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Assessment of current and future growth in the global rooftop area is important for understanding 
and planning for a robust and sustainable decentralised energy system. These estimates are also 
important for urban planning studies and designing sustainable cities thereby forwarding the ethos of 
the Sustainable Development Goals 7 (clean energy), 11 (sustainable cities), 13 (climate action) and 15 
(life on land). Here, we develop a machine learning framework that trains on big data containing ~700 
million open-source building footprints, global land cover, road, and population datasets to generate 
globally harmonised estimates of growth in rooftop area for five different future growth narratives 
covered by Shared Socioeconomic Pathways. The dataset provides estimates for ~3.5 million fishnet 
tiles of 1/8 degree spatial resolution with data on gross rooftop area for five growth narratives covering 
years 2020–2050 in decadal time steps. This single harmonised global dataset can be used for climate 
change, energy transition, biodiversity, urban planning, and disaster risk management studies covering 
continental to conurbation geospatial levels.

Background & Summary
Global building stock consumed circa 18% of the global electricity demand and contributed to 21% of the global 
GHG emissions in the year 20191. United Nations2 projects that the global population will grow from 8 billion in 
2022 to 9.7 billion by 2050. The increase in population will require an increase in global building stocks and will 
have increasing downstream effects on material demands3. In contemporary literature, rooftop areas or in gen-
eral vector building footprints with additional enrichment of building types, floor area per capita, construction 
year etc. are often used as a reliable proxy for generalising global building stock4.

Hence, a harmonised global geospatial assessment of global rooftop area assessment is essential for various 
research domains, including urban planning and architecture5, renewable energy6, and sustainable develop-
ment7 as it provides crucial data for optimising space usage, designing sustainable buildings, fostering renewable 
energy adoption, and improving the overall environmental performance of urban areas. The availability of a 

1SFI MaREI Centre for Energy Climate and Marine, Cork, Ireland. 2Environmental Research Institute, University College 
Cork, Cork, Ireland. 3School of Engineering, University College Cork, Cork, Ireland. 4Energy, Climate, and Environment 
Program, International Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria. 5Institute for Data, Energy, 
and Sustainability (IDEaS), Department of Information Systems and Operations Management, Vienna University of 
Economics and Business (WU), Vienna, Austria. 6Grantham Institute – Climate Change and the Environment, Imperial 
College London, London, UK. 7CICERO Center for International Climate Research, Oslo, Norway. 8Department of 
Geography, University College Cork, Cork, Ireland. 9Industrial Ecology Programme and Energy Transitions Initiative, 
Norwegian University of Science and Technology (NTNU), Trondheim, Norway. 10Global Centre for Environment and 
Energy, Ahmedabad University, Ahmedabad, India. 11Center on Global Energy Policy, Columbia University, New York, 
USA. 12Energy Systems Modelling Analytics, Galway, Ireland. ✉e-mail: joshis@iiasa.ac.at

Data Descriptor

OPEN

https://doi.org/10.1038/s41597-024-03378-x
http://orcid.org/0000-0002-5746-3079
http://orcid.org/0000-0001-9647-2878
http://orcid.org/0000-0003-4718-0064
http://orcid.org/0000-0002-5611-7780
http://orcid.org/0000-0002-9773-4531
http://orcid.org/0000-0003-0307-3515
mailto:joshis@iiasa.ac.at
http://crossmark.crossref.org/dialog/?doi=10.1038/s41597-024-03378-x&domain=pdf


2Scientific Data |          (2024) 11:563  | https://doi.org/10.1038/s41597-024-03378-x

www.nature.com/scientificdatawww.nature.com/scientificdata/

harmonised dataset that documents the global rooftop area is of importance to not only energy system model-
lers but also to national and international research institutions as this spatially explicit dataset can aid in energy 
planning, access to energy, analysing impacts of extreme natural events8 and conflicts9. Of more importance is 
that a first order harmonised spatially explicit dataset be generated that documents the future spatial growth 
in the rooftop area to aid in cross-domain scenario analysis and policy formulation by incorporating different 
socioeconomic growth dynamics to fulfil the complementary needs of Sustainable Development Goals and mit-
igation of climate change.

Global assessment of gross rooftop area is a complex task as the smallest unit of assessment is a rooftop. 
This complexity is compounded by the fact that building stock archetypes change between geographies and 
are dependent on the socio-economic and cultural factors prevalent in the region of interest (ROI). In the past, 
bottom-up modelling approaches10–14 were used to assess the rooftop area at sub-national and national scales. 
Here, the studies focussed on the extrapolation of relationships between socioeconomic drivers and rooftop 
areas from a small sample region to a larger ROI. Although these methods are useful for rapid estimation of roof-
top areas, they often report lower accuracies than the highly spatially resolved methods that utilise large-scale 
surveying of building stocks15.

On the other hand, highly spatially resolved top-down16–20 techniques like Light Detection and Ranging 
(LiDAR) based rooftop mapping which use a drone-mounted laser to map the landscape in 3D,and Machine 
Learning (ML) based object detection have shown promising results for ROIs covering continental scales. The 
LiDAR-based rooftop mapping is currently the most accurate method of determining the rooftop area along 
with capturing the rooftop attributes at scale. But these methods require significant investment in aerial imaging 
and computational costs because of which the most common implementation of LiDAR-based rooftop mapping 
is limited to a city scale analysis. ML-based models form the next class of methods that can aid in the detection 
of building rooftops at scale. However, these methods have shown limited suitability for a global scale study 
as the training of ML models requires heavy investment in training data that should have enough diversity to 
cover a global ROI21. Additionally, a server-scale computational environment is required to train and generate 
inferences from these trained ML models which requires significant cost and time investment. As a result of 
this, the largest ROI tackled by an ML-based approach covers the continent of Africa20. However, extending this 
to a global implementation is yet to be achieved due to complexities around capturing accurate geographically 
diverse samples to train the ML models and the prohibitive cost of mapping the globe using LiDAR. Moreover, 
the application of the top-down method has been restricted to a single-year estimation of rooftop area and only 
limited studies have researched into advancing the bottom-up methods to future high-resolution estimation of 
growth in global rooftop area22.

A third stream of methods that can aid in the rapid assessment of rooftop areas at ROIs spanning continental 
scales is to use a hybrid approach. This approach utilises the spatial relationship among samples covering land-
cover mapping (derived from remotely sensed imagery), socioeconomic metrics and actual on-ground building 
stock attributes to infer rooftop areas for out-of-sample regions. Studies that have demonstrated this hybrid 
approach18,23 utilise statistical inferencing to generate these relationships for Continental and country-level ROI.

For this study, we combined the bottom-up and top-down approaches to develop a hybrid ML-based frame-
work built on our previous learnings from a single-year global estimation of rooftop solar PV6. The hybrid 
ML framework learns from the spatial relationship between downscaled Gross Domestic Product (GDP)24, 
Population density25,26, built-up area extent27, and sample building footprints to estimate rooftop area in 
out-of-sample regions. The Shared Socioeconomic Pathways (SSP) narratives28 which are extensively used in 
climate change research, examine how global society, demographics and economics might change over the next 
century by quantifying the narratives into numerical metrics that can be interpreted by mathematical models. 
The framework for SSPs starts with a narrative defining five different worlds based on challenges to adaptation 
and mitigation. SSP1 is the sustainable world, SSP3 is the world under regional rivalry having the highest chal-
lenges to mitigation and adaptation, SSP4 is the world of inequality with the highest challenge to adaptation, 
SSP5 is the fossil-fuelled world with the highest challenge to mitigation and, SSP2 is the middle of the road 
pathway. By using SSP-specific spatially explicit growth in GDP24, population density29, and build-up area30 as 
drivers to the trained ML framework, we estimated the growth in the global building footprint area which we 
one-to-one map as gross rooftop area under each of these development pathways, Fig. 1. This way we combine 
the spatial attributes (built-up area) of top-down modelling with statistical modelling (socioeconomic param-
eters) of bottom-up methods. The hybrid ML framework allows for estimating the global gross rooftop area by 
leveraging the global statistical relationship between sample building footprint, built-up area on-ground, popu-
lation and GDP which mitigates the need for an extensive ML-based building polygon extraction from remotely 
sensed images while providing accuracies in the range of ±0.1 km2 in predicted rooftop area per 1/8-degree 
fishnet grid tile. Another advantage of the hybrid ML framework over top-down ML-based approaches is the 
low computational footprint of the framework which precludes the use of image processing and hence reduces 
the barrier to access for open-source big data like building footprints, global road datasets etc.

Methods
Data collection.  We started the task of data collection by defining a global fishnet (FN) grid at a spatial res-
olution of 1/8 degree. The FN grid cell has an approximate spatial resolution of 14 km2 at the equator and the size 
of the grid cell is dynamic based on the latitude it lies in but maintains the same 1/8-degree length and height. 
This spatial resolution of the grid was chosen to match the spatial resolution of the SSP-derived population and 
built-up extent gridded datasets. A 14 km2 FN grid resolution provides us with a large enough extent to capture 
city limits at scale and a small enough extent to not cover the entire conurbations within itself.
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Next, we chose 2020 as our base year with 2030, 2040, and 2050 as our medium-term time horizon projec-
tion years. Primary datasets collected during this study can be categorised into either a vector dataset - big data 
derived base year building footprint polygons (BF20), Open Street Maps (OSM)31 derived base year building 
footprint (BF20_OSM) and global geo-mapped base year roads (RL20) or raster datasets - base year global 
population count (PPLN20), base year global built-up extent (BU20), future SSP derived griddled population 
(PPLNX,Y), future SSP derived griddled built-up extent (BUX,Y), and future country wise SSP derived GDP 
(GDPX,Y), where X is the SSP narrative and Y is the year. The attributes of the different base year and SSP-derived 
datasets are documented in Table 1 with a visual depiction in Fig. 2.

The building footprint data collected from the big data sources (BF20), had full country coverage for base 
year building polygon data in the USA, UK, Australia, and Canada. Full continental coverage was available 
for Africa except for the North African region including countries above the Sahara Desert. For the rest of the 
world, building polygon data was derived from Open Street Maps, but the spatial coverage was sporadic with 
good spatial coverage only available for the European continent. This mismatch between the completeness of 
OSM-derived building footprints (BF20_OSM) encouraged us to create our own OSM Gap Detection appli-
cation to capture selected data that has full completeness based on our FN grid (Usage Notes). The base year 
population count data (PPLN20) covers the entire global landmass hence no further filtering or sampling of the 
dataset was required.

The base year global built-up extent dataset (BU20) had global coverage for the year 2019. The built-up layer 
captures the extent of human-made modifications on the earth. Using a suite of remote sensing techniques, these 
structures can be isolated from the natural landscape and the area occupied by these structures can be converted 

Fig. 1  Flowchart illustrating the methodology of this study. The workflow was executed in seven steps (marked 
in back boxes). The workflow started with the collection of training and driver datasets, followed by spatial and 
temporal harmonisation of collected datasets. Next, we generated rooftop area estimation for the year 2020 in 
step 4 which was further used to select samples from Open Street Map datasets. In the sixth and seventh steps, 
we generated estimates of growth in the global gross rooftop area.

Type Layer Type Region Attribute Format Size

Base Year FN Fishnet Grid Global ~3.5 million polygons Vector Polygon N.A.

Base Year BF20 2020 Building Footprint USA, Canada, UK, 
Australia, Africa ~700 million buildings Vector Polygon ~100 GB

Base Year BF20_OSM 2020 Building Footprint Rest of the world 
- OSM ~250 million buildings Vector Polygon ~200 GB

Base Year PPLN20 2020 Population Count Global 100 m Resolution Raster ~1GB

Base Year BU20 2020 Built-up Area Global 100 m Resolution Raster ~3GB

Base Year RL20 Road Length Global ~34 million km Vector Polylines ~100 GB

Future PPLNX,Y* SSP derived population count Global 1/8 degree Raster N.A.

Future BUX,Y* SSP derived built-up extent Global 1/8 degree Raster N.A.

Future GDPX,Y* SSP derived country-wise GDP Global Country wise Vector Polygon N.A.

Table 1.  Base year layers used in this study along with their attributes. *where “X” is the SSP narrative number, 
“Y” is the year for which the respective metric is provided.
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into a raster grid where each grid cell can represent either the built-up area contained within it or the percentage 
of area that is built-up. Naturally, built-up extent will capture roads, carparks, industrial sites, airport runways 
etc. that do not form part of the building footprint and can sometimes cover 2–3 times more area than a building 
footprint in a built-up raster cell23. To account for this, we created an ML model to downscale the built-up extent 
to the estimated rooftop area which we will discuss in the Machine Learning model section.

The next step in our study after collection of base datasets for the year 2020 was to collect SSP-derived data-
sets for the years 2020, 2030, 2040 and 2050. In total, we collected SSP-derived data for gridded population, 
built-up extent, and GDP per country data for the years 2020–2050 (Fig. 3). The gridded population count data-
set and built-up extent dataset were available as raster datasets at 1/8-degree spatial resolution, with the GDP per 
country dataset being mapped to respective country boundaries using an administrative boundary dataset from 
GADM project V3.6 (https://gadm.org/data.html).

Base year calibration and spatial harmonisation.  After the collection and verification of base year 
datasets and SSP-derived datasets, we conducted a harmonisation of the base year across the datasets. This base 
year harmonisation was conducted for BU20 and BF20 layers. We assumed that the 2019 built-up extent of our 
BU20 layer represented the 2020 data points. Similarly, the BF20 layer polygon which contains building footprint 
information from multiple years across different datasets was assumed to represent building footprints for the 
year 2020. These assumptions add a component of uncertainty in the harmonisation as some buildings con-
structed during the year 2020 are not part of the training dataset, but at a global scale, these assumptions will have 
minimal effect on the final output of the study due to the design of our ML framework.

Fig. 2  Spatial spread of the base year and SSP2-derived input datasets. (a) Global geo-mapped roads extracted 
from Open Street Maps. (b) Global geo-mapped population count for 2020 at 100 m resolution derived from 
the World POP project. (c) Global human-made built-up areas extracted from Copernicus Land Monitoring 
Program GLC V3.0.1 2019. (d) building footprint polygons derived from big data sources for selected 
continents and countries. For panels (a–d) the brighter yellow colour represents relatively high values of 
respective metrics in the datasets, with gradation to red colour representing low values of respective metrics 
in the datasets. The presence of a light grey colour represents the absence of data in the respective datasets 
with dark grey representing the ocean. (e) global change in geo-mapped population for SSP2 narrative. Red-
coloured areas have the relatively lowest growth in population between 2020 and 2050, with blue-coloured areas 
representing the relatively highest growth in population. (f) country-wise change in GDP for SSP2 narrative. 
Red-coloured areas have the relatively lowest growth in GDP between 2020 and 2050, with blue-coloured areas 
representing relatively high GDP growth. (g) Global change in geo-mapped built-up areas for SSP2 narrative. 
Red-coloured areas have a relatively lowest change in the Built-up area between 2020 and 2050, with yellow-
coloured areas representing the relatively highest change in the Built-up area.
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Base year data aggregation.  After temporally harmonising the datasets to a common base year, we aligned 
the datasets on a common spatial resolution and projected coordinate system. For this, we mapped the base 
year datasets to the FN grid. We overlayed the FN grid on top of the BF20, PPLN20, BU20 and RL20 datasets 
and used a cookie-cutter approach to cut and aggregate the datasets within each unique FN grid cell. Next, the 
BU20 layer boundary inside each FN was chosen as the region of interest and any data point outside this BU20 
boundary but inside the FN boundary was not considered. This provided us with the first stage of spatial harmo-
nisation where only datapoints inside the BU20 layer extents were considered. To achieve this, we used the area 
outside the BU20 layer as a masking layer to select data points that are not masked.

The base year vector datasets representing non-masked BF20 and RL20 datasets were processed on the 
ArcGIS PRO V2.8 platform, where we used the inbuilt multicore processing enhancements to process the cut-
ting and aggregation of vector datasets at scale. After the cutting step, each building polygon and road polyline 
feature inside each unique FN grid cell was aggregated to represent a single value per FN grid cell. It should be 
noted that a polygon falling on the FN grid cell boundary was intersected at the boundary and only the area of 
the polygon inside of the respective FN was attributed to that FN, Fig. 4.

The base year raster datasets representing non-masked PPLN20 and BU20 datasets were processed on the 
Google Earth Engine platform32. Both the datasets were clipped at the boundary of the overlapping FN and the 
pixels completely inside the FN were aggregated as is, with pixels falling on the boundary being aggregated using 
weighted summation. Here, the value attribution of the pixel in consideration was calculated based on the area of 
the pixel inside the FN. It should be noted that while the PPLN20 dataset represents a simple population count at 
100 m resolution, the BU20 layer pixel represents the percentage of built-up area inside each 100 m pixel. Hence, 
the aggregation of BU20 pixel was undertaken by multiplying the pixel area by pixel value to represent the true 
built-up area represented by each 100 m resolution pixel.

SSP-derived data aggregation.  The SSP-derived population PPLNX,Y and BUX,Y for Y equal to 2020 were spa-
tially harmonised to the FN grid by mapping the values from spatially harmonised PPLN20 and BU20 datasets 
derived in the previous steps. This aids in first providing a common base year value for estimation of future 
aggregated rooftop areas per FN grid cell and second removes any mismatch of data points and data values 
between the base datasets and SSP-derived datasets. The mismatch between the data points occurred due to 
PPLNX,2020 and BUX,2020 using exogenous methodologies and frameworks to estimate the values in their respec-
tive datasets. As an example, the BUX,2020 dataset points depicting the presence of built-up area was derived from 
a model that uses the GHSL33 layer from JRC for the year 2015 thereby not incorporating some newly developed 
areas in east China (Fig. 5). Additionally, the mismatch between data values can occur when for an FN grid cell 
BUX,2020 layer either under or over-represents the value depicted by the BU20 dataset. As a result of these mis-
matches, for a BU20 layer’s global aggregated built-up area of 1.46 million km2, the BUX,2020 layer only represents 
0.98 million km2 of global aggregated built-up area. This highlights the importance of harmonising the datasets 
both at a common temporal and spatial scale.

Fig. 3  Global trend in the SSP-derived drivers.
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Fig. 4  Process flow of data aggregation for FN grid. Visualisation of the workflow for UK with zoomed in 
view for London. The process starts with the creation of an FN grid of 1/8 degree resolution over global land 
mass. Next, the built-up extent layer was used as a masking layer to delineate areas where built-up structures 
are present in the year 2020. The masking layer along with the FN grid is then used to map vector and raster 
datasets to the FN grid that underlies the masking layer. Finally, the vector and raster dataset values are 
aggregated for each fishnet to generate a single value per FN grid cell. Here the vector datasets intersecting 
the FN boundary are split at the boundary and are aggregated to the respective FN grid cells while the raster 
datasets are aggregated using a weighted sum. Vector dataset processing is done on ArcGIS PRO, Raster dataset 
processing on Google Earth Engine and post-processing in python based DASK49 module.
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After harmonising the PPLNX,2020 and BUX,2020 datasets for each of the SSP scenarios, the future datapoint and 
data values per FN grid cell of the respective datasets were recalculated using the following:

PPLN PPLN PPLN PPLN( ) 20 (3 1)*X Y X Y X, , ,2020= − + .

= − + .BU BU BU BU( ) 20 (3 2)*X Y X Y X, , ,2020

where, for each unique FN grid cell, X is the SSP scenario, Y is the year for which datapoint and value are calcu-
lated, PPLN20 is the base year population count and BU20 is the base year built-up area. The (*) nomenclature 
depicts future metrics before recalculation. This effectively captures the absolute growth in the metrics per FN 
grid cell over the harmonised base datasets. For GDP value per FN grid cell, we devised population-weighted 
down mapping of country-level GDP value using the following:

=
.

GDP
GDP
PPLN

PPLN*
(3 3)
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C X Y
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where, for each unique FN grid cell, X is the SSP scenario, Y is the year for which datapoint and value are calcu-
lated, and C is the country for which aggregated metrics are calculated at the country level. This GDP downscal-
ing methodology creates a new feature layer representing GDP-weighted population count per FN grid cell for 
training our ML model discussed in the next section. Finally, we create the population density layers for both 
base year datasets and SSP-derived datasets using the following.
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Fig. 5  Discrepancies between BU20 layer and SSP-derived BUX,2020 layer. (a) Global FN grid cell depicting 
the discrepancies between BU20 and BUX,2020 layer. Red and orange coloured region FN grid cells have BU20 
values more than BUX,2020 dataset values while blue FN grid cells have BUX,2020 values more than BU20 values. 
In general, the blue-coloured FN grid cells signify an overrepresentation of built-up area in BUX,2020 layer and 
red-coloured regions signify an underrepresentation of built-up area. (b) zoomed in the region of Asia where 
red-coloured FN grid cells are observed in East China with blue-coloured grid cells being observed in coastal 
regions. (c) zoomed in on the region of the east coast of the USA where blue colour FN grid cells are observed  
in coastal regions.

https://doi.org/10.1038/s41597-024-03378-x


8Scientific Data |          (2024) 11:563  | https://doi.org/10.1038/s41597-024-03378-x

www.nature.com/scientificdatawww.nature.com/scientificdata/

where, for each unique FN grid cell, X is the SSP scenario, Y is the year for which the datapoint and data value 
are calculated and FNArea is the geodesic area occupied by the FN grid cell.

Machine learning model.  We designed a ML-based framework based on XGBoost ML model34 to estimate 
aggregated rooftop area per FN grid cell. The ML framework accomplishes the task of first extracting the FN grid 
cell from the BF20_OSM layer derived from the OSM global building footprint dataset that has complete building 
footprint polygon mapping and second estimating the aggregated rooftop area per sample FN grid cells. The flow 
of data and steps involved in the development of the ML framework are shown in Fig. 6.

Training M1 model.  We start the development of the ML framework by extracting sample FN grid cells from 
the base year datasets. The FN grid cells that have complete coverage for PD20, BU20, RL20 and BF20 datasets 
are selected as sample FN grid cells and the extracted sample layers are named here as PDS20, BUS20, RLS20 
and BFS20 respectively. The PDS20, BUS20, and RLS20 sample FN grid cells then act as independent variables 
with BFS20 acting as the dependent variable for the M1 model. The M1 model is then trained by using a 10-fold 
cross-validation strategy and 1000 hyper-tuning iterations. The 10-fold cross-validation strategy enables the use 
of a complete input dataset for training purposes and aids in reducing the problem of overfitting in conjunction 
with 1000 rounds of hyper-tuning iterations. The trained M1 model then accepts PD20, BU20, and RL20 layers 
as drivers to estimate the aggregated gross rooftop area for all the global FN grid cells, BFFN20 layer.

Extraction of OSM samples.  At this stage, we have a global estimate of rooftop area for the year 2020 which we 
then use to extract samples from the BF20_OSM layer. For this, we compare at the FN level the values of BFFN20 
and BF20_OSM layer. For the FN grid cells where the ratio between BF20_OSM and BFFN20 is between 1.1 and 
0.9 i.e., where BF20_OSM values show 90–110% of BFFN20 values, those FN grid cells are selected for their com-
pleteness of building footprint mapping and extracted as BFOSM20 sample layer. This comparison between M1 
model predicted values and OSM-derived values also lends itself to the development of an OSM Gap detection 
tool which we discuss further in Usage Notes.

Training M2 model.  After tuning, training, and inferencing of BFOSM20 layer from the M1 model, we shift 
our focus to the M2 Model which will enable the estimation of global gross aggregated rooftop area per FN 
grid cell for SSP narratives. For this, we combine the BFS20 samples from the base year dataset with BFOSM20 
samples. We also resample PD20, BU20 and GDPX,Y layers to collect samples based on FN grid cells cover-
ing our combined building footprint samples to generate PDS,OSM20, BU S,OSM20 and GDPS,OSM,2,2020 layers. The 
GDPS,OSM,2,2020 layer here represents population-based downscaled GDP per sample FN grid cell for samples 
covering base year and OSM-derived Building footprint FN grid cells for SSP2 narrative and 2020 year. The 
PDS,OSM20, BUS,OSM20, GDPS,OSM,2,2020 sample FN grid cells then act as independent variables with BFS20 and 

Fig. 6  Overview of ML framework. The ML framework was divided into two stacked XGBoost models. The 
first model “M1” aided in the selection of samples from the global OSM building footprint dataset (BFOSM20). 
The second model “M2” combined the samples from the first model with BFS20 samples and used the SSP-
derived drivers to estimate the aggregated rooftop area per FN grid cell. The first stage of the framework named 
“Model M1” accepted global built-up area (BU20), global road length (RL20) and global population density 
(PD20) as drivers to estimate global rooftop area per FN grid cell (BFN20) for the year 2020. The second stage 
of the framework named “Model M2” accepted SSP-derived global built-up area (BUX,Y), global downscaled 
GDP (GDPX,Y) and global population density (PPLNDX,Y) to estimate global rooftop area per FN grid cell (BX,Y) 
where X is the SSP narrative and Y is the estimation year. Overall, the framework records an error of ± 0.1 km2 
per 1/8-degree FN tile when predicting the dataset used to train the model.
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BFOSM20 acting as dependent variables for the M2 model. The final sample FN grid cells used in our study are 
shown in Fig. 7 with building footprint attributes recorded in Table 2.

The M2 model is trained by using a 10-fold cross-validation strategy and 1000 hyper-tuning iterations. At 
the conclusion of this step, we have our final M2 model which then accepts PPLNDX,Y, BUX,Y and GDPX,Y layers 
as drivers to estimate a global BFX,Y layer for five SSP narratives and years ranging from 2020–2050. The final 
BFX,Y layer is stored as GeoPackage files having 1/8 degree FN grid cell resolution with a value representing the 
aggregated gross rooftop area inside the FN grid cell for further analysis, Fig. 8.

Although the trained M1 model in conjunction with SSP-derived drivers can aid in the generation of the 
final BFX,Y layer, we could not implement this as RL20 layer data is only available for the base year of 2020 and 
multivariate regression would be required to estimate its value beyond 2020 which would add an extra layer of 
uncertainty in our results. Additionally, the selection of BUS,OSM20 and the merger of this layer with BF20 layer 
provided us with additional global data points to retrain a new model M2 which would be more compliant with 
global trends rather than just the countries/regions covered by BF20 dataset.

Data Records
The high-resolution datasets generated in this study contains 3,216,960 individual Fishnet tiles with 1/8 degree 
spatial resolution, spanning the entire globe. The main datasets along with additional files are hosted and ref-
erenced on Zenodo35 (https://doi.org/10.5281/zenodo.11085013). The dataset covers all countries except 
Antarctica. Selected regional outputs of the study are shown in Fig. 9. To enable easy integration in the work-
flows, we have provided the main datasets in the following formats:

	 1)	 Vector dataset: The global gross estimated rooftop area per FN grid cell for each SSP narrative is provided 
as a Geopackage (.gpkg) file (Results_Vis.gpkg) with polygon geometries at 1/8-degree spatial resolution in 
an EPSG:4326 coordinate system. The attribute table of this file contains FN_ID column representing the 
FN grid cell ID, and other columns representing the FN_ID specific assessed rooftop area. The assessed 
gross rooftop area columns are sequenced as BF_X_Y with X having values as 1, 2, 3, 4, and 5 for SSP1, 
SSP2, SSP3, SSP4, SSP5 narratives with Y representing the assessment year having values as 20, 30, 40, and 
50 for years 2020, 2030, 2040, and 2050 and with km2 units. In addition, a CF column is added for each 
FN_ID entry that documents the Capacity Factor for rooftop solar PV based on the World Bank solar 
atlas36.

Fig. 7  Global distribution of sample FN grid cells. The spatial spread of sample FN tiles used in our analysis 
amounted to 148,441 FNs for big data-derived samples and 2,654 FNs for OSM-derived samples. For FN grid 
cells covering the USA, Canada, Africa, UK, and Australia BF20 layer was used. For the rest of the world, OSM-
derived FN grid cell was used after selecting them from inferencing the M1 model.

Layer Sample Areas
Input Rooftop 
Area (km2)

# Individual 
Polygons

BFs20 Australia 2,418 ~10 million

BFs20 UK 3,450 ~33 million

BFs20 USA 29,930 ~144 million

BFs20 Canada 2,500 ~19 million

BFs20 Africa 17,166 ~300 million

BFOSM20 OSM 21,000 ~140 million

Table 2.  Attribute of building footprint samples used for model training.
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	 2)	 Raster datasets: The global gross estimated rooftop area per FN grid cell for each SSP narrative is provided 
as a geotiff (.tif) files with LZW compression in an EPSG:4326 coordinate system. The assessed gross roof-
top area datasets are sequenced as BF_X_Y with X having values as 1, 2, 3, 4, and 5 for SSP1, SSP2, SSP3, 
SSP4, SSP5 narratives with Y representing the assessment year having values as 20, 30, 40, and 50 for years 
2020, 2030, 2040, and 2050 and with km2 units.

	 3)	 Numerical dataset: The global gross estimated rooftop area per FN grid cell for each SSP narrative is 
provided as a parquet (.parquet) file (Results.parquet). This file contains FN_ID column representing the FN 
grid cell ID, and other columns representing the FN_ID specific assessed rooftop area. The assessed gross 
rooftop area columns are sequenced as BF_X_Y with X having values as 1, 2, 3, 4, and 5 for SSP1, SSP2, 
SSP3, SSP4, SSP5 narratives with Y representing the assessment year having values as 20, 30, 40, and 50 for 
years 2020, 2030, 2040, and 2050 and with km2 units. In addition, a CF column is added for each FN_ID 
entry that documents the Capacity Factor for rooftop solar PV based on the World Bank solar atlas.

In addition to the main datasets, we have provided additional files to enable generating the vector and 
numerical datasets from this study:

	 1)	 M2_Model.json: This file contains the frozen parameters of the M2 model in.json format generated from 
XGBoost version 2.0.3

	 2)	 SSP_drivers.parquet: This file contains the driver data used for generating the main dataset in our study

Fig. 8  Output for BFX,Y Layer for African Continent for selected SSPs and times-steps. Illustration of outputs of 
M2 model derived assessment of rooftop area per FN for African continent for 2020 base year and 2050 future 
year for SSP2, SSP1 and SSP5 narrative. The black circles highlight selected regions where growth dynamics can 
be observed across selected SSPs based on the 2020 year.

Fig. 9  Visual depiction of BFX,Y layer for selected global regions. The image panels depict the pixel-wise output 
of BFX,Y layer classified by a graduated colour ramp. Each pixel in the panel represents the aggregated gross 
rooftop area per FN grid cell. Growth in rooftop area per FN grid cell can be observed for East China, West 
Africa, and Central European areas.
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	 3)	 FN_MAP.parquet: This file contains the boundary information for each fishnet grid tile in a Well Known 
Text (WKT) format.

	 4)	 Prediction.ipynb: This file provides a python notebook interface to generate inferencing from M2_Model.
json using SSP_drivers.parquet file. In addition, this file also generates the numerical dataset and converts it 
into vector dataset using FN_MAP.parquet file.

	 5)	 environment.yaml: This file contains the frozen configuration of python virtual environment used to 
generate the results presented in this study.

Technical Validation
Input validation.  The datasets presented in this study have undergone end-to-end technical validation for 
the base year of 2020. The validation is performed for M1 and M2 model inputs, the performance of M1 and M2 
models, the validity of outputs of M1 and M2 models and finally verification of estimations generated by the M2 
model. For datasets covering the years 2030–2050, we could not provide a true verification of data validity as 
they represent the future, but the high accuracy of 2020 data suggests strong model veracity which provides high 
confidence in these outputs. The input validation of the base year datasets and SSP-derived drivers are presented 
in Table 3 as a link to the validation reports generated by either the data providers or the peer-reviewed publica-
tion which form the basis of the data. Due to the scale of the dataset, assumptions and the limitation of methods 
used, the big datasets used in this study are expected to have errors at a higher resolution when verifying at a per 
building level, but at an aggregated country/ regional spatial resolution these datasets have shown acceptable 
performance.

Model validation on sample FN tiles.  The learning accuracy of the M1 and M2 models is determined 
by the significance of the correlation between the dependent and independent variables used to train the model. 
Further, a 10-fold cross-validation strategy to expose the models to various combinations of input data to reduce 
model overfitting was used. Additionally, the distribution of model output with respect to the dependent variables 
and the spread of the errors were evaluated to choose the best model. It was observed that the M2 model has a 
slight tendency to underestimate ground truth.

The final output of the M2 model (BFX,Y) was further evaluated for discrepancies between aggregated 
country-wise input base year big data derived BF20 values and aggregated country-wise M2 models estimated 
outputs for SSP2 narrative in the year 2020 (BF2,2020). These evaluations were conducted by aggregating the FN 
grid cell values for those FN grid cells that fall within the geographic boundaries of the country being evaluated. 
Overall, we observed high fidelity between the ground truth and estimated values at a country level. On a higher 
spatial resolution, we also compared the sub-national level estimations for the USA based on ASHRAE USA 
Climatic regions. Here also high fidelity was observed between ground truth and predicted values. Figures 10, 
11 and Table 4 document the results of these checks.

Dataset Format Validation study link

Building Footprints Vector

Heris, M.P., Foks, N.L., Bagstad, K.J. et al. A rasterized building footprint dataset for the United States. Sci 
Data 7, 207 (2020). 

https://doi.org/10.1038/s41597-020-0542-3

W. Sirko, S. Kashubin, M. Ritter, A. Annkah, Y.S.E. Bouchareb, Y. Dauphin, D. Keysers, M. Neumann, M. Cisse, 
J.A. Quinn. Continental-scale building detection from high resolution satellite imagery.

arXiv:2107.12283, 2021

Population Raster
Lloyd, C., Sorichetta, A. & Tatem, A. High resolution global gridded data for use in population studies. Sci 
Data 4, 170001 (2017).

https://doi.org/10.1038/sdata.2017.1

Road Vector
Barrington-Leigh, C., & Millard-Ball, A. (2017). The world’s user-generated road map is more than 80% 
complete. PloS one, 12(8), e0180698. 

https://doi.org/10.1371/journal.pone.0180698

Built-up area 2020 Raster
Tsendbazar, N.E., Tarko, A., Linlin, et al. (2020): Copernicus Global Land Service: Land Cover 100 m: Version 3 
Globe 2015–2019: Validation Report; Zenodo, Geneve, Switzerland, September 2020;

https://doi.org/10.5281/zenodo.3938974

SSP derived Built-up area 2020–2050 Raster
Gao, J., O’Neill, B.C. Mapping global urban land for the 21st century with data-driven simulations and Shared 
Socioeconomic Pathways. Nat Commun 11, 2302 (2020).

https://doi.org/10.1038/s41467-020-15788-7

SSP derived Population 2020–2050 Raster
KC, S. & Lutz, W. The human core of the shared socioeconomic pathways: Population scenarios by age, sex and 
level of education for all countries to 2100. Global Environmental Change vol. 42 181–192 (2017).

https://doi.org/10.1016/j.gloenvcha.2014.06.004

SSP derived GDP 2020–2050 Dataset
Dellink, R., Chateau, J., Lanzi, E. & Magné, B. Long-term economic growth projections in the Shared 
Socioeconomic Pathways. Global Environmental Change vol. 42 200–214 (2017).

https://doi.org/10.1016/j.gloenvcha.2015.06.004

Table 3.  Input data validation.
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Result validation on unseen datasets.  After verifying the M2 model’s output (BFX,Y) on seen/training 
data, further validations were performed on the unseen datasets. Here we compared our results (BF2,2020) i.e. M2 
model’s output for SSP2 and year 2020 with EUBUCCO v0.14,37 dataset for selected countries that had full data 
availability in EUBUCCO v0.1 dataset. The countries are Spain, France, Netherlands, Denmark, Finland, Estonia, 
Lithuania, Slovakia, Slovenia, Switzerland, Germany, and Luxembourg. For this, we first masked the EUBUCCO 
v0.1 dataset with the built-up layer in 2020 (BU20) and then mapped the resulting building footprints onto the FN 
grid flooded by aggregation of building footprint geometry within each FN grid tile. The second set of validation 
at the sub-national level was performed for the cities of Kansas, Singapore, and Sydney. Overall, we found that the 
results of the M2 model are within expected error ranges when compared with unseen data that is not exposed to 
the M2 model during training. This way, we could validate our results to a high degree of certainty by comparing 
results at sub-national and national spatial levels. Table 5 along with Fig. 12 documents the finding of the valida-
tions performed on unseen datasets.

Usage Notes
Limitations.  The aggregated rooftop area dataset was generated with an assumption of one-to-one mapping 
between the building footprint and the rooftop area. Although some building archetypes can have a larger rooftop 
area than building footprint due to the presence of rooftop superstructures14, we have not considered this due 
to the scale of the analysis which looks at global region of interest rather than per building. Similarly in higher 
latitudes due to the slope of the rooftops, the total building rooftop area can be higher than the building footprint 
area. Hence, it is advised to use region-specific rooftop attribute values when using these datasets for city-level 
analysis. Additionally, due to the nature of the ML model used for the estimation of rooftop area, we recommend 
an error margin of ± 0.1 km2 per FN grid cell. Considering the global scope of this study, we assume medium term 
(2020–2050) stationarity of spatiotemporal patterns learned by M2 model which limits the future projection of 
gross rooftop area. To mitigate the assumption of spatiotemporal stationarity, we have incorporated five different 

Fig. 10  Performance metrics of M1 and M2 models on sample FNs. (a) Correlation heatmap representing 
pearson’s correlation between pairs of independent and dependent variables of the M1 model. High correlation 
can be observed for the dependent variable (BF20) and independent variables (PD20, RL20, and BU20). (b) 
a graph representing the relationship between the M1 model’s dependent variable and predicted values. High 
fidelity can be observed between a dependent variable and predicted values. (c) the spread of difference between 
dependent variable value and predicted value from the M1 model at a per FN grid cell basis. The majority error 
concentration is around ± 0.1 km2 for a 1/8 degree FN grid cell. (d) Correlation heatmap representing Pearson’s 
correlation between pairs of independent and dependent variables of the M2 model. High correlation can be 
observed for the dependent variable (BFS,OSM20) and independent variables (PDS,OSM20, GDPS,OSM,2,202020, and 
BUS,OSM20). (e) a graph representing the relationship between the M2 model’s dependent variable and predicted 
values. High fidelity can be observed between the dependent variable and predicted values. (f) spread of 
difference between dependent variable value and predicted value from M2 model at a per FN grid cell basis. The 
majority error concentration is around ± 0.05 km2 for a 1/8 degree FN grid cell with slight left skewness in the 
error distribution leading to model prediction showing a slight underestimation of ground truth at the FN grid 
cell level.
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Fig. 11  Map of climate zones over the USA.

Testing Attribute Spatial Level Name Ground Truth (BF20) (km2) M2 Model’s output (km2) Absolute percentage error (%) Source

Seen by Model Regional USA Climatic Zone 3–4 734 633 13.76 Fig. 11

Seen by Model Regional USA Climatic Zone 5–7 76 108 42.11 Fig. 11

Seen by Model Regional USA Climatic Zone 8–10 4,103 3,789 7.65 Fig. 11

Seen by Model Regional USA Climatic Zone 11–12 701 706 0.71 Fig. 11

Seen by Model Regional USA Climatic Zone 13–14 5,531 5,532 0.02 Fig. 11

Seen by Model Regional USA Climatic Zone 15–16 1,028 1,074 4.47 Fig. 11

Seen by Model Regional USA Climatic Zone 17–18 1,426 1,267 11.15 Fig. 11

Seen by Model Regional USA Climatic Zone 19–20 5,666 5,819 2.7 Fig. 11

Seen by Model Regional USA Climatic Zone 21–24 216 218 0.93 Fig. 11

Seen by Model Country Level USA 29,681 29,447 0.79 —

Seen by Model Country Level UK 3,450 3,492 1.22 —

Seen by Model Country Level Africa 17,166 17,525 2.09 —

Seen by Model Country Level Australia 2,418 2,527 4.51 —

Seen by Model Country Level Canada 2,500 2,753 10.12 —

Table 4.  Result comparison of M2 Model’s output on seen training data.

Testing Attribute Spatial Level Name Ground Truth (BF20) (km2) M2 Model’s output (km2) Absolute percentage error (%) Source

Unseen by model Country Level France 5,332 5,326 0.11 Fig. 12d

Unseen by model Country Level Spain 2,538 2,552 0.57 Fig. 12d

Unseen by model Country Level Slovenia 142 137 3.57 —

Unseen by model Country Level Finland 480 461 3.89 Fig. 12e

Unseen by model Country Level Germany 5,825 5,570 4.37 —

Unseen by model Country Level Lithuania 238 227 4.79 Fig. 12e

Unseen by model Country Level Slovakia 407 387 4.91 —

Unseen by model Country Level Switzerland 473 496 4.99 Fig. 12d

Unseen by model Country Level Estonia 111 96 12.95 Fig. 12e

Unseen by model Country Level Netherlands 1,153 991 14.01 Fig. 12d

Unseen by model Country Level Denmark 649 509 21.62 Fig. 12e

Unseen by model Sub-national Kansas 10 9 10 Fig. 12a

Unseen by model Sub-national Singapore 104 116 11.54 Fig. 12b

Unseen by model Sub-national Sydney 313 314 0.32 Fig. 12c

Table 5.  Result comparison of M2 Model’s output on seen and unseen data.
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Fig. 12  Illustration of boundaries and results from the validation of unseen data. (a–c) Boundary of test sample 
over greater Sydney, Kansas and Singapore ROI respectively. The FN grid is marked with yellow colour, the 
black area is the non-built-up area inside the FN tile and the white/grey area is the built-up area inside the FN 
tile. (d,e) Illustration of the difference between EUBUCCO v0.1 and BF2,2020 layers for selected countries. The 
legend represents the colormap for different error bins with values in brackets representing FN tiles within each 
bin. Negative values represent under-prediction and positive values represent over-prediction by the M2 model. 
Basemap- Open Street Map contributors, Built-up classification - Copernicus GLC V3.0.1 2019.
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growth pathways in the form of SSPs that act as a proxy of different urban planning paradigms, thus allowing for 
an integrated assessment with various other factors e.g. climate change, energy systems etc. Finally, the training 
data to drive M2 Model is partially biased towards developed nations with only African countries and some 
samples from Open Street Maps providing training data for emerging economies. This imbalance in training data 
has manifested itself as the slight tendency for underestimation of gross rooftop area for high-density cities and 
conurbations.

Application to energy system/integrated assessment modelling.  We foresee that the datasets gen-
erated in this study will be of urgent use to the energy system/Integrated assessment modelling community for 
assessment of rooftop Solar PV/Solar thermal technical potential6,38,39 applications and for building side energy 
systems modelling40–42 purposes. For energy justice43 and energy accessibility studies44, the datasets can provide 
invaluable information in the form of urban growth dynamics and for calibration of the building stock models. 
For example, in the technical potential assessment studies45, users can assume that rooftops are flat with solar 
panels being placed at the latitude-specific optimal angle. Users can also assume that the entire estimated rooftop 
area will be fully covered by solar panels and the panels will be devoid of shadows. This assumption culminates as 
our dataset representing the best-case scenario for a technical potential generation. In wider literature, a rooftop 
availability factor of 0.3 is used to convert gross rooftop area to net rooftop area to account for unsuitable roof-
tops due to orientation and slope attributes of building stocks. For the users of this dataset, we recommend using 
region-specific rooftop availability factors if known, else 0.3 can be used as the factor for more practical results. 
The net rooftop area can then directly be converted into monthly technical potentials using high-resolution solar 
irradiate datasets e.g. NASA MERRA 246, Fig. 13.

Application to analyse OSM spatial data completeness.  Open Street Map-derived data is being used 
in many studies as a source of ground truth mapping and for the calibration of big data models. Additionally, raw 
OSM data in the form of building polygons, and road mapping is being used extensively in resource accessibility 
studies and vulnerability mapping47. A primary reason for the uptake of OSM data can be attributed to its free 
accessibility and the presence of more than a million active users who are updating the digital planet files on an 
hourly basis. Although the quantity of data that is present inside the OSM database is vast, studies using them 
often must do significant pre-processing to extract data that is suitable for their use case. Additionally, users of the 
OSM dataset struggle with the lack of validation studies done on OSM datasets.

For data attributes dealing with global roads, one study48 highlights that the OSM global road dataset is 80% 
complete. Similar studies for global building footprint datasets are currently limited to either country-level stud-
ies (https://github.com/thinkingmachines/osm-completeness) or regional studies (https://github.com/hotosm/

Fig. 13  Illustration of application of this study in rooftop solar PV assessment. (a) Global growth in assessed 
rooftop solar PV potentials based on 30% rooftop availability factor and 20% panel efficiency. The values are 
calculated by converting the gross rooftop area to the net rooftop area using the rooftop availability factor,  
then the net rooftop area is converted into installed capacity and further into yearly aggregated potentials.  
(b) illustration of intra-year variability in rooftop solar PV potentials for different SSP narratives and for 
selected countries.
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osm-analytics). As an application of the output of our M1 model, we overlayed our predicted gross rooftop area 
mapped to the FN grid for the year 2020 and for the SSP2 growth narrative on top of the building footprint pol-
ygon planet dataset from OSM to estimate the completeness of the OSM dataset. To quantify the completeness, 
we calculated the percentage difference in the assessed gross rooftop area from our study and the calculated 
gross building footprint area mapped to the FN grid from OSM. The base dataset for OSM comparison was 
procured in August 2021.

In the final output of this analysis, a value of 0 represented that either OSM data is missing, or data cannot 
exist at that FN grid cell. A value of 1 represented that OSM dataset coverage is 100% in that FN grid cell. Any 
value between 0.9–1.5 was considered as representing 100% completeness of the OSM dataset as our M1 model 
does have under or over-prediction characteristics in some regions based on driver metrics. A value greater 
than 1.5 was representative of regions in OSM that may not have population presence but have OSM building 
polygon tags e.g., greenhouses, industrial complexes around major shipping ports etc. Since our M1 model relies 
on the population as an important driver, in FN grid cells having a completeness value greater than 1.5, our 
model gives a lower value than the OSM dataset value. Another reason for this can be attributed to the wrong 
tag being assigned to building polygons or the misclassification of non-building built-up structures as building 
polygons inside the OSM dataset. An example of a completeness value dataset is shown for Europe in Fig. 14a, 
with example cases of completeness value greater than 1 shown in Fig. 14b–d. A similar automated analysis can 
be conducted for a global dataset to quantify the completeness of the OSM dataset and direct the crowdsourced 
mapping of buildings to areas that are under mapped.

Fig. 14  Output visualisation of OSM gap detection tool. The output of the gap detection tool dataset with each 
individual FN grid cell is classified by the completeness index, (a,b) zoomed in view of the ROI bound by the 
white bounding box in Fig. 14a. The values inside the FN grid cell represent the completeness index value for 
that FN grid cell. (c) image displaying a sample of an area marked inaccurately in the OSM dataset inside the 
FN grid cell with a completeness index of 1.32. (d) overlay of OSM polygon on incorrectly identified buildings 
in Fig. 14c where greenhouse installations have been marked as buildings leading to the FN representing value 
greater than 1.
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Pseudocodes.

Algorithm 1 Data Collection and pre-processing.

Algorithm 2 XGBoost Model Training and Estimation (Model M1).
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Algorithm 3 Preparing training Data for Model M2.
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Algorithm 4 XGBoost Model Training and Estimation (Model M2).
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Code availability
We have documented within the Data Descriptor the Pseudocodes that support the methodology of this study. 
Codes used for inferencing results along with XGBoost model generated in this study are hosted at Zenodo 
(https://doi.org/10.5281/zenodo.11085013).
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