and considered constant for the two future periods (2041–2070 and 2071–2100). 
(b) The AI, calculated as the ratio between precipitation and PET for the historical (1976–2005), medium-term (2041–2070) and long-term (2071–2100) future 
periods considering RCPs 4.5 and 8.5, and constant and increasing CO2 concentration values. The dots represent the average values and the uncertainty is reported 
considering the five climate models. Note the unrealistic change in PET, and consequently in AI, for the far future and RCP 8.5 when considering stomatal 
conductance suppression. 
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Fig. 6. Differences in water balance components caused by inclusion of the vegetation responses to CO2. The bar plots report the water balance components of the 
various combinations of simulations considering the historical period, RCPs 4.5 and 8.5 and the different CO2 concentrations. Only the near future period 
(2041–2070) is considered, so that both RCP simulations have CO2 concentration values <660 ppm. The names and definitions of the water balance components 
correspond to those of the SWAT+ model and are divided in inputs (precipitation, snow and irrigation) and outputs (canopy evaporation, transpiration, soil 
evaporation, water yield and percolation). The water balance values used are the averages of the five climate models. For each couple of bar plots, in the adjacent 
tables are reported the absolute values of the water balance components (expressed in mm) for the cases of constant stomatal conductance (400 ppm) and modified 
CO2 concentration. Furthermore, in the Δ column of the tables, the percentage change due to the vegetation responses to CO2 is reported. 
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4.2. Impacts of vegetation responses to CO2 

The roles of the stomatal conductance reduction and the CO2 fertil
ization effects caused by the CO2 concentration rising are still unclear 
and debated. Experiments using earth system models showed that the 
CO2 physiological response of vegetation on ET and long-term runoff 
had higher impacts compared to radiative or precipitation changes 
caused by CO2 rising (Lemordant et al., 2018). Furthermore, plant 
physiological responses to CO2 were also found to reduce future 
drought-stress predictions (Swann et al., 2016). Moreover, Skinner et al. 
(2018) demonstrated that the CO2-driven vegetation changes amplified 
the frequency and intensity of summer heat waves. GCMs predict higher 
temperatures compared to RCMs, and this was explained by the fact that 
the latter generally do not include the vegetation response to CO2 rising 
since when including this effect, the temperature predicted by RCMs 
increased (Schwingshackl et al., 2019). However, the study of Taranu 
et al. (2022) showed that plant physiology had a limited effect and did 
not explain the large discrepancies observed between GCMs and RCMs. 
Finally, Vicente-Serrano et al. (2022a) argued that the physiological 
effect of vegetation as included in climate models might be over
estimated and that their outputs should be used with caution when 
studying future droughts. 

The CO2 rising effect on PET and therefore on all the indices that use 
it to infer future drought and aridity conditions are remarkable, yet not 
completely understood (Scheff, 2018; Vicente-Serrano et al., 2022b). 
The effect of CO2 rising on future mechanisms and processes relevant to 
the estimation of future aridity conditions was also analysed quantita
tively in climate and hydrological studies, proving that the impacts are 
not negligible, and stressing the importance of understanding and 
quantifying them better to obtain reliable future projections of drought 
and aridity. For example, Greve et al. (2019) demonstrated that the 
future estimation of PET was largely influenced by the method used to 
calculate it and that this uncertainty also affects the validity of indexes 
such as AI. Zhou et al. (2022) found opposite trends for past conditions 

in China when calculating PET using modified and traditional 
Penman-Monteith equations by including or excluding stomatal 
conductance reduction. They concluded that ignoring this effect results 
in an important PET overestimation, especially in arid regions. How
ever, ET in arid and semi-arid regions is mainly controlled by soil 
moisture and is not very sensitive to PET (Dakhlaoui et al., 2020), 
meaning that this overestimation might be a problem in humid regions. 
Our analysis confirmed that the increase in PET did not lead to a pro
portional increase in ET. More in detail, in our study the difference in 
annual ET between the two cases considered under RCPs 4.5 and 8.5 in 
the near future was around 5% (Fig. 6). This is consistent with the 
compensative effect caused by CO2 fertilization (Manzoni et al., 2022) 
and in line with the magnitudes of changes of less than 8% reported by 
Fatichi et al. (2016). Lemaitre‑Basset et al. (2022) showed that the 
stomatal conductance reduction effect has a strong impact on future 
runoff projections over France, while Boé (2021) reported that the 
decrease in ET caused by the physiological effect of CO2 did not result in 
an increase in river flows and soil moisture due to reduced precipitation 
in summer over France. Yang et al. (2019) demonstrated that the outputs 
of climate models are similar to those of hydrological models when 
accounting for the suppression effect in the calculation of PET. Using 
SWAT, multiple studies showed that ET was reduced by the plant 
physiological responses to CO2, leading to substantial increases in 
runoff, recharge and discharge (Ficklin et al., 2009; Kishawi et al., 2022; 
Lee et al., 2018; Van Liew et al., 2012). Other studies evaluated the 
impact of the stomatal conductance reduction and CO2 fertilization by 
modifying SWAT to include dynamic CO2 concentration as input, 
finding similar results in terms of increased streamflow and reduced 
evaporation (Butcher et al., 2014; Wang et al., 2017; Wu et al., 2012). 
Notably, all these studies were conducted with the older SWAT model 
versions and run over the United States. 

Our results are in line with previous studies, since the impact of 
vegetation responses to CO2 on future PET, and therefore on future 
water fluxes and aridity, was high when considering RCP 8.5. 

Table 4 
Water yield, percolation, actual evapotranspiration and irrigation in the historical and near future periods for the five climate models and for both cases, constant and 
reduced stomatal conductance, considered in this study. Significance levels of the Wilcoxon test between future and historical periods and between the two cases 
considered are also included in the table.  

Climate model Water yield (mm) Percolation (mm) Actual evapotranspiration (mm) Irrigation (mm) 

Historical (Constant stomatal conductance) 
1 98 127 499 11 
2 93 112 453 11 
3 106 134 483 11 
4 91 108 513 14 
5 84 78 519 16 
Near Future (Constant stomatal conductance)  

RCP 4.5 RCP 8.5 RCP 4.5 RCP 8.5 RCP 4.5 RCP 8.5 RCP 4.5 RCP 8.5 
1 106 (9%) 126 (29%)* 137 (8%) 158 (25%)** 482 (-3%) 515 (3%) 12 (4%) 11 (-4%) 
2 121 (30%)* 180 (94%)** 141 (25%)* 179 (60%)** 447 (-1%) 470 (4%) 11 (-1%) 10 (-5%) 
3 106 (0%) 144 (36%)* 131 (-2%) 167 (24%)* 479 (-1%) 498 (3%) 11 (7%) 10 (-5%) 
4 124 (37%)** 123 (35%)* 150 (39%)** 139 (29%)* 497 (-3%) 499 (-3%) 12 (-12%)* 13 (-12%)* 
5 85 (1%) 81 (-4%) 75 (-4%) 62 (-21%) 487 (-6%) 476 (-8%)* 16 (-5%) 16 (-3%) 
Historical (Stomatal conductance suppression) 
1 96 125 502 11 
2 92 110 457 11 
3 105 132 487 11 
4 90 105 517 15 
5 83 76 522 17 
Near future (Stomatal conductance suppression)  

RCP 4.5 RCP 8.5 RCP 4.5 RCP 8.5 RCP 4.5 RCP 8.5 RCP 4.5 RCP 8.5 
1 110 (14%) 134 (39%)* 142 (14%) 170 (36%)** 472 (-6%)* 493 (-2%)† 11 (-1%) 10 (-14%)*, †

2 125 (36%)* 188 (105%)** 147 (33%)** 191 (73%)** 436 (-4%) 448 (-2%) 10 (-7%) 9 (-16%)** 

3 110 (5%) 153 (46%)** 137 (4%) 180 (36%)** 468 (-4%) 475 (-2%)† 11 (0%) 9 (-14%) 
4 129 (44%)** 131 (46%)** 157 (49%)** 152 (44%)** 484 (-6%)* 476 (-8%)**, † 12 (-18%)** 11 (-23%)**, †

5 87 (4%) 83 (0%) 80 (4%) 71 (-7%) 480 (-8%)* 463 (-11%)** 15 (-12%) 14 (-16%)†

*p-value < 0.05 for the Wilcoxon rank-sum test with historical and future samples 
**p-value < 0.01 for the Wilcoxon rank-sum test with historical and future samples 
†p-value < 0.05 for the Wilcoxon rank-sum test with constant and reduced stomatal conductance samples 
††p-value < 0.01 for the Wilcoxon rank-sum test with constant and reduced stomatal conductance samples 

L. Villani et al.                                                                                                                                                                                                                                  



Agricultural Water Management 299 (2024) 108878

12

Particularly, Lemaitre-Basset et al. (2022) applied the two methods that 
we used to estimate PET, namely the non-modified Penman-Monteith 
equation and the modified Penman-Monteith as proposed by Stockle 
et al. (1992), finding very similar future trends to those we identified. In 
our study, differences in PET estimation ranged from more than 200 mm 
increases when considering constant stomatal conductance to decreases 
of the same magnitude when considering stomatal conductance reduc
tion under RCP 8.5. The magnitude and sign of changes when consid
ering plant physiological responses caused by CO2 concentration rising 
were consistent with other studies that applied SWAT. It is interesting to 
note that when past studies considered CO2 concentration beyond 
660 ppm they found high percentage decreases in future ET as compared 
to baseline periods. More specifically, Ficklin et al. (2009), Lee et al. 
(2018) and Kishawi et al. (2022) used 970 ppm, 850 ppm, and 935 ppm, 
obtaining decreases of 40%, 30% and 32% respectively. It has been 
already hypothesized that the simulated reduction of ET caused by the 
plant physiological responses to CO2 is overestimated by SWAT, but this 
was attributed to several simplifications in the equations used by the 
model and not by the invalidity of the equations used over 660 ppm 
(Butcher et al., 2014; Eckhardt and Ulbrich, 2003; Lee et al., 2018). 
Considering the findings of Lemaitre‑Basset et al. (2022), our results 
confirm that the method included in the SWAT/SWAT+ modelling suite 
for CO2 concentrations higher than the 660 ppm threshold is question
able, and simulation outcomes should be interpreted with caution. On 
the other hand, PET increases with constant stomatal conductance in our 
study amounted to 225 mm, which corresponds to more than 20% in 
relative change. Regarding water yield changes caused by the inclusion 
of the plant physiological responses to CO2, our findings agree with 
those of previous studies in the positive sign of change. As shown in 
Fig. 6, the magnitude of change in water yield, comparing simulations 
considering and ignoring the physiological responses, was approxi
mately 5% under RCP 4.5, while it reached more than 20% under RCP 
8.5 (Fig. S2). Butcher et al. (2014) reported increases ranging from 3% 
to 38% and a median of 11%. The contribution of the plant physiological 
responses to CO2 estimated by Wu et al. (2012) amounted to 22% for 
streamflow by the end of this century, much higher than the effect 
quantified at 1–4% of the recent decades. Marginal increases in 
streamflow of approximately 1% were instead reported in the study 
conducted by Wang et al. (2017). 

In SWAT+, both the CO2 suppression effect on stomatal conductance 
and the CO2 fertilization effect are considered. Nevertheless, they are 
calculated in different steps since the stomatal conductance is reduced 
when using the Penman-Monteith equation to retrieve PET and the 
fertilization effect when calculating daily accumulated biomass. This 
might cause some inconsistencies due to the leaf- and canopy-levels 
transpiration changes caused by these two effects (Manzoni et al., 
2022), but the magnitudes of the reductions in ET and the other vari
ables seem to confirm that the increase in biomass partially compensates 
the decrease in transpiration caused by reduced stomatal conductance. 
Furthermore, the approach of using climate inputs from GCMs or RCMs 
to force a hydrological model, used in our study and the papers previ
ously discussed, has some limitations that need to be considered. With 
this one-way coupling, the interactions and feedback between climate 
and vegetation are mostly neglected (Wu et al., 2012). Coupling offline 
hydrological models which do not account for physiological responses of 
vegetation with climate models is questionable (Milly and Dunne, 
2017), especially when the climate models consider these effects (Boé, 
2021). As reported by Schwingshackl et al. (2019), most of the GCMs 
that they used in their study included the CO2 vegetation response while 
none of the RCMs considered it. Indeed, the physiological effect of 
vegetation induces a larger decrease in precipitation which should be 
compensated by a decrease in ET (Boé, 2021). The opposite problem 
might occur if the offline hydrological model simulation of the physio
logical effect of CO2 on ET is inconsistent with the strength of the 
vegetation response as simulated by the climate model (Boé, 2021). 
Furthermore, Swann et al. (2016) suggested that using outputs of earth 

system models in hydrological models may lead to overestimation of the 
future drought stress due to double counting of plant feedback on sur
face humidity, temperature and net radiation. 

5. Conclusion 

In this study, the SWAT+ model was forced with climate data from 
five EURO-CORDEX climate models to estimate future climate change 
impacts in a typical Mediterranean catchment, the Ombrone catchment 
in Central Italy. Future aridity conditions were also estimated consid
ering constant and decreasing stomatal conductance. The model per
formed well after the multi-site calibration carried out for three gauging 
stations, considering monthly streamflow. 

In contrast to temperature, high uncertainties exist in the future 
precipitation trends. Only one climate model predicted a clear decrease 
in future precipitation following RCP 8.5 while the others showed minor 
increases or constant values. The ensemble mean of winter precipitation 
increased while summer precipitation remained almost constant or 
slightly decreased, with an overall increase in annual average 
precipitation. 

The impact of stomatal conductance suppression on future PET was 
significant and should be taken into account when performing future 
aridity or drought analyses and in particular when applying the SWAT/ 
SWAT+ modelling suite. Upon disregarding, high increases in PET were 
obtained, while minor PET increases or even decreasing values were 
found upon consideration of the suppression effect. Under RCP 8.5 in the 
far future period, the differences between disregarding or including the 
vegetation responses to CO2 were nearly 50% in PET and ranged from 20 
to 30% for the other water balance components (Fig. S2). 

The SWAT+ model considers the CO2 effect on future PET with a 
modification of the Penman-Monteith equation based on an experiment 
that was conducted for a range of CO2 values between 330 and 660 ppm. 
RCP 8.5 predicts much higher CO2 concentration values by the end of 
the century. For RCP 8.5, when considering stomatal conductance sup
pression, we found a dubious drop in PET of more than 200 mm. Further 
research is certainly needed, but the outputs of the SWAT+ model when 
excluding vegetation responses to CO2 and when considering CO2 con
centrations much higher than 660 ppm are prone to large uncertainties. 
Nevertheless, the Penman-Monteith equation is recommended when 
using SWAT+ to assess future climate change impacts to account for the 
effect of reduced stomatal conductance. 

The uncertainty in future precipitation and atmospheric evaporative 
demand patterns strongly increases when considering measures such as 
the Aridity Index and, consequently, this notably affects future climate 
classification. Unravelling the uncertainties related to future precipita
tion in transition zones, like the Northern Mediterranean area, and the 
plant physiological responses caused by rising CO2 concentration on 
future atmospheric evaporative demand is crucial to better understand 
climate change impacts and plan more effective adaptation strategies. 
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F., Breil M., Chiriacò M.V., Coppini G., Essenfelder A., Galluccio G., Lovato T., Marzi 
S., Masina S., Mercogliano P., Mysiak J., Noce S., Pal J., Reder A., Rianna G., Rizzo 
A., Santini M., Sini E., Staccione A., Villani V., & Zavatarelli M. (2020). “Analisi del 
rischio. I cambiamenti climatici in Italia”. DOI:10.25424/CMCC/ANALISI_DE 
L_RISCHIO. 

Stockle, C.O., Williams, J.R., Rosenberg, N.J., Jones, C.A., 1992. A method for estimating 
the direct and climatic effects of rising atmospheric carbon dioxide on growth and 
yield of crops: Part I—Modification of the EPIC model for climate change analysis. 
Agric. Syst. 38 (3), 225–238. https://doi.org/10.1016/0308-521X(92)90067-X. 

Sugathan, N., Biju, V., Renuka, G., 2014. Influence of soil moisture content on surface 
albedo and soil thermal parameters at a tropical station. J. earth Syst. Sci. 123 (5), 
1115–1128. https://doi.org/10.1007/s12040-014-0452-x. 

Swann, A.L.S., Hoffman, F.M., Koven, C.D., Randerson, J.T., 2016. Plant responses to 
increasing CO 2 reduce estimates of climate impacts on drought severity. Proc. Natl. 
Acad. Sci. 113 (36), 10019–10024. https://doi.org/10.1073/pnas.1604581113. 
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