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Abstract: The social cost of carbon (SCC) has emerged as one of the relevant measures in integrated
assessment models in climate economics, to quantify costs related to global warming and climate
change. While the SCC is used in different models, including DICE (Dynamic Integrated model
of Climate and Economy), PAGE (Policy Analysis of the Greenhouse Effect), and FUND (Climate
Framework for Uncertainty, Negotiation, and Distribution), its exact definition and computation depend
on the reference and, frequently lacking consistency within research streams whether focusing on a
single model or on different models. In this study, we investigated three different methods for the
computation of the SCC using the integrated assessment model DICE. While the first two methods are
commonly known and used, the novel formula derived for the third method allows a direct analysis
of the impact of the discount factor in the calculation of the SCC. We provide a detailed proof for
the correctness of the third method and validate the consistency of all three methods by numerical
experiments.

Keywords: economics of climate change; DICE; optimal control; social cost of carbon; sensitivity
analysis

http://www.aimspress.com/journal/environmental
http://dx.doi.org/10.3934/environsci.2024024


472

1. Introduction

To quantify the damages from anthropogenic emissions of heat-trapping greenhouse gases,
economists model the dynamics of climate–socio-economic interactions using integrated assessment
models (IAMs) that incorporate mathematical models of phenomena from geophysical science,
economics, and social sciences. A central role for IAMs is to estimate the social cost of carbon
(SCC), defined as the dollar value of the economic damage caused by a one metric ton increase in
carbon dioxide (CO2) emissions to the atmosphere. The SCC can then form the basis of a Pigouvian
tax on greenhouse gas emissions, guide carbon prices in emissions trading schemes, inform
cost-benefit analyses driving climate policy, or be used by investors looking to consider potential
emissions costs in investment decisions. This wide range of uses highlights the importance of
methods for estimating the SCC.

A critical and much debated issue in computing the SCC is the choice of discount rate. CO2 is a
long-lived greenhouse gas (GHG), with CO2 emissions having a substantial impact on climate for
thousands of years; e.g., 20–40% of a CO2 perturbation remains in the atmosphere even after
equilibration with the ocean on a timescale of 2–20 centuries [1, 2]. Comparing costs and benefits
over such long time horizons necessitates a careful choice of discount rates and methodologies in
order to provide a fair comparison of costs paid now—via emissions reductions—with economic
benefits from curbed global warming in the far distant future.

Conceptually, the most common approach to computing the SCC using IAMs is to compute baseline
emissions and economic consumption. These computations are then repeated with an increment of CO2

emissions in a chosen year, yielding reduced economic consumption into the future as the result of a
climate damages function in the IAM. The results of these baseline and perturbed scenarios are then
used to compute the SCC as the net present value (NPV) of the “damage stream” (i.e., pathway of
lost consumption) (see, for example, [3, 4]). This NPV approach is employed directly by two of the
most widely used IAMs: PAGE (Policy Analysis of the Greenhouse Effect [5]) and FUND (Climate
Framework for Uncertainty, Negotiation, and Distribution [6]). While descriptively this is what is
intended with DICE (Dynamic Integrated model of Climate and Economy; see Figure 1 and associated
discussion by Nordhaus W [4]), in practice the publicly available implementation of DICE uses a
different method, based on shadow prices or Lagrange multipliers obtained as a result of solving an
optimal control problem ( [7]). Hence, a critical question, answered herein, is whether or not these
different computational approaches are in fact equivalent.

The classical Ramsey formula for social discount rate is given by r = ρ + θg, where ρ is the pure
rate of time preference (or “impatience factor”), θ is the elasticity of marginal utility of consumption,
and g is the growth rate of per-capita consumption [8]. While the calculation of the SCC as the NPV
of the damage stream due to CO2 pulse implies use of a discount rate, there is widespread
disagreement in the literature regarding the appropriate discount rate to use in this context. For
example, in some representative papers, the SCC is described as being computed as the NPV of a
damage stream variously discounted at (a) the classical Ramsey formula (i.e., assuming a constant
growth rate of consumption), (b) a time-varying Ramsey formula (reflecting the growth rate of
time-varying consumption), (c) the pure rate of time preference, and (d) a fixed rate without any
explicit reference to the Ramsey formula; see the studies by Marten AL, et al. [3–6, 9–16], and also
the study by Tol RSJ [17], which proposes exercises based on both (b) and (d). The report
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Economides 2018 provides a chapter on various discounting approaches in the economics of climate
change. It is worth noting that in some cases it is unclear precisely how the discounting is being
performed as it is described in words rather than by providing an explicit mathematical expression.

As briefly mentioned above, rather than computing the NPV of the damages stream, a conceptually
distinct approach to computing the SCC relies on maximizing a social welfare function. As explicitly
defined in the study of Newbold S C, et al. [19], “The [SCC] in a particular year is the decrease in
aggregate consumption in that year that would change the current expected value of social welfare by
the same amount as a one unit increase in carbon emissions in that year.” Expressed formally, the SCC
at time t is defined as

SCC(t) = −
∂W
∂E(t)
∂W
C(t)

(1.1)

where a simple manipulation shows that this is the ratio of the marginal prices of consumption and
emissions. In fact, this is the computation contained in the code implementing the DICE model and
optimal control problem as presented in the study by D. Nordhaus W, et al. [7]. Here, W denotes
social welfare, E denotes emissions, and C denotes consumption, whose definitions are made precise
in Section 2.

The main contribution of this paper is to discuss and compare the three possible computational
methods of the SCC indicated in the discussion above. In particular, we discuss a direct discretization
of (1.1), an approach using the ratio of marginals obtained from solving an optimal control problem,
and an NPV approach based on experimental CO2 emission pulses. For the last approach, there are
several options for how to perform the required discounting. The three approaches are compared
theoretically, in terms of their accuracy and their computational complexity, and numerically, based
on simulations of the DICE model. In addition, the three approaches and their analysis lead us to
the following question: Which (if any) of the above options for computing the SCC are consistent
with each other? Importantly, neither FUND nor PAGE involve an optimal control problem, meaning
the first two methods mentioned here are not relevant. Hence, answering this consistency question is
critical for comparing results between IAMs based on optimal control methodologies with those based
on scenario methodologies.

Our main mathematical result, which covers the third computation method, is summarized in
Theorem 1. The result demonstrates that in order to obtain consistency between the NPV calculation
and the SCC values calculated via optimal control approaches, it is necessary to use a time-varying
discount rate in the NPV calculation. In particular, the time-varying component is inversely
proportional to economic growth, leading to a declining discount rate [20–22]. Specifically, returning
to the Ramsey formula r = ρ + θg, mentioned above, the quantity g is time-varying and given by the
growth rate of consumption. The quantities ρ and θ are “exogenous” to the model and need to be
selected by the modeler on the basis of data and/or economic expertise. Note that it has been argued
that the use of declining rates is justified in the presence of significant uncertainty in future economic
growth (see [23]). Here, we see that the use of a declining discount rate is required for consistency
with outputs from calculations based on shadow prices obtained when solving optimal control
problems.

This paper is organized as follows. In Section 2 we succinctly present the DICE model as
described in the study by Kellett C M, et al. [24], with model parameters provided in Appendix D. In
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Section 3, we investigate three methods for computation of the SCC using the DICE model.
Section 3.1 presents the calculation based on a discretization of the difference quotient of the two
quantities in (1.1). In Section 3.2 we demonstrate how to rewrite the DICE optimal control problem
so that emissions and consumption are decision variables, which allows us to obtain the marginals or
dual variables directly as an output of solving the optimal control problem. This has the
computational benefit of removing the welfare function as an intermediary in the SCC calculation. In
Section 3.3 we present the main mathematical result of the paper (Theorem 1), which shows an
equivalence between calculating the SCC as a ratio of the dual variables versus the NPV when the
discounting approach is computed via the time-varying Ramsey formula accounting for a
time-varying growth rate of consumption. Section 4 presents some numerical results and discussion,
and we conclude in Section 5. Mathematical necessities and the proof of our main result are collected
in Appendices.

Notation: The set N0 = {0, 1, 2, . . .} denotes the natural numbers including zero, while N = {1, 2, . . .}
denotes the natural numbers without zero. The real numbers are denoted as R, and R≥0 = {x ∈ R| x ≥ 0}
denotes the real numbers bigger or equal to zero. For n ∈ N, the set Rn = R× · · · ×R denotes the n-fold
Cartesian product of the real numbers, and x ∈ Rn denotes an n-dimensional vector with x(i) ∈ R,
i ∈ {1, . . . , n}. To simplify expressions and to define convergence rates we use the big O-notation, i.e.,
two functions f1, f2 : R → R, f2(x) > 0 for all x > 0, satisfy f1(x) = O( f2(x)) if and only if there are
C > 0 and δ > 0 such that | f1(x)| ≤ C f2(x) for all 0 < x < δ. For a continuously differentiable function
f : Rn × Rm → R, (x, y) 7→ f (x, y), the gradient is denoted by ∇ f (x, y). The gradient and the second
derivative of f with respect to a subset of variables, that is with respect to x, for example, are denoted
by ∇x f (x, y) and ∇2

xx f (x, y), respectively.

2. The DICE model

For the computation of the social cost of carbon, we consider the Dynamic Integrated model of
Climate and Economy (DICE). For a comprehensive introduction of the model and its parameters we
refer to the studies [4, 24]. Here, we only give a brief introduction of the dynamic equations and their
interpretation. The presentation follows the notation introduced in [24]. We focus on the parameters
defining the R-DICE2016 model, but the results derived in this paper also hold for the parameters
defining the DICE-2013R model. Following the R-DICE2016 setting we denote time in years by
t ∈ R≥0 so that

t = t0 + ∆ · i, (2.1)

with initial time t0 = 2015, a sample period ∆ = 5, and i ∈ N0. The DICE model is described through
the dynamics

M(i + 1) = ΦM M(i) + BM

(
σ(i)(1 − µ(i))A(i)K(i)γL(i)1−γ + ELand(i) + EPulse(i)

)
, (CAR)

T (i + 1) = ΦT T (i) + BT

(
F2× log2

(
MAT(i)

MAT,1750

)
+ FEX(i)

)
, (CLI)

K(i + 1) = ΦKK(i) + ∆
(

1
1 + a2 TAT(i)a3

) (
1 − θ1(i)µ(i)θ2

)
A(i)K(i)γL(i)1−γs(i), (CAP)

L(i + 1) = L(i)
(

1 + La

1 + L(i)

)ℓg
, (POP)
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A(i + 1) =
A(i)

1 − gA exp(−δA∆(i − 1))
, (TFP)

σ(i + 1) = σ(i) exp
(
−gσ(1 − δσ)∆(i−1)∆

)
, (EI)

modeling the carbon cycle (CAR), the climate (CLI), the capital (CAP), the population (POP), the
total factor productivity (TFP), and the emissions intensity (EI). In (CAR), M = [MAT,MUP,MLO]⊤ is
a three dimensional vector describing the average mass of carbon in the atmosphere, in the upper ocean,
and in the deep or lower ocean. The climate dynamics (CLI) capture the evolution of the temperature
T = [TAT,TLO]⊤ in the atmosphere (TAT) and in the lower ocean (TLO). The one dimensional state
K represents the economic output in the economic dynamics (CAP). For the world-wide population
L, the total factor productivity A, and the emissions intensity σ, the DICE model uses the Hassell
model [25], a logistic-function model, and a monotonically decreasing function, respectively, to capture
the dynamics.

The remaining time dependent quantities are described through the equations

θ1(i) =
pb

1000 · θ2
(1 − δpb)i−1 · σ(i), (2.2)

FEX(i) = f0 +min
{

f1 − f0,
f1 − f0

t f
(i − 1)

}
, (2.3)

ELand(i) = EL0 · (1 − δEL)i−1, (2.4)

and denoted as the mitigation effort θ1, the effect of greenhouse gases FEX, and the emissions due to
land use ELand.

Control inputs are the savings rate, s(i) ∈ [0, 1] for all i ∈ N0, and the mitigation rate, µ(i) ∈ [0, 1]
for all i ∈ N0. An additional parameter, EPulse(i) ∈ R, for all i ∈ N0, is used for the calculation of
the partial derivatives needed contained in the definition of the SCC, cf. equation (3.2), below. The
additional parameter EPulse(i) has an impact on the total emissions

E(i) = σ(i)(1 − µ(i))A(i)K(i)γL(i)1−γ + ELand(i) + EPulse(i) (2.5)

at time i ∈ N, which we can identify in (CAR). The parameter is not present in the baseline DICE
model where EPulse(i) = 0 for all i ∈ N0. We collect the states in the variable X, i.e.,

X(i) = {T (i),M(i),K(i), L(i), A(i), σ(i)}

and use X(0) = X0 to denote a fixed initial condition.
The control inputs are used to maximize the social welfare depending on the consumption and the

utility at time i ∈ N0 as

C(i) =
(

1
1 + a TAT(i)2

) (
1 − θ1(i)µ(i)θ2

)
A(i)K(i)γL(i)1−γ (1 − s(i)) +CPulse(i) (2.6)

U(i) = L(i)


(

1000C(i)
L(i)

)1−α
− 1

1 − α

 . (2.7)
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Here, CPulse(i) ∈ R, for all i ∈ N0, plays the same role as EPulse(i) in Equation (CAR), manipulating the
consumption in a specific year. Then, for a fixed horizon, N ∈ N, the social welfare is defined as

W :=
N−1∑
i=0

U(i)
(1 + ρ)∆i (2.8)

and the optimal control problem (2.9) which maximizes the social welfare and generates optimal
pathways is defined as

W∗ =max
s,µ

N−1∑
i=0

U(i)
(1 + ρ)∆i

subject to X(0) − X0 = 0
(CAR) − (EI), ∀ i = 0, . . . ,N − 1,
(2.2) − (2.4), ∀ i = 0, . . . ,N − 1,
s(i), µ(i) ∈ [0, 1] ∀ i = 0, . . . ,N − 1.

(2.9)

The optimal control problem (2.9) constitutes a nonlinear program (NLP). We use the notation W∗

to denote the optimal value with respect to CPulse( j) = EPulse( j) = 0, for all j ∈ {0, . . . ,N − 1}, i.e.,
W∗ denotes the nominal or baseline solution of (2.9). In the case that CPulse( j) , 0 or EPulse( j) ,
0 for j ∈ {0, . . . ,N − 1} is considered in (2.9), the optimal solution is denoted by W∗[CPulse( j)] or
W∗[EPulse( j)], respectively. Similarly, optimal pathways are denoted using ·∗. In this context, C∗(·),
C∗[CPulse( j)](·), and C∗[EPulse( j)](·) denote the optimal consumption pathways obtained through (2.9)
with CPulse( j) = EPulse( j) = 0, CPulse( j) , 0, and EPulse( j) , 0, respectively (in all cases we set
CPulse(i) = EPulse(i) = 0 for all i , j). Additionally, N ∈ N denotes a fixed horizon and s,µ ∈ RN define
a short-hand notation for

s =


s(0)
...

s(N − 1)

 and µ =


µ(0)
...

µ(N − 1)

 . (2.10)

For completeness, the parameters used in R-DICE2016, and in the simulations presented in this paper,
are reported in Appendix D.

3. Calculation of the social cost of carbon

In this section we take as a formal definition of the SCC at time j ∈ {0, . . . ,N−1}, a scaled version of
the change of the optimal consumption C∗( j) with respect to a change of the optimal emissions E∗( j).
Accordingly, the SCC in US dollars per kilogram of emitted CO2 is defined as the change −∂C

∗( j)
∂E∗( j) .

However, instead of kilograms of emitted CO2, it is common to express the SCC in terms of tonnes of
CO2, i.e., we define

SCC( j) = −1000
∂C∗( j)
∂E∗( j)

[
$

tCO2

]
, (3.1)

(see [24, Sec. 2.8]). Since E∗( j) is itself an outcome of the optimal control problem (2.9) rather
than an independent variable on which C∗( j) would depend, it is not immediately clear how this partial
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derivative has to be interpreted. Its meaning is as follows: We consider EPulse( j) ∈ R\{0} and EPulse(i) :=
0 for all i , j. Then, we solve the optimal control problem (2.9) in order to obtain C∗[EPulse( j)](·). The
partial derivative in (3.1) is then defined as

∂C∗( j)
∂E∗( j)

:= lim
EPulse( j)→0
EPulse( j),0

C∗[EPulse( j)]( j) −C∗( j)
EPulse( j)

. (3.2)

In the same way, partial derivatives with respect to other quantities occurring in the optimization can
be defined.

Under appropriate differentiability assumptions on E∗, C∗ and the optimal value function W∗,
Equation (3.1) can be rewritten as

SCC( j) = −1000
∂C∗( j)
∂W∗

·
∂W∗

∂E∗( j)
= −1000

∂W∗/∂E∗( j)
∂W∗/∂C∗( j)

(3.3)

used as the common definition in [4, Sec. 2.1], for example. Here, “[t]he numerator is the marginal
impact of emissions at time j on welfare, while the denominator is the marginal welfare value of a unit
of aggregate consumption in period j” [4, Section 2.1].

Since the optimal value function W∗ and the optimal total emissions E∗( j) and optimal consumptions
C∗( j) are only implicitly known as the optimal solutions of the optimal control problems (2.9), a direct
calculation of the social cost of carbon through (3.3) is not possible. Nevertheless, there are several
efficient ways to approximate (3.3).

3.1. Direct discretization based on the difference quotient

Using (3.2), we can approximate the quantity in (3.3) at a fixed time j ∈ {0, . . . ,N−1} by performing
three experiments to compute approximations

∂W∗

∂E∗( j)
≈

W∗[EPulse( j)] −W∗

EPulse( j)
and

∂W∗

∂C∗( j)
≈

W∗[CPulse( j)] −W∗

CPulse( j)
. (3.4)

To this end three optimal control problems can be solved.

1. A baseline solution of (2.9) that generates a welfare value W∗ corresponding to EPulse( j) = 0 and
CPulse( j) = 0 for all j = 0, . . . ,N − 1.

2. A second solution of (2.9) with a small non-zero perturbation on emissions at time j ∈ {0, . . . ,N−
1}; i.e., EPulse( j) , 0. This yields a second (optimal) welfare value W∗[EPulse( j)].

3. A third solution of (2.9) with a small non-zero perturbation on consumption at time j ∈ {0, . . . ,N−
1}, i.e., CPulse( j) , 0, that yields a third (optimal) welfare value W∗[CPulse( j)].

Then, the SCC in (3.3) can be approximated by

SCC( j) ≈ −1000
CPulse( j)
EPulse( j)

·
W∗[EPulse( j)] −W∗

W∗[CPulse( j)] −W∗
. (3.5)

Since (3.4) is a first order approximation of the derivative of W∗ with respect to E∗( j) and C∗( j),
respectively, the right-hand side of (3.5) converges with order O(CPulse( j) + EPulse( j)) to (3.3) for
CPulse( j) → 0 and EPulse( j) → 0 and under the assumption that the optimal control problem (2.9) can
be solved with arbitrary precision. To calculate SCC( j) for all j ∈ {0, . . . ,N − 1} using the
approximation (3.5), 2N + 1 optimal control problems need to be solved.
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Remark 1. The order of convergence follows from Taylor expansions of W∗ under the assumption that
W∗ is twice continuously differentiable with respect to E and C. In particular, the derivation of the
error term O(CPulse( j) + EPulse( j)) relies on

W∗[EPulse( j)] = W∗ +
∂W∗

∂E∗( j)
EPulse( j) + O(EPulse( j)2)

W∗[CPulse( j)] = W∗ +
∂W∗

∂C∗( j)
CPulse( j) + O(CPulse( j)2)

(3.6)

and is given in detail in Appendix C.

3.2. SCC calculation based on dual variables

Most modern NLP solvers, including IPOPT [26] and CONOPT [27], for example, return the
optimal Lagrange multipliers, i.e., the dual variables of all explicitly enforced equality and inequality
constraints in addition to the optimal solution W∗, s∗, µ∗, are calculated. This can be used to compute
the SCC directly via dual variables. All that is necessary to do is formulating (2.9) in a way such that
C(i) and E(i) are decision variables of the NLP. Using (2.5) allows a reformulation of (CAR) in terms
of

M(i + 1) = ΦM M(i) + BME(i). (3.7)

Instead of (2.9), we can thus consider the modified optimal control problem

W∗ = max
s,µ,C,E

N−1∑
i=0

U(i)
(1 + ρ)∆i

subject to X(0) − X0 = 0
(3.7), (CLI) − (EI), ∀ i = 0, . . . ,N − 1,
(2.2) – (2.4), ∀ i = 0, . . . ,N − 1,
(2.5) – (2.6), ∀ i = 0, . . . ,N − 1,
s(i), µ(i) ∈ [0, 1] ∀ i = 0, . . . ,N − 1,

(3.8)

where

C =


C(0)
...

C(N − 1)

 and E =


E(0)
...

E(N − 1)


are defined similar to (2.10). The optimal control problems (2.9) and (3.8) are identical in the sense
that the optimal solutions W∗, s∗, and µ∗ coincide. However, in (3.8) we avoid the substitution of (2.6)
and (2.5).

The main difference between (2.9) and (3.8) is that in the latter case, consumption and emissions
are treated as pseudo decision variables defined via explicit equality constraints, while in the former
case one substitutes C(i) and E(i) in the objective and the dynamics by the expressions given in (2.6)
and (2.5). The implementation of (3.8) in an NLP solver such as IPOPT yields values for the optimal
Lagrange multipliers of all constraints.
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To make this more precise, note that we can rewrite (3.8) in the form of the parameter dependent
optimization problem

f ∗(p) =max
x

f (x)

subject to hEi(x) = pEi , ∀ i = 0, . . . ,N − 1,
hCi(x) = pCi , ∀ i = 0, . . . ,N − 1,
k(x) = 0,
g(x) ≥ 0,

(3.9)

in the optimization variables x = {s,µ,C,E}. Here,

f (x) =
N−1∑
i=0

U(i)
(1 + ρ)∆i

denotes the objective function in the variables s,µ,C,E, and

hEi(x) = E(i) − (σ(i)(1 − µ(i))A(i)K(i)γL(i)1−γ + ELand(i)),

hCi(x) = C(i) −
((

1
1 + a TAT(i)2

) (
1 − θ1(i)µ(i)θ2

)
A(i)K(i)γL(i)1−γ (1 − s(i))

)
capture (2.5) and (2.6) for i = 0, . . . ,N − 1. The pulses EPulse and CPulse are included through the
parameter p = [pT

E pT
C]T ,

pE =


pE0
...

pEN−1

 and pC =


pC0
...

pCN−1

 ,
in the right-hand side, and the optimal value f ∗(·) depends on the selection of p. The equality and
inequality constraints x 7→ k(x) and x 7→ g(x) cover the remaining constraints of (3.8), i.e., X(0) = X0,
(3.7), (CLI)–(EI), (2.2)–(2.4), s(i), µ(i) ∈ [0, 1] for i ∈ {0, . . . ,N − 1} are encoded through appropriate
equality and inequality constraints in the decision variable x.

The Lagrangian corresponding to (3.9) with Lagrange multipliers (λE,λC, δ,κ) is defined as

L(x,λE,λC, δ,κ;p) = f (x) −

N−1∑
j=0

λEi(pEi − hEi(x)) + λCi(pCi − hCi(x))

 − δT k(x) − κT g(x). (3.10)

If x∗ and (λ∗E,λ
∗
C, δ

∗,κ∗) are an optimal solution-Lagrange multiplier pair (see [28, Sec. 5.1.3], for
example), then the optimal value function satisfies

f ∗(p) = L(x∗(p),λ∗E(p),λ∗C(p), δ∗(p),κ∗(p);p) = f (x∗(p)). (3.11)

Moreover, under appropriate conditions (second order sufficiency conditions [28, Prop. 3.3.2], for
example), the partial derivatives of the optimal value function in a neighborhood around p = 0 satisfy

∂ f ∗

∂pEi

(p) =
∂L

∂pEi

(x∗(p),λ∗E(p),λ∗C(p), δ∗(p),κ∗(p);p) = −λ∗Ei
(p),

∂ f ∗

∂pCi

(p) =
∂L

∂pCi

(x∗(p),λ∗E(p),λ∗C(p), δ∗(p),κ∗(p);p) = −λ∗Ci
(p),

(3.12)
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for all i ∈ {0, . . . ,N − 1}, according to [28].
While in the optimal value function, necessarily, the terms containing Lagrange multipliers vanish,

and only the objective function is important according to (3.11), in ∇p f ∗(p) in (3.12), it turns out that
the dependency of (x∗,λ∗E,λ

∗
C, δ

∗,κ∗) on p can be ignored when computing the gradient through the
Lagrangian (3.10). Thus, the Lagrange multipliers λE, λC are a measure of the sensitivity of the
objective function with respect to changes in the right-hand side of the equality constraints. In
economics, this sensitivity, i.e., the change in the objective function under a marginal change of a
constraint, is also referred to as the shadow price (see [29, 30], for example) and it provides an
interpretation of how valuable a specific commodity is.

These observations finally allow us to return to (3.3). If we recall the connection between (3.8) and
(3.9) we observe that

λ∗E j
= −

∂W∗

∂E∗( j)
, and λ∗C j

= −
∂W∗

∂C∗( j)
(3.13)

is satisfied for all j ∈ {0, . . . ,N − 1}. Thus, according to (3.3), the SCC is given by

SCC( j) = −1000
λ∗E j

λ∗C j

. (3.14)

Using (3.14), SCC( j) can be computed for all j ∈ {0, . . . ,N−1} by solving only a single optimization
problem (3.8). In addition, unlike (3.5), Equation (3.14) is not an approximation of (3.3) but an exact
expression. However, the pulse experiments might be more intuitive and from an interpretation point
of view easier to understand than the connection to the Lagrange multipliers.

3.3. SCC calculation based on the discounted damages stream

In this section we present a third way to compute the SCC. This is based on the net present value,
which, as described in the introduction, has been used in much of the climate economics research but
not in a consistent manner. Here, we will show that a time-varying Ramsey discount factor, accounting
for a time-varying growth rate of consumption, is required for consistency between calculating the
SCC as a discounted damages stream and calculating the SCC as a ratio of marginal prices. The result
relies on the assumption that (2.9) satisfies second order sufficiency conditions. The precise definition
and a corresponding result are reported in Theorem 2 in Appendix A.

Theorem 1. Consider the optimal control problem (2.9) and assume that (2.9) satisfies second order
sufficiency conditions. Then, the SCC at time j ∈ {0, . . . ,N − 1} is given by

SCC( j) = −1000
N−1∑
i=0

∂C∗(i)
∂E∗( j)

δ j,i, (3.15)

where the Ramsey discount factor between periods j and i ∈ {0, . . . ,N − 1} is defined as

δ j,i :=
1

(1 + ρ)∆(i− j) ·
1(

1 + g j,i)
)α , (3.16)

and the growth rate of per capita consumption up to period i is defined as

g j,i :=
C∗(i)/L(i)
C∗( j)/L( j)

− 1. (3.17)
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A proof of Theorem 1 is given in Appendix B. Based on Theorem 1, the SCC can again be
computed using a finite difference approximation. While δ j,i in (3.16) can be computed explicitly, the
partial derivative ∂C

∗(i)
∂E∗( j) in (3.15) needs to be approximated. We can thus perform two experiments to

approximate the SCC at time j ∈ {0, . . . ,N − 1} using Equation (3.15):

1. A baseline solution of (2.9) that generates a welfare value W∗ corresponding to EPulse(i) = 0 and
CPulse(i) = 0 for all i = 0, . . . ,N − 1 and additionally returns the nominal consumption pathway
C∗(i) for i = 0, . . . ,N − 1.

2. A second solution of (2.9) with a small non-zero perturbation on emissions at time j ∈ {0, . . . ,N−
1}, i.e., EPulse( j) , 0. This yields a second (optimal) welfare value W∗[EPulse( j)] and additionally
a second (optimal) consumption pathway C∗[EPulse( j)](i) for i = 0, . . . ,N − 1.

With the resulting pathways, we can calculate the discount rate δ j,i and can approximate the partial
derivatives, similar to (3.4), by (C∗[EPulse( j)](i) −C∗(i))/(EPulse( j)). The social cost of carbon can then
be approximated by

SCC( j) ≈ −
1000

EPulse( j)

N−1∑
i=0

(C∗[EPulse( j)](i) −C∗(i))δ j,i. (3.18)

Remark 2. Using the Taylor expansion

C∗[EPulse( j)](i) = C∗(i) +
∂C∗

∂E∗( j)
EPulse( j) + O(EPulse( j)2), (3.19)

i.e.,

∂C∗

∂E∗( j)
=

C∗[EPulse( j)](i) −C∗(i)
EPulse( j)

+ O(EPulse( j)),

it follows that (3.18) converges with order O(EPulse( j)) to SCC( j), similar to the first order convergence
of (3.5).

Similar to the method discussed in Section 3.1, the SCC calculation discussed in this section relies
on pulse experiments and on first order approximations. In particular, while the method in Section 3.1
relies on a first order approximation of ∂W∗

∂E∗( j) and ∂W∗
∂C∗( j) , the third method discussed here uses a first

order approximation of ∂C∗
∂E∗( j) , respectively. However, as discussed in Remarks 1 and 2, the order of

convergence of both methods is the same. The value of the formula in Theorem 1 is that the expression
(3.15) (or (3.18), respectively,) has a familiar interpretation as the net present value (NPV) of the
stream of damages due to an emissions pulse at time j and is conventionally expressed in units of
$/tCO2. Note, however, that in computing the NPV in (3.18), the discount factor δ j,i is time-varying
due to its dependence on the growth rate g(·) of per capita consumption; cf. (3.16). This marks a subtle,
but potentially interesting point of departure between (3.18) and a large body of literature which applies
the well-known, continuous-time Ramsey equation for the discount rate r = ρ + α · g for constant g, to
the discrete-time setting (see [31], for example).
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4. Numerical results

In this section we discuss three aspects in the calculation of the SCC using the DICE model. For the
calculations we use the standard setting of the DICE-2016R model (see [24, Table 2] for the parameter
selection) if not specified differently. For the numerical calculations we use the implementation [32].
While we use a horizon of N = 100, consistent with the parameters in DICE-2016R, we only focus on
the first time steps in the visualizations.

Before we focus on the calculation of the SCC, we recall one of its illustrative definitions and
visualizations used in the literature and highlight the anticipatory response of solutions of the optimal
control problem (2.9) when emission or consumption impulses are added at different time steps. In
the study by Nordhaus W [4] the SCC is illustrated as “the economic cost caused by an additional
ton of carbon dioxide emissions” which is usually illustrated by adding a pulse to the first time step
in the future [4, Figure 1]. In particular, with respect to [4, Figure 1], if time step 1 indicates the
initial conditions, an additional ton of carbon dioxide emissions is added at time step 2. Under these
assumptions, baseline emission and consumption pathways are compared with perturbed emission and
consumption pathways. The baseline emissions and consumption pathways using the DICE-2016R
model are visualized in Figure 1.

2050 2100 2150

0

100

200

2050 2100 2150

0

2000

4000

6000

Figure 1. Optimal (baseline) emissions and consumption pathways using the DICE-2016R
model.

By adding the additional tonne at the earliest possible time in the future, one might get the
misleading impression that a perturbation EPulse( j), j ∈ {0, . . . ,N − 1}, only affects emissions and
consumption at time steps k ∈ { j, . . . ,N − 1}. This is however not the case, as shown in Figure 2,
where a pulse is added at time j = 1, j = 10, and j = 20, respectively. In Figure 2 the differences
between the baseline solution, i.e., EPulse( j) = CPulse( j) = 0 for all j ∈ {0, . . . ,N − 1}, and perturbed
solutions with CPulse( j) = 1 for j = 1, j = 10, and j = 20 are shown. A pulse at time j ∈ {0, . . . ,N − 1}
has an impact on the whole pathways C[EPulse( j)](·) and E[EPulse( j)](·) due to the optimization
involved in their computation. This also becomes clear from the definition of the partial derivative
(3.2) used in the formula for the SCC: For computing this derivative, first the pulse is added, and then
the optimization is performed, implying that the optimizer is aware of the pulse at time j when
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Figure 2. Impact of an additional tonne of emissions at different time steps ( j ∈ {1, 10, 20})
with respect to the optimal emissions and consumption pathways. The graphs on the right
show a zoomed in section of the visualizations on the left. The illustrations on the right
highlight the anticipatory response when impulses are added. In particular, an impulse at
time j leads to a change in optimal emissions and consumption pathways both before and
after the pulse.

performing the optimization for the times i = 0, . . . , j − 1. In other words, if there is a change of
emissions in the future, which importantly by assumption is known, then the change is anticipated and
encoded in the optimal control problem (2.9). This explains the non-negligible differences in
C[CPulse(20)](i) and C(i) and in E[CPulse(i)](20) and E(i), respectively, for i < 20, for example.

As a next step, we show that all three methods discussed in Section 3 essentially lead to the same
SCC value. Figure 3 compares the three methods with each other, where for the pulse experiments the
values CPulse( j) = 1 and CPulse( j) = 1, j ∈ {0, . . . ,N − 1}, were used for the finite difference
approximations (which corresponds to a one tonne impulse in the implementation). On the scale on

2050 2100 2150 2200 2250

0
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1500

2050 2100 2150 2200 2250

-0.02

0

0.02

0.04

0.06

Figure 3. Comparison of the SCC calculation with three different methods discussed in
Section 3.
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the left of Figure 3, the SCC values are indistinguishable. However, the difference between the
Lagrange multiplier method and the finite difference approximation (3.5) and the formula (3.18)
derived in Theorem 1 appears to grow nonlinearly with j ∈ {0, . . . ,N − 1} as visualized in Figure 3 on
the right.
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Figure 4. Error in the calculation of the SCC. In general, the error changes linear with the
pulse. However, some values of the perturbations lead to numerical problems.

In Figure 4 the errors in the SCC calculation with respect to EPulse and CPulse are shown. In particular,
the impulses EPulse( j) and CPulse( j) are varied from 0.01 to 5 for different values of j ∈ {0, . . . ,N − 1}.
As expected from Remarks 1 and 2, the error grows linearly with EPulse and CPulse, respectively.

Remark 3. While in theory the SCCs computed with the three methods coincide, the precise numerical
values we obtain are sensitive with respect to EPulse and CPulse, the chosen optimization algorithms
and the parameter selection of the optimization algorithm. Figure 5 shows the same results as Figure
4 with the only difference that the horizon N = 100 has been replaced with N = 150. In this case
the parameter selection used in the IPOPT solver does not lead to reliable results for all impulse
perturbations.
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Figure 5. Error in the calculation of the SCC similar to Figure 4 with the only difference that
N = 100 has been replaced by N = 150. Because of the increased horizon, the numerical
results are not reliable.

As a final visualization we show the change of the SCC with respect to the discount rate in Figure
6, i.e., d

dρSCC( j) is calculated and shown in Figure 6. Here, d
dρSCC( j) is approximated through a finite

difference approximation

d
dρSCC( j) ≈ 1

∆ρ
(SCC[ρ + ∆ρ]( j) − SCC[ρ]( j)),
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Figure 6. Sensitivity of the SCC with respect to the discount rate.

where SCC[ρ + ∆ρ]( j) and SCC[ρ]( j) are calculated using the Lagrange multiplier method presented in
Section 3.2.

5. Conclusions

In this paper, we have investigated and compared three different methods for the computation of
the SCC in integrated assessment models. While our discussion is focused on the DICE model, it is
equally relevant for other models including PAGE and FUND, to obtain a characterization of the SCC
that is consistent among the literature. While the first two methods, which rely on perturbations of a
baseline model and on dual variables of an appropriately defined optimal control problem, respectively,
are commonly known and used, the third method relies on a novel formula stated in Theorem 1. The
novel formula allows a direct analysis of the impact of the discount factor in the calculation of the NPV
and the SCC through Eq (3.16), which subsequently provides insights in SCC values stemming from
different integrated assessment models. The consistency of the three methods is analyzed analytically
through first order approximations of Taylor polynomials and through dual variables and shadow price
interpretations. The theoretical findings are additionally confirmed through numerical simulations,
while it is also highlighted that an appropriate parameter selection in the optimal control formulation
and in the underlying solver is important. Future work will focus on the reliability of the three methods
to compute the SCC with respect to the horizon N and the parameters of the DICE model as discussed
in Remark 3.
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Appendix

A. Optimality conditions for constrained and parametric optimization

In this section we recapitulate optimality conditions for constrained optimization problems from
Bertsekas DP’ study [28], which are needed for the proof of the main Theorem 1 in Appendix B. In
particular, for the convenience of the reader, we rewrite results for minimization problems in terms of
maximization problems discussed in this paper. We consider optimization problems of the form

f ∗ =max
x

f (x)

subject to h(x) = 0,
g(x) ≤ 0,

(A.1)

where x ∈ Rn, f : Rn → R, h : Rn → Rm, and g : Rn → Rp for n,m, p ∈ N. With the Lagrange
multipliers λ ∈ Rm and µ ∈ Rp

≥0, the Lagrangian corresponding to (A.1) is defined as

L(x, λ, µ) = f (x) − λT h(x) − µT g(x).

Additionally, for x ∈ Rn we define

A(x) = {i ∈ {1, . . . , p} | gi(x) = 0}

as the corresponding active set with respect to the inequality constraints g.

Theorem 2 (Second order sufficiency conditions, [28, Prop. 3.3.2]). Consider the optimization
problem (A.1) and assume that f , h, and g are twice continuously differentiable. Let x∗ ∈ Rn, λ∗ ∈ Rm,
and µ∗ ∈ Rm satisfy

∇xL(x∗, λ∗, µ∗) = 0, h(x∗) = 0, g(x∗) ≤ 0,
µ∗j ≥ 0, ∀ j ∈ {1, . . . , p}
µ∗j = 0, ∀ j ∈ {1, . . . , p}\A(x∗)

yT∇2
xxL(x∗, λ∗, µ∗)y < 0

for all y , 0 such that

∇hi(x∗)T y = 0, ∀ i = 1, . . . ,m, ∇gi(x∗)T y = 0 ∀ i ∈ A(x∗).

Finally, assume that

µ∗j > 0 ∀ j ∈ A(x∗).

Then, x∗ is a strict local maximum of (A.1) and we say that (A.1) satisfies the second order sufficient
condition at x∗.

Additionally we will need the following result for parameter dependent optimization problems
where the parameter only appears in the objective function f : Rn × R→ R.
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Theorem 3 ( [33, Corollary 3.4.2]). Consider the parameter dependent optimization problem

f ∗(p) =max
x

f (x, p)

subject to h(x) = 0
g(x) ≤ 0

(A.2)

with Lagrangian

L(x, λ, µ, p) = f (x, p) − λT h(x) − µT g(x),

Lagrange multipliers λ, µ, and parameter p ∈ R in the objective function. Assume that the second
order sufficiency conditions of Theorem 2 are satisfied. Then, in a neighborhood around p = 0, it holds
that

f ∗(p) = L(x∗(p), λ∗(p), µ∗(p), p), (A.3)
∇p f ∗(p) = ∇p f (x∗(p), p), (A.4)
∇2

p f ∗(p) = ∇2
x f (x, p)∇px(p) + ∇2

p f (x(p), p). (A.5)

B. Proof of Theorem 1

To prove Theorem 1 we will make use of results in [33] and the results summarized in Appendix A.
Before we begin with the actual proof, we note that for

x =

[
s
µ

]
the optimization problems (2.9) can be written in the general form

f ∗(p) =max
x

f (x, p)

subject to g(x) ≤ 0,
(B.1)

where the equality constraints are eliminated, and the box constraints are captured in the function g.
Here, the parameter p represents the pulses EPulse( j) and CPulse( j), or equivalently, p represents a change
in C( j) and E( j), for j ∈ {0, . . . ,N − 1}. Since we only consider the perturbation with respect to C or
E and only with respect to one j ∈ {0, . . . ,N − 1} at a time, we assume that p is one dimensional. With
these definitions we can use Theorem 3 (without the function h) in the following. Additionally we
note that according to the definition of the functions involved in the optimal control problem (2.9), the
functions f and g are twice continuously differentiable.

Proof of Theorem 1: We begin the proof by rewriting the partial derivatives

∂W∗

∂C∗( j)
and

∂W∗

∂E∗( j)

for j ∈ {0, . . . ,N − 1}. To this end we define

ci = ci(C(i)) = 1000
C(i)
L(i)
, (B.2)
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which is a scaling of C(i) through the known parameter L(i), i ∈ {0, . . . ,N − 1}. Thus, the utility U
defined in (2.7) can be written as a function of ci,

U(ci) = L(i)
c1−α

i − 1
1 − α

. (B.3)

For the derivative we obtain

∂U
∂ci

(ci) = L(i)c−αi , (B.4)

and with respect to the original variables, it holds that

∂U
∂C(i)

(ci) =
∂U(ci)
∂ci

∂ci(C(i))
∂C(i)

= L(i)c−αi
1000
L(i)

= 1000c−αi . (B.5)

With Theorem 3, and in particular with (A.4) for p = EPulse( j), j ∈ {0, . . . ,N − 1}, it holds that

∂W∗

∂E∗( j)
=

∂

∂E∗( j)

N−1∑
i=0

(1 − ρ)−∆iU(c∗i )

 .
Using the notation

γi = (1 − ρ)−∆i

to shorten the expressions and the equation derived in Equation (B.5), the right-hand side can be written
in the form

∂W∗

∂E∗( j)
=

N−1∑
i=0

γi
∂U
∂E∗( j)

(c∗i ) =
N−1∑
i=0

γi
∂U(c∗i )
∂C(i)

∂C∗(i)
∂E( j)

=

N−1∑
i=0

γi1000(c∗i )−α
∂C∗(i)
∂E( j)

. (B.6)

Similarly, the application of Equation (A.3) in Theorem 3, where p represents a change in C( j),
j ∈ {0, . . . ,N − 1}, leads to the expression

∂W∗

∂C∗( j)
=

∂

∂C∗( j)

N−1∑
i=0

γiU(c∗i )

 = N−1∑
i=0

γi
∂U(c∗i )
∂C∗( j)

=

N−1∑
i=0

γi
∂U(c∗i )
∂C∗(i)

∂C∗(i)
∂C∗( j)

=

N−1∑
i=0

γi1000(c∗i )−α
∂C∗(i)
∂C∗( j)

.

(B.7)

As a next step, we derive Taylor expansions of the optimal value function W∗. In particular, for
parameters pi representing a change in C∗( j), (i.e., a pulse CPulse(i)) for i ∈ {0, . . . ,N − 1}, we derive
Taylor expansions in a neighborhood of pi = 0. Using the definition of ci in Equation (B.2), the
consumption (2.6) can be equivalently written as

ci =
103

L(i)

(
1

1 + a TAT(i)2

) (
1 − θ1(i)µ(i)θ2

)
A(i)K(i)γL(i)1−γ (1 − s(i)) + 103

L(i)CPulse(i). (B.8)
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Moreover, with the definition cPulse(i) = 103

L(i)CPulse(i) and ci = c̃i + cPulse(i), Equation (B.8) can be written
as

c̃i =
L(i)
103

(
1

1 + a TAT(i)2

) (
1 − θ1(i)µ(i)θ2

)
A(i)K(i)γL(i)1−γ (1 − s(i)) (B.9)

and the utility function can be written as

U[cPulse(i)](c̃i) = L(i)
(c̃i + cPulse(i))1−α − 1

1 − α
. (B.10)

Thus, instead of the parameter CPulse( j) in the consumption (2.6), we can use a scaled parameter directly
in the utility function (2.7), and the optimal value function satisfies

W∗[pi] = γiU(c̃∗i [pi] + pi) +
N∑

k=0
k,i

γkU(c̃∗k[pi])

with pi = cPulse(i). According to Theorem 3 (using Equation (A.5)), the optimal value function is twice
continuously differentiable with respect to the parameter pi, and using Theorem 3, Equation (A.4), the
Taylor approximation is given by

W∗[pi] = W∗[0] + γiL(i)(c̃∗i [0])−αpi + Ri(pi)

where

Ri(pi) =
1
2

d2

dp2
i

W∗[ξ]p2
i (B.11)

for ξ ∈ [0, pi]. For i, j ∈ {0, . . . ,N − 1}, we take specific perturbations pi , 0, p j , 0 with the property
W∗[pi] = W∗[p j] so that the Taylor approximation satisfies

W∗[0] + γiL(i)(c̃∗i [0])−αpi + Ri(pi) = W∗[0] + γ jL( j)(c̃∗j[0])−αp j + R j(p j). (B.12)

A p j satisfying (B.12) can be found for each sufficiently small pi because the terms in front of pi

and p j in (B.12) are not zero due to the assumption that (2.9) satisfies the second order sufficiency
conditions. In fact, γ jL( j)(c̃∗j[0])−α = 0 implies that s∗(i) = 1 or θ1(i)µ∗(i)θ2 = 1 (see Equation (B.9)).
If s∗(i) = 1, then µ∗(i) ∈ [0, 1] can be selected arbitrarily, and if θ1(i)µ∗(i)θ2 = 1, then s∗( j) ∈ [0, 1]
can be selected arbitrarily, i.e., the optimal solution of (2.9) is not characterized through a strict local
maximum, which contradicts Theorem 2. Under these assumptions stated above, p j is a function of pi,
and limpi→0 p j(pi) = 0 (since W∗ is continuously differentiable). Rearranging terms yields

p j

pi
=
γiL(i)(c̃∗i [0])−α

γ jL( j)(c̃∗j[0])−α
+

Ri(pi) − R j(p j)
piγ jL( j)(c̃∗j[0])−α

(B.13)

and allows us to investigate the limit pi → 0, pi , 0, (i.e., p j(pi)→ 0). We observe that

lim
pi→0

p j(pi)
pi
= lim

pi→0

p j(pi) − p j(0)
pi − 0

=
dp j

dpi
(0),

AIMS Environmental Science Volume 11, Issue 3, 471–495



492

and since the remainder in Equation (B.11) satisfies Ri(pi) = O(p2
i ), we obtain

lim
pi→0

1
pi

Ri(pi) = 0.

To be able to neglect the second term in the right-hand side of Equation (B.13), it is left to show
that 1

pi
R j(p j(pi)) converges to zero for pi → 0. With the definition of the remainder

R j(p j) = 1
2

d2

dp2
j
W∗

j [ξ]p j(pi)2 in Equation (B.11), the limit satisfies

lim
pi→0

(
1
pi

R j(p j(pi))
)
= lim

pi→0

1
2

d2

dp2
j

W∗[ξ(pi)]
p j(pi)

pi
p j(pi)


=

1
2

d2

dp2
j

W∗[ξ(0)]
dp j

dpi
(0)p j(0)

=
1
2

d2

dp2
j

W∗
dp j

dpi
(0) · 0 = 0.

Consequently, using Equation (B.4) together with c̃i = ci in the case pi = 0, it holds that

lim
pi→0

p j

pi
= γi− j

L(i)(c∗i )−α

L( j)(c∗j)−α
= γi− j

∂U
∂ci

(c∗i )
∂U
∂c j

(c∗j)
. (B.14)

To return to the original variables C(i), we recall the coordinate transformation (B.2), and use the
notation Pi = CPulse( j) = L(i)

103 pi.

With the above computations we are finally in the position to derive the partial derivative of C∗(i)
with respect to C∗( j) for i, j ∈ {0, . . . ,N − 1}. In particular, using the chain rule and the definition of
the derivative, it holds that

∂C∗(i)
∂C∗( j)

=

∂W∗
∂C∗( j)
∂W∗
∂C∗(i)

=
limP j→0

1
P j

(W∗[P j] −W∗
j )

limPi→0
1
Pi

(W∗[Pi] −W∗)
.

Using the relation between pi and Pi, this expression can be equivalently written as

∂C∗(i)
∂C∗( j)

=
limp j→0

103

L( j)p j
(W∗[p j] −W∗)

limpi→0
103

L(i)pi
(W∗[pi] −W∗)

= lim
pi→0

L(i)pi

L( j)p j

(W∗[p j] −W∗)
(W∗[pi] −W∗)

.

Finally, with the result derived in Equation (B.14), it holds that

∂C∗(i)
∂C∗( j)

= lim
pi→0

L(i)pi

L( j)p j(pi)
= γ j−i

(c∗j)
−α

(c∗i )−α
(B.15)

where the second term is equal to one since W∗[pi] = W∗[p j(pi)] according the assumption made at
the beginning of the derivation of (B.14) in (B.12).

To complete the proof we combine the results so far in the definition of SCC( j). With Equations
(B.6) and (B.7), the SCC can be expressed as

SCC( j) = −1000
∂W∗/∂E( j)
∂W∗/∂C( j)

= −1000

∑N−1
i=0 γi1000(c∗i )−α ∂C

∗(i)
∂E∗( j)∑N−1

i=0 γi1000(c∗i )−α ∂C
∗(i)

∂C∗( j)
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and which becomes

SCC( j) = −1000

∑N−1
i=0 γi(c∗i )−α ∂C

∗(i)
∂E∗( j)∑N−1

i=0 γi(c∗i )−αγ j−i
(c∗j)

−α

(c∗i )−α

through the identity (B.15). Finally, reformulating individual terms and recalling the definition of δ ji

in Theorem 1 completes the proof:

SCC( j) = −1000

∑N−1
i=0 γi(c∗i )−α ∂C

∗(i)
∂E∗( j)∑N−1

i=0 γ j(c∗j)−α
= −1000

N−1∑
i=0

γi− j
(c∗i )−α

(c∗j)−α
∂C∗(i)
∂E∗( j)

= −1000
N−1∑
i=0

∂C∗(i)
∂E∗( j)

δ ji.

□

C. Order of convergence

As a last result in this paper, we show that (3.5) converges with order O(CPulse( j) + EPulse( j)) to
SCC( j). Using the notation introduced in (3.4) and (3.5), the SCC satisfies

SCC( j) = −1000
∂W∗
∂E∗( j)
∂W∗
∂C∗( j)

= −1000
W∗[EPulse( j)]−W∗

EPulse( j) + ΦE(EPulse( j))
W∗[CPulse( j)]−W∗

CPulse( j) + ΦC(CPulse( j))
(C.1)

= −1000
CPulse( j)
EPulse( j)

·
W∗[EPulse( j)] −W∗

W∗[CPulse( j)] −W∗
− 1000Φ(EPulse( j),CPulse( j)) (C.2)

for unknown functions ΦE, ΦC, and Φ. However, according to the Taylor expansions in (3.6), it holds
that ΦE(EPulse( j)) = O(EPulse( j)) and ΦC(CPulse( j)) = O(CPulse( j)).

We investigate properties of the function Φ. To simplify the notation, we drop the index in the
derivations, i.e., we investigate the equation

W∗[E]−W∗

E + ΦE(E)
W∗[C]−W∗

C + ΦC(C)
=

C
E
·

W∗[E] −W∗

W∗[C] −W∗
+ Φ(E,C),

or equivalently

C
E

(W∗[E] −W∗) + EΦE(E)
(W∗[C] −W∗) +CΦC(C)

=
C
E

(W∗[E] −W∗) + E
C (W∗[C] −W∗)Φ(E,C)

W∗[C] −W∗
.

We further simplify the notation and define ∆W∗
E = W∗[E] − W∗ and ∆W∗

C = W∗[C] − W∗. Then,
multiplying by the denominator leads to the equation

∆W∗
C∆W∗

E + ∆W∗
CEΦE(E) = (∆W∗

C +CΦC(C))∆W∗
E +

E
C (∆W∗

C +CΦC(C))∆W∗
CΦ(E,C)

= ∆W∗
C∆W∗

E +CΦC(C)∆W∗
E +

E
C (∆W∗

C +CΦC(C))∆W∗
CΦ(E,C).

After canceling and rearranging terms, we are left with the expression:

∆W∗
CEΦE(E) −CΦC(C)∆W∗

E =
E
C (∆W∗

C +CΦC(C))∆W∗
CΦ(E,C).
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Since W∗ is differentiable, i.e., the limits

∂W∗

∂E∗( j)
= lim

EPulse( j)→0
EPulse( j),0

W∗[EPulse( j)] −W∗

EPulse( j)
,

∂W∗

∂C∗( j)
= lim

CPulse( j)→0
CPulse( j),0

W∗[CPulse( j)] −W∗

CPulse( j)
(C.3)

exist, it holds that ∆W∗
E = O(EPulse( j)) and ∆W∗

C = O(CPulse( j)). Using these properties in the last
equation simplifies the expression to

O(C)EO(E) +CO(C)O(E) = E
C (O(C) +CO(C))O(C)Φ(E,C)

or equivalently

O(CE2) + O(C2E) = (O(CE) + O(C2E))Φ(E,C) = O(CE)Φ(E,C).

In particular, Φ satisfies Φ(E,C) = O(C + E), proving the assertion.

D. Parameters of the DICE model

In this section we report the parameters used to define the R-DICE2016 model. The parameters in
Table 1 are taken from [24, Appendix A], which additionally contains the parameters for R-DICE2013.
Moreover, the initial conditions used to define X0 in (3.9) are defined as

TAT(0)
TLO(0)
K(0)

 =


0.85
0.0068

223

 ,


MAT(0)
MUP(0)
MLO(0)

 =


851
460

1740

 , σ0 =
e0

q0(1 − µ0)
=

35.85
105.5(1 − 0.03)

.
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Table 1. Default parameter values for DICE 2016.

Parameter Value Unit
∆ 5 years
t0 2015 year
N 100 time steps
µ0 0.03

Climate diffusion parameters
ϕ11 0.8718
ϕ12 0.0088
ϕ21 0.025
ϕ22 0.975

Carbon cycle diffusion parameters
ζ11 0.88
ζ12 0.196
ζ21 0.12
ζ22 0.797
ζ23 0.001465
ζ32 0.007
ζ33 0.99853488

Other geophysical parameters
η 3.6813 W/m2

ξ1 0.1005
ξ2 12/44 GtC/GtCO2

MAT,1750 588 GtC
f0 0.5 W/m2

f1 1.0 W/m2

t f 17 time steps

Parameter Value Unit
EL0 2.6 GtCO2/yr
δEL 0.115

Socioeconomic parameters
γ 0.3
θ2 2.6 n/a
a2 0.00236
a3 2 n/a
δK 0.1
α 1.45
ρ 0.015
L0 7403 millions people
La 11500 millions people
ℓg 0.134
A0 5.115
ga 0.076
δA 0.005
σ0 0.3503 GtC / trillions 2010USD

gσ 0.0152
δσ 0.001
pb 550 2010USD/tCO2

δpb 0.025
scale1 0.030245527 n/a
scale2 10993.704 2010USD
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