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Abstract
The rates of tropical deforestation remain high, resulting in carbon emissions, biodiversity loss,
and impacts on local communities. To design effective policies to tackle this, it is necessary to know
what the drivers behind deforestation are. Since drivers vary in space and time, producing accurate
spatially explicit maps with regular temporal updates is essential. Drivers can be recognized from
satellite imagery but the scale of tropical deforestation makes it unfeasible to do so manually.
Machine learning opens up possibilities for automating and scaling up this process. In this study,
we developed and trained a deep learning model to classify the drivers of any forest loss—including
deforestation—from satellite image time series. Our model architecture allows understanding of
how the input time series is used to make a prediction, showing the model learns different patterns
for recognizing each driver and highlighting the need for temporal data. We used our model to
classify over 588 ′000 sites to produce a map detailing the drivers behind tropical forest loss. The
results confirm that the majority of it is driven by agriculture, but also show significant regional
differences. Such data is a crucial source of information to enable targeting specific drivers locally
and can be updated in the future using free satellite data.

1. Introduction

1.1. Drivers of deforestation
Tropical forests are amongst themost valuable ecosys-
tems on the planet. They are epicenters of biodiversity
[1], can store more carbon than any other land
ecosystem [2], and provide drinking water, shelter,
and wood to hundreds of millions of people [3].
However, they also experience consistently higher
rates of deforestation than any other type of forests
[2]. For example, 95% of the estimated 79 mHa of
global deforestation that occurred between 2001 and
2015 was located in tropical regions [4].

There is a number of driving forces, drivers,
behind tropical deforestation that vary regionally and
in time [5]. For example, the most widespread defor-
estation driver is pasture in the Brazilian Amazon,

oil palm plantation in Indonesia, and subsistence
farming in the Congo Basin [5, 6]. Tackling defor-
estation effectively requires solutions and policies
tailored to individual drivers [5]. The Amazon Soy
Moratorium (ASM) in Brazil serves as a prime
example. By signing the ASM, soy traders agreed
not to purchase soy from recently deforested lands.
Together with other complementary policies, this has
resulted in a decline in deforestation in the Brazilian
Amazon by 84% [5, 7]. To design such targeted
policies, the underlying drivers must be known.

Satellite-based remote sensing opens up possib-
ilities for monitoring forests at a high spatial resol-
ution on a global scale. Products such as the Global
Forest Change (GFC) [8] can detect any forest loss at a
30 m resolution. This encompasses deforestation (the
conversion of forest to a different land use) and also
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temporary disturbances such as a clearance at a forest
plantation, where the forest is then left to regrow.
In the tropics, deforestation is the primary concern,
but in the absence of comprehensive deforestation-
only data, forest loss data serves as a crucial start-
ing point for better understanding the dynamics of
tropical forest change as it can be used to identify
areas where further investigation is needed. Once the
drivers of forest loss are known, it can be determined
which forest loss events are temporary (e.g. drivers
such as wildfire or clearing of a forest plantation)
and which correspond to deforestation (e.g. drivers
associated with land use change such as agriculture
or mining). Recently, the dataset of Vancutsem et al
(2021) [9] largely closed this gap by providing data
directly on deforestation. However, the dataset only
covers moist tropical forests.

1.2. Mapping drivers
Given the scale and rate of tropical forest loss, it is not
feasible to visit each site on the ground to determine
the driver. Estimates have been produced using land-
balancingmodels, international trade data, or reports
from individual governments [10, 11], but they are
limited in accuracy [12] and can only describe drivers
at a national or sub-national level, which limits the
effectivity of the policies based on such data [5].

Similar to mapping forest loss itself, remote sens-
ing has become a vital tool for spatially explicit attri-
bution of forest loss to drivers. The high spatial res-
olution of missions such as Landsat and Sentinel-2
has enabled the recognition of drivers across diverse
landscapes [13–16]. Manual interpretation of the
images is possible but only a small fraction of the
detected forest loss can be analyzed in this way.
Automation is necessary to scale up driver mapping
and reduce the amount of human effort needed.

1.3. Machine learning for automatic recognition of
drivers
Curtis et al (2018) [4] showed the potential of
machine learning for the automatic recognition of
drivers. They trained an ensemble of decision trees on
population and remote sensing-based datasets to clas-
sify the dominant driver for the period 2001–2015 in
every 10× 10 km cell, producing the first global, spa-
tially explicitmap of drivers. Thismap remainswidely
used but comeswith a set of limitations. In addition to
its coarse spatial and temporal resolution, the model
is trained onmanually crafted features from a specific
set of datasets. The model therefore relies on these
datasets and may not be applied to other time peri-
ods if these datasets are not available.

More recently, deep learning (DL)-based
approaches have been proposed that recognize drivers
directly from satellite images. The end-to-end learn-
ing paradigm of DL enables the models to learn
descriptive, problem-specific features from raw input

data, alleviating the need for manual feature engin-
eering and opening up the possibilities for finer-scale
driver recognition. Among DL approaches, convolu-
tional neural networks (CNNs) are most commonly
used to extract visual features from images. CNNs
are designed to take into account the spatial dimen-
sion of image data, making them well-suited for such
a task. Once extracted, the visual features can be
used directly as input into a classifier [17], in some
cases augmented with manually extracted features
from auxiliary datasets [18]. A concurrent forest loss
segmentation and driver classification has been pro-
posed by Mitton et al (2021) [19], where the visual
features are classified into driver categories and also
upsampled to the original image dimensions to pro-
duce a forest loss map. Vision Transformers [20] have
also been shown to match CNNs for this task [21].

Despite promising results, mapping drivers from
single images has its limits. Distinct spatial patterns
associated with individual drivers appear at differ-
ent points in time. For example, wildfire can be best
recognized immediately after it occurs but it may
take several years before certain crops (particularly
tree crops) have grown enough to be recognizable.
There may be features that appear even before the
forest loss, such as a logging road before forest clear-
ing. Therefore, exploiting the temporal information
seems crucial. The high revisit frequency of satellite
remote sensing makes it possible to replace single
images with time series as inputs. However, using
time series also brings an additional layer of complex-
ity. The spatio-temporal nature of the input needs to
be reflected in the model architecture to learn feature
representations useful for the recognition of forest
loss drivers. This is an active research topic in satel-
lite image processing andmany approaches have been
proposed, mostly for crop type classification, using
1D or 3D convolution [22, 23], combining convo-
lutional and recurrent modules [24–26] or utilizing
the attention mechanism [27–29]. The adoption of
spatio-temporal DL for mapping forest loss drivers is
in its infancy, with a single study showing a significant
increase in accuracy when compared to single-image
approaches [17].

1.4. Challenges
Despite these advancements, the availability of driver
maps across the tropics remains limited. Existing
datasets only cover a single region [18, 30], have a
coarse resolution [4], or are only rough estimates
based on a limited number of samples [31, 32]. A
comparison between different driver maps has shown
major discrepancies [12].

The reasons are manifold. The size and hetero-
geneity of the tropics make robust recognition of
drivers difficult, as the visual appearance of a class
may vary depending on its location [17]. To be robust
to such variations, DLmodels need to be trained with
large amounts of annotated data. Currently, driver
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Figure 1. Forest loss drivers per country.

annotation is scarce, often focusing on a single region
[18, 30] or sparse sampling [31]. Additionally, as
discussed above, the distinct visual features of each
driver may appear at different points in time. This
can be modeled by approaches based on time series
as they can contain features for all drivers.

Disentangling and tackling these challenges with
DL models is complicated by the non-transparent
way in which they work. The models are trained on
large amounts of raw data and often contain tens of
millions of parameters. As a result, they are capable
of learning complex mappings from input to output,
connecting, in our case, satellite images to forest loss
drivers, but they do not provide any explanations as
to why they made a particular prediction, and act as
black boxes. This makes it difficult to understand how
they work and therefore how to improve them. For
example, while there is evidence that using a time
series results in higher accuracy, it is not clear why,
howmany images should form a time series, and how
the images should be sampled.

1.5. Contributions
In this paper, we propose and implement a new,
DL-based method for the classification of forest loss
drivers from time series of Sentinel-2 images. This
method allows for a dense and spatially explicit map-
ping of forest loss drivers. We deploy it to classify
over half a million sites of forest loss across the trop-
ics to produce a map of drivers for the period 2017–
2020, shown in figure 1. We analyze the produced
data and compare it with a widely used driver map
of Curtis et al (2018), uncovering new forest loss pat-
terns thanks to the more recent data, higher spatial
resolution and more fine-grained driver categoriza-
tion used in our work. Thanks to the high revisit
rate of Sentinel–2, the resulting map can be regularly
updated without human intervention.

The DL method is described in detail in
appendix A. We designed the model with a tem-
poral attention module that promotes explainability,
allowing the most important features to be identified
for accurate driver classification, where they appear
in time, and how this varies for different drivers.
To train our DL model, we curated a dataset util-
izing a recent crowd-sourced campaign which we

augmented with examples from other sources. We
describe the dataset in detail in appendix B. While
our primary motivation is deforestation, we consider
all types of forest loss. Once the forest loss driver is
known, it is straightforward to determine whether a
given forest loss event corresponds to deforestation
or to a temporary disturbance.

2. Experiments

The experiments were carried out to understand (i) if
using a time series yields better results compared to
a single image in time, (ii) how long the time series
should be, and (iii) what role the model architecture
plays. We trained the proposed architecture and the
baselines, which are described in appendix A, with
inputs varying from a single image to 12 images. The
process of constructing the time series is detailed in
appendix C and details on the experimental setup can
be found in appendix D.

2.1. Inference
We used the best-performing model to produce a
pantropical map of drivers. To do so, we sampled
588 ′000 sites of forest loss between 30◦N and 30◦S
using GFC and predicted the driver for each 1 km2

site. We only sampled sites where Curtis et al (2018)
predicted a driver to allow for a comparison. We con-
sidered it important to compare our results to Curtis
et al (2018) because their work is widely used as a
reference.

However, the comparison can remain only qualit-
ative, given the differences in methodology and time
period:

• Curtis et al (2018) classified drivers for the period
2001-2015 while we focused on the period 2017–
2020,

• our model predicts drivers for individual forest
loss sites at a spatial resolution of 1 km2, while
Curtis et al (2018) assigned themajor driver to each
10 km2 cell in a grid,

• the label space used in Curtis et al (2018) only
contains 5 classes (commodity-driven deforestation,
shifting agriculture, forestry, wildfire, urbanization)
while we used 9 classes.

3
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3. Results

In this section, we first report on how the different
models compare when trained on time series of vary-
ing length and we identify the best-performingmodel
from all the experiments. Then, we analyze the atten-
tion scores produced by this model to better under-
stand its behavior. Finally, we present the results of
classifying 588 ′000 sites of forest loss sampled across
the tropics.

3.1. Model comparison
The proposed spatio-temporal models outperform
the CNN baseline if multiple images are used, as
shown in figure 2. Adding images from the year before
the forest loss does not have a significant positive
impact on the F1 score. The results per class are
shown in table 1, confirming that the spatio-temporal
models are more accurate than the CNN baseline for
all classes. The model ‘CNN-Attention-LSTM’ out-
performs ‘CNN-LSTM’, suggesting that the temporal
attention module contributes to the correct recogni-
tion of the drivers.

Figure 3 shows the F1 score disaggregated per
class. The first row shows three classes that exhibit sig-
nificant differences.With respect to the classmanaged
forest, all three models benefit from longer sequences.
The models still show improvement when images
from the year before the estimated forest loss are
also used as input. We hypothesize that this may be
because indicators of forest management are often
visible continuously, not only after the forest loss
event.

In contrast, for recognizing the class pasture, the
best performance by all models is reached when the
amount of input data is limited. The models still
benefit from using time series, but the performance
starts to deteriorate when using more than 8 images
(i.e. when using images acquired before the forest
loss).We believe that this may be due to the forest loss
patterns associated with this driver—they are often
large-scale, one-time clearances that are not preceded
by any indicators that the model could recognize on
images before the clearance. The distinct features of
this class may lie in the spectro-temporal response
which can be seen after the forest loss event.

When looking at the class mining, the import-
ance of a dedicated spatio-temporal model becomes
apparent. Both CNN-LSTM and CNN-Attention-
LSTM benefit from an increasing number of images,
while the performance of the CNN baseline degrades
significantly.

Overall, most classes can be recognized better
with the dedicated spatio-temporal models proposed
in this work. This is not true forwildfirewhich is asso-
ciated with features very different from other classes
as discussed in section 3. Also, most classes can be

better recognized with more data but there are little
or no benefits from including images from before the
forest loss.

Overall, the proposed model learned to recognize
the drivers related to agriculture andmining relatively
accurately. However, it is less accurate with the classes
roads/buildings, other natural/no driver and wildfire.
As for the first, the problem may lie in insufficient
and noisy annotations. As for other natural/no driver,
we believe that this is a difficult class for the model to
recognize because it combines multiple relatively rare
drivers. It may be beneficial to divide this class into
multiple subclasses such as water, windthrow (trees
uprooted by wind), and no driver.

The class wildfire proves difficult to recognize
even with high-quality examples. We believe that this
is caused by wildfire having distinct visual features
which are very different from those of other classes.
This is discussed in more detail in section 3.2.

3.2. Attention score analysis
We used the best-performing variant of the CNN-
Attention-LSTM model that was trained on time
series of 7 images. Here we analyze the attention
scores that the model produces when making correct
predictions. A quantitative analysis can be found in
appendix E.

Figure 4 shows three examples of an input
time series and the corresponding scores. These
scores, corresponding to the elements of vector a
in equation (A.2), indicate which images the model
attended to. Figure 4(a) shows that the model can
attend to multiple images when needed, arguably
because temporal patterns are important to classify
that particular time series. In other cases, such as the
one shown in figure 4(b), the model mostly relies
on a single image as it is enough to predict the
driver. This is most common with the driver wildfire
that is often associated with distinct burnt areas that
appear shortly after the fire. More examples of input
time series and the corresponding attention scores are
presented in figure E4.

Figure 4(c) shows that the model has learned to
implicitly ignore cloudy images. This is because, dur-
ing training, the model learns to identify features
from the input images that are associated with indi-
vidual classes and to use these features to make a
prediction. For example, a set of rectangular shapes
with bright colors and sharp edges may be associated
with buildings and urban structures. Similarly, the
model also learns which features do not correspond
to any particular class and therefore are not useful for
the classification task. This includes clouds since any
forest loss driver can be covered by clouds. As a result,
the model learns to ignore cloudy images, which alle-
viates the need for cloud masking algorithms when
preprocessing images.
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Figure 2. F1 score for time series of different lengths; from left to right, each time series contains all the images from the previous
shorter time series plus one additional image from a period shown at the top x-axis; the sampling is detailed in appendix C.

Table 1. Per-class precision, recall and F1 score achieved by the three tested architectures; for each architecture, we chose the best
performing model; the best F1 score for each class is in bold.

CNN CNN-LSTM CNN-Att-LSTM
Prec. Recall F1 Prec. Recall F1 Prec. Recall F1

Commercial agr. 0.79 0.37 0.50 0.72 0.44 0.55 0.72 0.46 0.56
Palm plantations 0.84 0.53 0.65 0.87 0.56 0.68 0.91 0.51 0.66
Managed forest 0.61 0.64 0.62 0.71 0.60 0.65 0.66 0.60 0.63
Mining 0.82 0.74 0.78 0.91 0.88 0.89 0.90 0.93 0.91
Other/no driver 0.51 0.39 0.44 0.60 0.34 0.44 0.66 0.43 0.52
Pasture 0.58 0.63 0.61 0.62 0.66 0.64 0.62 0.72 0.67
Roads/buildings 0.61 0.35 0.43 0.71 0.47 0.56 0.73 0.39 0.51
Subsistence agr. 0.51 0.69 0.58 0.60 0.67 0.62 0.58 0.78 0.66
Wildfire 0.33 0.60 0.43 0.26 0.76 0.39 0.38 0.67 0.49

Macro Average 0.62 0.55 0.57 0.67 0.60 0.60 0.68 0.61 0.62

3.3. Inference
In this section, we present and discuss the results
of the driver predictions at 1 km2 resolution across
the tropics, both aggregated by country (figure 1)
and by latitude and longitude (figure 5). For the lat-
ter, we also present the results of Curtis et al (2018)
processed in the same way for qualitative compar-
ison. To ease the comparison, we describe which
classes fromboth datasets correspond to each other in
table 2.

The results we obtained confirm that the major-
ity of tropical forest loss is human-induced. In
the Americas, both datasets agree that commod-
ity production drives forest loss in the Brazilian
Amazon and small-scale agriculture is more pre-
valent in Colombia, Peru and Ecuador as well as
in Central America. Additionally, our dataset shows
that the major driver in the Brazilian Amazon is
mostly pasture, which agrees with other existing
data [12].

Our data also shows commercial agriculture being
more prevalent in the Southeast direction from the
Amazon, in the regions of Cerrado and the Atlantic
rainforest. While we do not recognize individual crop
types, we believe this is largely soy cultivation, which
we also confirmed by visual interpretation of mul-
tiple samples in the region. It has been documented
that after the Soy Moratorium was signed in 2006,
by which commodity traders agreed not to purchase
soy originating in lands where the Amazon rainforest
had been cleared, soy production has shifted to these
regions [33]. However, since the dataset of Curtis
et al (2018) does not distinguish between pasture
and crop cultivation, it is not possible to evaluate
whether earlier deforestation in the Brazilian Amazon
was driven more by crops such as soy, as opposed to
pasture.

In Africa, shifting agriculture is by far the most
common driver. The dataset of Curtis et al (2018)
predicts almost exclusively this driver throughout the
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Figure 3. F1 score of the proposed architectures for different numbers of input images; disaggregated per class; the sampling of
the time series is detailed in appendix C.

entire continent. Our model predicts a substantial
portion of wildfire as a driver as well as other nat-
ural disturbances. However, our model has limited
accuracy with respect to wildfire and the definition of
the class other natural causes/no driver contains false
positives in the GFC dataset, as we describe below.
For these reasons, we believe that the results of Curtis
et al (2018) might be more accurate for the African
continent.

Both datasets predict forestry to be dominant
in higher latitudes in Asia, especially in China.
Compared to the map of Curtis et al (2018), our
model predicts relatively little oil palm plantation in
Indonesia and Malaysia, where it is the most com-
mon driver [6]. We see three possible explanations.
First, the forest loss due to oil palm has decreased
between the study period of Curtis et al (2018) and
ours, as reported by [15]. Second, ourmodel confuses
the class forestry with palm oil plantation because of
their visual similarity. Third, palm trees may take sev-
eral years before they grow to such size they can be
recognized from remote sensing images. Therefore,

the young palm plantation may be missed by the
model.

Across the study area, the class other natural
causes/no driver is predicted relatively often, especially
at lower latitudes as seen in figure 5(a). In other driver
datasets, this is a minor class with only a few percent
[15] or it is not considered at all [4, 17]. We believe
that this may be because this class also includes cases
where there was no driver visible. Given the false pos-
itive rate of GFC estimated at 13% [8], both our train-
ing and inference datasets likely contain examples
with no real forest loss and the high occurrence of this
class can also be related to this, as opposed to natural
disturbances as a driver.

The two datasets show little agreement with
respect to wildfire. According to Curtis et al (2018),
wildfire as a dominant driver is found mostly at
higher latitudes and specifically in Australia and
Central America. In contrast, our model predicts
wildfire more often in general and particularly
around the equator. To some extent, this can be
attributed to the increased amount of wildfires that
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Figure 4. Examples of attention scores the model produced for different time series.

Figure 5. All predictions were aggregated using a grid of 5◦ of longitude and 5◦ of latitude; the distribution of drivers within each
group is drawn in the center of the corresponding cell; the size of the cell corresponds to the relative size of the group; the
relatively smaller numbers of predictions in Curtis et al (2018) are due to the coarser spatial resolution of their analysis.
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Table 2. Comparison of the classes used in this work and in Curtis et al (2018), using the definitions used in both works.

Class name in our work Equivalent in Curtis et al (2018)

Subsistence agriculture Shifting agriculture
Managed forest Forestry
Pasture Commodity driven deforestation
Roads/buildings Urbanization
Commercial agriculture Commodity driven deforestation
Wildfire Wildfire
Oil palm plantations Commodity driven deforestation
Mining Commodity driven deforestation
Other natural causes/no driver —

occurred during our study period 2017–2020 [34].
It is also likely due to our model overpredicting this
driver, given the low precision values for this class in
table 1.

4. Discussion

In this work, we presented, trained, and evaluated a
DL model, ‘CNN-Attention-LSTM’, for the recogni-
tion of forest loss drivers from Sentinel-2 time series.
We tackled the main challenges associated with this
task—the lack of labeled training data, the heterogen-
eity of the tropical landscape, and the various tem-
poral patterns in which drivers are visible from satel-
lite imagery. We trained our model on a large, crowd-
sourced dataset, alleviating the need for manual
image interpretation and providing a rich and diverse
set of examples across the entire tropical region.

We showed that we can map forest loss drivers
with time series of Sentinel-2 images and gain a
significant performance boost over mapping from
single images. Extensive experiments were performed
to understand the optimal length and temporal
sampling of the input time series and to compare dif-
ferent architectural variants. We designed our model
to include a temporal attention module that enables
the user to inspect which images from the time series
were used to make a prediction, adding transpar-
ency and interpretability to the results. The analysis
of these data shows how the model uses different
strategies to recognize individual drivers and also
learns to ignore cloudy images as they do not contain
useful information.

Finally, we used the trained model to produce a
pantropical map of drivers of recent forest loss. This
map represents not only a temporal update com-
pared to the widely adopted drivers map of Curtis
et al (2018), but importantly demonstrates that using
modernDLmethods, drivers can bemapped at a high
spatial resolution—the resolution of our method is
two orders of magnitude higher compared to Curtis
et al (2018). Given the high revisit rate of Sentinel-2,
this map can be updated regularly with minimal user
intervention.Moreover, since we have shown how the
model implicitly learns to ignore cloudy images, the
model can be used on raw Sentinel-2 data without

requiring sophisticated preprocessing workflows. We
hope this contributes to the wider adoption of the
model.

The results confirm the trends of tropical forest
loss—most is driven by the conversion of forests to
agriculture.Wedemonstrate the importance of recog-
nizing more driver categories as we show that the
type of agriculture and the commodity produced dif-
fer widely. In the Amazon, cattle pastures dominate
while subsistence agriculture is most common across
Africa. Southeast Asia experiences a mix of differ-
ent drivers, with oil palm plantations and subsist-
ence agriculture most prevalent. Our results show
that wildfire is becoming amore common driver even
in tropical regions. This confirms the trends reported
by Tyukavina et al (2022).

We would like to point out some limitations
of our work. The accuracy of our model is lim-
ited. Specifically, considering the results presented in
table 1, ourmodel is likely to have overpredictedwild-
fire and subsistence agriculture and underpredicted the
share of commercial agriculture, roads/buildings and
oil palm plantations. This must be taken into account
when using the data for decision-making. While the
presented map demonstrates a significant spatial and
temporal improvement over existing works, it should
not be used as a single source of data when designing
policies for tackling deforestation. The model could
certainly be improved by using more training data,
butmanual high-quality annotation remains a crucial
pre-requisite that requires significant human labor.
Furthermore, althoughwe recognize asmany ormore
driver classes than all previous studies, we do not dif-
ferentiate between individual agricultural commod-
ities. This is important to support the development
of policies targeted at specific industries and sup-
ply chains. An important extension of this line of
work could therefore be to increase of the granular-
ity of the driver maps, distinguishing between spe-
cific commodities. Finally, some of the driver classes
are not mutually exclusive. While most correspond
to the subsequent land use after the forest loss event,
wildfire and other natural causes/no driver correspond
to the forest disturbance type. Therefore, they can in
principle appear in combination with any subsequent
land use.

8
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In future work, we would like to investigate the
possibility of learning multiple regional models that
would share a single, global backbone. Such models
could specialize in each region while the backbone
could utilize all the data.

Overall, our work demonstrated that DL mod-
els can be used for mapping drivers from free satel-
lite images at a high spatial resolution and on a large
scale. We showed that DL models can be designed
to be more transparent and that the insights gained
can be used to better understand how they work and
how they can be improved. The data produced by
our model serve as a timely update to identifying
rapidly-evolving drivers to forest loss. We hope that
the presented findings can support further investiga-
tions and contribute to reducing the rates of tropical
deforestation.
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Appendix A. Methods

In this section, we detail the DL approach we pro-
pose for driver classification from satellite image time
series, named CNN-Attention-LSTM. This model
uses the sequence nature of the time series and pro-
duces per-timestep importance scores (i.e. attention
scores) showing which timesteps the model is using
for its prediction. We also present two baseline mod-
els: a simple CNN, where the time information is
provided as a concatenation of all images in the time
series (CNN), and a spatio-temporal model CNN-
LSTM that utilizes a CNN as well as a long short-term
memory (LSTM) module [35]. CNN-LSTM exploits
the fact that the images are in a temporal sequence,
but does not provide any information about timestep
importance.

We used Sentinel-2 images as input to all models.
Sentinel-2 has a revisit time of 5 days and its sensors
have 13 spectral bands, fromwhich we used 4 that are
available at 10 meter resolution (red, green, blue, and
near-infrared). Nevertheless, the presented method is
sensor-agnostic and can be used with images from
other sensors and with other characteristics.

In the following, we denote the input to themodel
(a time series of remote sensing images) asX, of shape
T×C×W×H (T is the number of images in the
time series, C is the number of image bands and W
and H are image width and height, respectively). All
models share the common structure of (i) an encoder
that extracts features from X and (ii) a classifier that
maps the encoded features to probabilities for each
output class. All models have a single fully connected
layer as a classifier and differ in the way the encoder
is designed. To extract visual features from individual
images, all models use a single ResNet34 [36] with the
last two fully connected layers removed.

A.1. Baseline
A.1.1. CNN
The encoder of the first baseline consists only of the
ResNet34 backbone. To enable time series as input,
we concatenate the images along the channel dimen-
sion and feed them to the encoder as a single datacube
(figure A1). The model encodes the input in a single
feature vector, denoted v. We denote the size of v as
L and set it to 512. This vector is then passed to the
classifier.

A.1.2. LSTM
As shown in other studies [17, 37], concatenating
images together is not the optimal way of hand-
ling time series. Including modules for extracting
both visual and temporal features explicitly is import-
ant for effective learning from spatio-temporal data.
Therefore, we employ LSTM for extracting tem-
poral features in addition to the CNN. LSTM is a
type of recurrent neural network (RNN) which is
designed for handling sequential data. RNNs main-
tain amemory, called the hidden state, that is updated
as the network processes the input sequence. At every
step, the current item from the sequence (in our
study, the vector v at time t) and the previous hid-
den state (i.e. the vector kt−1) are used as inputs. This
allows the model to keep information from previous
steps and use it when processing the next elements
in the sequence. In addition, LSTM also maintains
another memory unit, the cell state, which improves
the modeling of long-term dependencies.

A.1.3. CNN-LSTM
(b) The second baseline model ‘CNN-LSTM’ is
shown in figure A1. It extracts T feature vectors with
the convolutional backbone, one vector per image.
Maintaining the temporal order, these form a mat-
rix V that is used as input to a bidirectional LSTM. A
bidirectional LSTM refers to a module of two LSTM
layers where each processes the input sequence in one
direction, resulting in better representations of the
sequence [38]. The last output of the LSTM in each
direction is concatenated into a feature vector k of size
2L, which is used by the classifier.

9
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Figure A1.Models for classification of forest loss drivers used in this work.

A.1.4. CNN-Attention-LSTM
The proposed model ‘CNN-Attention-LSTM’
(figure A1(c)) adds an attention mechanism [27]
inspired by the success of the Transformer [39].
The attention mechanism that we designed provides
information about the importance of each image in
the input time series tomake a prediction. In the same
way as ‘CNN-LSTM’, the model extracts T visual fea-
ture vectors with the backbone, forming a matrix V,
which is passed into the bidirectional LSTM. All hid-
den states in both directions from the LSTM are used
to form a matrix K of size 2L×T. The last cell states
in each direction are concatenated together into a
vector q of size 2L.

Then, a vector of attention scores a is computed as

a= softmax
(
q⊤K

)
, (A.1)

where⊤ p denotes the transpose of q. Softmax is used
to normalize the attention vectors so that they all have
the same scale and are comparable. Then, a single
feature vector p, which is passed to the classifier, is

computed as a weighted average of the visual feature
vectors, with attention scores used as weights:

p= aV, (A.2)

which constrains the model to learn a representation
of the input time series that is a weighted average of
individual images.We then analyzed the weights (and
the images corresponding to them) to better under-
stand what the important time steps are for recogniz-
ing individual drivers.

Appendix B. Data

B.1. Annotation
For acquiring the labels, we primarily used a large,
publicly available reference dataset5 collected using
crowdsourcing via the Geo-Wiki platform6 Around
150 K locations were randomly selected on land sur-
faces between 30◦N and 30◦S where any forest loss

5 https://pure.iiasa.ac.at/id/eprint/17539/
6 https://www.geo-wiki.org
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Figure B1. Examples of classes used in this work.

had occurred between 2008 and 2019 based on GFC
[8]. These locations were then provided to Geo-Wiki,
and data collection proceeded as a crowdsourcing
campaign to label primary drivers of forest loss in
each 1 km2 area. Two other tasks were performed as
part of the campaign (identifying secondary drivers
and the presence of roads) but the corresponding
data was not used in this study. A full description
of the curation of this dataset is described in Bayas
et al (2022) [40]. Examples of all classes are shown in
figure B1.

There were nine primary drivers to choose
from, which were partly based on those used by
Curtis et al (2018) [4] and literature on drivers of

deforestation [5, 41]. The first four are agriculture-
based, i.e. subsistence agriculture, commercial or
commodity-driven agriculture, oil palm as a separ-
ate commodity, and pasture. Oil palm and pasture are
recognized separately from other commercial agri-
culture, as they are the two most widespread drivers
of tropical deforestation [6]. As such, it is particurly
important to be able to recognize them. The next
three are other human activities—plantation forestry,
roads/urban expansion and mining. The final two
consider drivers that are both natural and human-
induced, i.e. wildfires, and other natural causes. The
last category also included no driver if it was not pos-
sible to attribute a driver to the forest loss based on

11
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Figure B2. TS acquisition and construction workflow.

visual interpretation. Multiple responses were collec-
ted at each location for quality assurance purposes. In
our study, we disregarded data points where no driver
had a majority of respondents votes (i.e. where there
was little or no consensus between the responses).

As shown in figure B2(a), the year of forest loss
was estimated for every 1 km2 location using the
GFC [8] which specifies the forest loss year (if any
occurred) for every pixel at 30 m resolution. We
estimated the year of forest loss as the mode value
within the annotated location. We only used loc-
ations where we estimated the year of forest loss
between 2017 and 2020. This is due to the availab-
ility of Sentinel-2 images from 2015 and the fact we
used time series of lengths of up to 3 years. Note that
in the crowdsourced campaign, the locations were
annotated with respect to the period 2008-2019. We
assumed that the primary driver remained constant
and the annotations were valid for our target period.

The distribution of the dataset is shown in
figure B3. The dataset obtained from the crowd-
sourced campaign was augmented with additional
examples to improve the class balance because earlier
work showed that the underrepresented classes were
classified with significantly lower accuracy [37]. For
this reason, we added examples of classesmining and
wildfire, utilizing the data of Maus et al (2022) [42]
and Tyukavina et al (2022) [34], respectively. Both
datasets were overlaid with GFC to identify locations
of mines or wildfires where forest loss occurred in the
target period 2017–2020. All examples were manu-
ally verified. In total, 435 examples ofmining and 323

examples of wildfire were added, so the total dataset
contained 10’395 examples.

The dataset was split into train, validation, and
test sets of sizes 9083, 136, and 1176, respectively.
The class distributions for each of the three datasets
are shown in table B1. To avoid bias resulting from
spatial autocorrelation, the study area was divided by
degrees of longitude. For every 5 degrees of longit-
ude, examples located in the first three degrees were
assigned to the training set, the fourth to the valida-
tion set, and the fifth to the test set. This is shown in
figure B4.

B.1.1. Images
Weused Sentinel-2 images as input features. Sentinel-
2 is a constellation of two identical satellites that offers
a revisit time of 5 days. The sensors have 13 spectral
bands with a spatial resolution 10-60 meters. In our
study, we used 4 bands (red, green, blue, and near-
infrared) that have the highest spatial resolution of 10
meters. Experiments with more bands did not yield
any improvement in accuracy while increasing the
volume of data and computation. We used the Level-
1 C product (top-of-atmosphere).

For each location, we downloaded a 3-year time
series of Sentinel-2 images, one image per quarter
(3 months). As shown in figure B2(b), we selected the
time period to cover the estimated forest loss year, one
year after and one year before. We selected the least
cloudy image for each period. We did not perform
any further cloud filtering as we designed our model
architectures to learn to ignore cloudy images.
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Figure B3. Dataset distribution.

Table B1. Class distributions for each of the training, validation, and test subsets of the dataset.

Commercial
agr.

Palm
plantations

Managed
forest Mining

Other/no
driver Pasture

Roads/
buildings

Subsistence
agr. Wild-fire

Train 447 391 1891 359 803 2412 193 2235 350
Val. 21 11 11 12 11 14 22 16 18
Test 112 97 183 128 127 224 48 185 72

Total 580 499 2085 499 941 2650 263 2436 440

Figure B4. Spatial data split.

To predict forest loss drivers across all tropical
forests, we also prepared an equivalent Sentinel-2
dataset by sampling forest loss areas detected by GFC
between 2017 and 2020, which resulted in a total of
588k km2 footprints. For these locations, the defor-
estation driver was unavailable and was predicted by
our model.

Appendix C. Constructing time series

The time series used in this study were always formed
by a set of consecutive images. For time series of less

than 12 images, there are multiple options of how
to construct them because we can shift the begin-
ning (and accordingly the end) of the time series. We
assumed that themost important period for recogniz-
ing drivers is the year in which forest loss took place,
followed by the year after. We expected the images
from the year before forest loss would be the least help-
ful for the model. The assumptions were based on
visual inspection of the forest loss sites and literature
on forest loss [5, 12, 40].

As shown in figure C1, we designed our experi-
ments accordingly. When training models on a single
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Figure C1. Time series sampling for an example forest loss site with estimated forest loss year 2018; images from one year before
and one year after the forest loss year are acquired; when constructing time series of different lengths, images from the forest loss
year are used first, followed by the year after it and lastly including images from the year before the forest loss event.

image, we used images from the first quarter of the
estimated forest loss year. For constructing the time
series, we continued to add images from the next
quarter to a maximum of 8 images covering the forest
loss in that year and the year after. For constructing
longer time series, we added images from the year
before the forest loss, starting with the latest image
(i.e. sampled in the last quarter of the year).

Appendix D. Experimental setup

Weused ResNet34 pre-trained on ImageNet [43]. The
pre-trained weights only have three input channels
while we used four. Therefore, we augmented the first
convolutional layer by duplicating the weights cor-
responding to the first channel, resulting in a shape
matching our input data. When stacking multiple
images together for the multi-temporal baseline, we
duplicated the weights to match the input data shape.
We have also tried to use weights pre-trained on satel-
lite images but did not obtain satisfactory results.

All experiments were executed three times with
varying seed values and the results were averaged
across each set of three experiments. All models
were trained with the cross entropy loss function
and Adam optimizer. We used early stopping to stop
training after the validation loss did not improve
for 20 epochs. During training, we randomly flipped

images as a regularization technique to reduce over-
fitting. We used the F1 score as an evaluation metric
as it better captures the model’s performance when
working with imbalanced datasets.

Appendix E. Attention score distribution

The overall distribution of the attention scores over
the test set is shown in figure E1(a). The largemajority
of images are not used to make a prediction (i.e. most
attention scores are 0).We believe this is because there
is often relatively little change betweenmultiple image
acquisitions, resulting in redundant data.

E.1. Time series entropy of attention scores
To better understand how many images from a time
series the model typically uses and how that differs
between classes, we calculated the Shannon entropy
[44] for every set of attention scores corresponding
to a time series:

H=
∑

(a ∗ log(a)) , (E.1)

where a corresponds to the set of attention scores the
model produced for a time series (equation (A.1)). If
the model entirely attends to a single image only, this
corresponds to entropy of 0. Themaximumentropy is
reached if the model attends to all images to the same
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Figure E1. Temporal distribution of attention scores.

Figure E2. Entropy per class with a fitted KDE; lower entropy values correspond to the model attending to fewer images from the
input time series; higher entropy values signal more images used.

extent (i.e. all attention scores are equal). We calcu-
lated the entropy for each time series over the test set
and fitted a kernel density estimator (KDE) to the res-
ulting density for easier interpretation.

The results are shown in figure E2. For most
classes, the distribution follows a skewed normal dis-
tribution. This means that most of the time, the
model attends to multiple, but not all, images in the
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Figure E3. Temporal attention scores per class.

time series. The classes related to agriculture tend to
bemore negatively skewed, i.e. it is more common for
themodel to attend tomultiple images.We expect this
to be caused by seasonal patterns associatedwith these
classes.

There is a distinctly different shape associated
with the class wildfire. Here, the most common case
is a very low entropy value, corresponding to the
model attending mostly to a single image to make
a prediction. This is consistent with the example
in figure 4(b), where the model recognizes wildfire
almost entirely based on a single image that shows
distinct burned scars. We believe this may explain
the model’s relatively low performance with respect
to this class. The model learns to extract features
that are most useful for the overall performance. If
the features required for recognizing wildfire are very

different from all other classes, the model might not
learn them well. Also, if the distinct features are
present on a single or a few images, the detection
of wildfire may be more sensitive to cloud cover. It
is worth noting that there is a wide range of tech-
niques for detecting wildfire from remotely sensed
imagery, such as using the Normalized Burn Ratio
index. While such methods may have improved the
results of our model for this particular class, we did
not use it because the aim of this work is to train a
model in a data-driven way, without hand-crafting
features for individual drivers.

E.1.1. Attention score distribution in time
Figure E1(b) shows the distribution of attention
scores over time for the best-performingmodel which
was trained on time series of 7 images. The model
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Figure E4. Examples of attention scores the model produced for different time series, complementing those reported in figure 4.

learns to mostly attend to images in the second half
of the estimated forest loss year, followed by the first
half of the subsequent year. This mirrors the evolu-
tion of the F1 score per increasing number of images
and confirms that the model attends mostly to the
period immediately after the event.

Figure E3 shows this disaggregated by class. We
can see that most classes follow the overall trend and
the model attends most to images in that period.
In contrast, to recognize pasture, the model attends
to later images as well. We believe this is because
shortly after the forest loss event, agriculture-related

classes may have a similar appearance to pasture.
Later, pasturemay become recognizable as the cleared
area does not show any signs of crops or trees being
planted.

Figure E4 contains more qualitative examples of
input time series and the attention scores produced
by the model.
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