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Abstract: In this article, we study the autocorrelation function (ACF), which is a crucial element in
time series analysis. We compare the distribution of the ACF, both from a theoretical and empirical
point of view. We focus on white noise processes (WN), i.e., uncorrelated, centered, and identically
distributed variables, whose ACFs are supposed to be asymptotically independent and converge
towards the same normal distribution. But, the study of the sum of the sample ACF contradicts this
property. Thus, our findings reveal a deviation of the sample ACF from normality beyond a specific
lag. Note that this phenomenon is observed for white noise of varying lengths, and evenforn the
residuals of an ARMA(p, q) model. This discovery challenges traditional assumptions of normality
in time series modeling. Indeed, when modeling a time series, the crucial step is to validate the
estimated model by checking that the associated residuals form white noise. In this study, we show
that the widely used portmanteau tests are not completely accurate. Box–Pierce appears to be too
conservative, whereas Ljung–Box is too liberal. We suggest an alternative method based on the ACF
for establishing the reliability of the portmanteau test and the validity of the estimated model. We
illustrate our methodology using money stock data in the USA.

Keywords: autocorrelation function (ACF); time series analysis; white noise; normality tests; Ljung–
Box test; Box–Pierce test; ARMA(p,q); residuals

1. Introduction

Time series data, characterized by their sequential nature, appear in many application
domains, ranging from economics [1–5] and finance [6] or medicine [7–9] to climate model-
ing [10,11]. In this field, understanding and extracting meaningful information from data
depends on our ability to manage their inherent temporal dependencies. The autocorrela-
tion function (ACF) appears to be essential for this purpose [12–23]. Indeed, the ACF is
a statistical measure that quantifies the relationship between a time series and its lagged
versions at different time intervals.

For successive uncorrelated observations, such as a white noise (WN), the ACF is zero,
and for observations that are no longer correlated if their lag-difference is larger than q, as it
is the case in moving average models, called MA(q), then ACF cancels after lag q. Thus, the
ACF can be used to identify these underlying models. But, the importance of ACF in time
series modeling goes beyond the identification of white noise or MA(q) processes. It can also
detect non-stationary components that structure the series, such as trends [24–26] or cyclical
behavior [27]. Moreover ACFs are also useful to detect a long memory behavior [28–30].

Information 2024, 15, 449. https://doi.org/10.3390/info15080449 https://www.mdpi.com/journal/information

https://doi.org/10.3390/info15080449
https://doi.org/10.3390/info15080449
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/information
https://www.mdpi.com
https://orcid.org/0000-0003-0897-8663
https://orcid.org/0000-0003-2392-1120
https://orcid.org/0009-0009-1620-5346
https://orcid.org/0000-0001-7038-7106
https://orcid.org/0000-0003-4109-0690
https://doi.org/10.3390/info15080449
https://www.mdpi.com/journal/information
https://www.mdpi.com/article/10.3390/info15080449?type=check_update&version=2


Information 2024, 15, 449 2 of 26

And, last but not least, ACF plays a crucial role in time series modeling, since the validation
of the estimated model depends on the study of its residuals, which is achieved thanks to
their ACF. Knowledge of the empirical ACF distribution is therefore the basis for statistical
inference in time series analysis. Indeed, the decision rules used in practice when modeling
time series are based on the expected behavior of ACFs under different models [13,14].

In this paper, we focus on white noise processes whose ACFs are supposed to be
asymptotically independent and to converge towards the same normal distribution. But,
the study of the sum of the sample ACF contradicts this property. Indeed, whatever
the observed time series, the sum of all the sample ACFs is a constant, equal to − 1

2 [17].
Numerous research studies have underscored the significance of Hassani’s − 1

2 theorem
for practical applications and its integration into time series analysis and model develop-
ment [31–34]. The implications of this remarkable consistency are profound, particularly
for the fields of time series model building and analysis [35–37]. For a selected recent work
highlighting the importance of considering the sample ACF in analysis, especially in the
context of Hassani’s − 1

2 theorem, see [38–40].
In this paper, we explore the theoretical and empirical properties of ACF and its

cumulative sums (SACF). Our objective is to highlight the disparities that exist between
the theoretical expectations and the empirical realities of these statistical measures. Our
findings reveal a deviation of the sample ACF from normality beyond a specific lag. Note
that this phenomenon is observed for white noise of varying lengths, with WN that are
either Gaussian or not. Moreover, even the residuals of an ARMA(p, q) model show the
same behavior. This discovery challenges traditional assumptions of ACF normality in
time series modeling. Indeed, when modeling a time series, the crucial step is to validate
the estimated model by checking that the associated residuals form white noise, which is
achieved by applying a portmanteau test (Box–Pierce or Ljung–Box tests), which is based
on the independence and standard normality of the ACF [12,19].

Then, this study opens the way for re-evaluating and refining existing methodologies,
in particular the widely used Box–Pierce and Ljung–Box tests. We employ both simulated
data and real-world time series data to validate and emphasize the practical relevance of
the results obtained of our study. We aim to contribute valuable insights that enhance the
understanding and application of ACF in the field of time series analysis.

The paper is organized as follows. In Section 2, we describe the methods usually
used to model time series. Within this section, we define the autocorrelation function, both
theoretical and empirical; we explain the asymptotic behavior of its estimators in a WN
framework and its theoretical implication for the SACF; and we recall the widely used
portmanteau tests. In Section 3, we recall Hassani’s − 1

2 theorem and derive contradictions
with the previous results given in Section 2, with questions for the normality of the sample
ACFs themselves. In Section 4, we simulate WN, either Gaussian or exponential, and we
analyze the normality of both their ACF and SACFas a function of the series length and
number of simulations. Normality is tested using the Shapiro test, and the Kolmogorov–
Smirnov test is used when the theoretical distribution can be specified. The deviation from
normality is highlighted mainly because of the flagrant non-normality of the SACFs. We
also adopt a point of view that is consistent with practical analyses, since we additionally
test the fit of successive ACFs with the Gaussian N

(
0, 1

n

)
distribution, where n is the length

of the series under consideration. This property is the basis of portmanteau tests and must
be verified. Since the reliability of the portmanteau tests appears to be related to the good
normality properties of the successive SACF and ACF, it seems important to check them
on the residuals of the estimated model before applying the portmanteau validation tests.
In Section 5, we simulate ARIMA(0,2,2) processes and estimate the simulated series using a
more restrictive model—that is, an ARIMA(0,2,0)—to highlight the effects of mis-specifying
parameter q. We illustrate this procedure in the last section using a real dataset: money
stock data in USA.
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Finally, in a Supplementary File, we consider WN with a shorter length n and the
residuals of more complex ARIMA(p, d, q) processes. We simulate ARIMA(p, d, q) processes,
estimate these simulations, and study their residuals. We distinguish the case where the
orders p′, d′, q′ of the estimated model are well-specified (equal to the convenient p, d, q
parameters used for simulations) from the case where they are not. For these residuals
of the simulations, we repeat the analyses introduced in Section 4. When the model is
well-specified or mis-specified, but with a more general model (p′ ≥ p, d′ ≥ d, q′ ≥ q), we
obtain results very similar to those obtained for white noise. In the case of a too restrictive
model specification, it is striking that the non-normality of the successive ACFs is a good
signal of the inaccurate model specification. All the functions are implemented using the R
language. The Supplementary Materials are available at the following web site: www.i2m.
univ-amu.fr/perso/manuela.royer-carenzi/AnnexesR.SacfWN/SacfWN.html (accessed
on 15 July 2024).

2. Theoretical Background
2.1. Autocorrelation Functions (ACF)

For any square-integrable stationary process (Zt)t, we can consider its theoretical
autocorrelation function (theoretical ACF) as follows:

ρ(h) = cor(Zt+h, Zt) , h ∈ Z. (1)

Note that, by definition, we have ρ(0) = 1. The most important example of stationary
time series is white noise (WN), denoted by (Et)t and defined as independent and identi-
cally distributed variables, with IE(Et) = 0 and IE(E2

t ) < ∞. Then, its theoretical ACF is
null for any lag h ̸= 0.

For a given realization (z1, · · · , zn) and a fixed value of h = 1, · · · , n − 1, let us define
the sample ACF as follows:

ρ̂(h) =
∑n−h

j=1 (zj+h − z) (zj − z)

∑n
j=1(zj − z)2 , h = 1, · · · , n − 1 . (2)

Once again, by definition, we have ρ̂(0) = 1. Note that ρ̂(h) can be computed for any
time series, whereas the theoretical ACFs ρ(h) are only defined for stationary series. We also
consider the associated estimator Ξ̂(h), called the ACF estimator, which is defined in the
same way as in Equation (2), by replacing the observed values zj by the random variables
Zj. Many time series analysis tools are based on the following fundamental property:

Theorem 1. Let Zt = Et be white noise with IE(E4
t ) < ∞. Then,

√
n t(Ξ̂(1), Ξ̂(2), · · · , Ξ̂(H))

L−−−−−→
n→+∞

NH(
t(0, · · · , 0), IdH) ,

where tv denotes the transpose of vector v, L denotes the convergence in the distribution, and IdH is
the identity H × H matrix.

Theorem 1 is a particular case of Theorems 7.2.1. or 7.2.2 [13]. In other words, the vector
of the ACF estimators is asymptotically multivariate Gaussian. Let us denote

(
AH(µ, Σ)

)
as the property that

√
n t(Ξ̂(1), Ξ̂(2), · · · , Ξ̂(H)) is asymptotically multivariate Gaussian

with expectation the H-vector µ and covariance matrix Σ, symmetric and definite-positive.

www.i2m.univ-amu.fr/perso/manuela.royer-carenzi/AnnexesR.SacfWN/SacfWN.html
www.i2m.univ-amu.fr/perso/manuela.royer-carenzi/AnnexesR.SacfWN/SacfWN.html
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2.2. Sum of Sample Autocorrelation Functions (SACF)

Let us define the partial sum of the sample ACF values (Sacf) as follows:

Sac f (H) =
H

∑
h=1

ρ̂(h) , (3)

and in the same way, we will call SACFand denote SACF(H) as the sum of the associated
sample ACF estimators. At any lag H, the associated SACF is a linear transformation
of the random vector t(Ξ̂(1), Ξ̂(2), · · · , Ξ̂(H)). It is well-known that any linear transfor-
mation of a multivariate Gaussian vector remains Gaussian. More precisely, we have the
following proposition.

Proposition 1. Let Y = t(Y1, · · · , Yr) be a multivariate Gaussian vector with distribution
Nr(µ, Σ), where µ is a r vector and Σ is a r × r matrix, symmetric and definite-positive.

Then, for any matrix A in Rp×r, we have the following:

A t(Y1, · · · , Yr) ∼ Np(A µ , A Σ tA) .

Note that because Σ is symmetric and definite-positive, it implies that A Σ tA is also
symmetric and definite-positive. Since the vector of the H first SACF t(SACF(1), SACF(2), · · · ,
SACF(H)) is a linear transformation of the random vector t(Ξ(1), Ξ(2), · · · , Ξ(H)) with a
matrix AH being a squared and a unitary lower-triangular matrix, we obtain the follow-
ing theorem:

Theorem 2. Let Zt = Et be white noise with IE(E4
t ) < ∞. Then,

√
n t(SACF(1), SACF(2), · · · , SACF(H))

L−−−−−→
n→+∞

NH
(t(0, · · · , 0), tWH

)
,

where the diagonal terms of WH are wi,i = i, and the non-diagonal terms are wi,j = min(i, j).

Let us denote by
(
SH(µ, Σ)

)
as the property that

√
n t(SACF(1), SACF(2), · · · , SACF(H))

is asymptotically multivariate Gaussian, with the expectation that the H vector µ and co-
variance matrix Σ are symmetric and definite-positive.

2.3. Diagnosis of White Noise (WN)

Based on Theorem 1, we determine that the random variables Ξ̂(1), Ξ̂(2), · · · , Ξ̂(H)
are asymptotically independent and identically distributed as Gaussian random variables
with a zero mean and variance 1/n. Consequently, for any fixed lag h = 1, · · · , H, for large
n, the sample autocorrelation function

√
n ρ̂(h) is expected to be a realization of a standard

Gaussian function that is to be valued in the interval of [−1.96, 1.96], with 95% coverage.
Thus, sample autocorrelation functions (ACF) are used to assess white noise.

But, even when the underlying process is white noise, several autocorrelations among
ρ̂(1), · · · , ρ̂(H) may lie out of the interval [−1.96/

√
n, 1.96/

√
n]. The asymptotic inde-

pendence property for variables Ξ̂(h) implies that when the sample size n is large the
number of observed autocorrelation functions out of this interval must behave as having a
binomial B(H, 0.05) distribution. We can take into account the multiple testing paradigm
by incorporating the binomial exact test and by incorporating a global testing procedure
using Sidak’s correction [25].
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Another way to summarize these multiple tests is to consider either Box–Pierce [12] or
Ljung–Box statistics [19]:

QBP = n
n

∑
h=1

(
Ξ̂(h)

)2 , (4)

QLB = n (n + 2)
n

∑
h=1

1
n − h

(
Ξ̂(h)

)2 . (5)

The theoretical asymptotical distribution of these statistics is derived from the follow-
ing property of multivariate Gaussian distributions.

Proposition 2. Let Y = t(Y1, · · · , YH) be a multivariate Gaussian function with a distribution
of NH

(
µ, Σ

)
, where µ is an H vector of expectations and Σ is an H × H matrix that is symmetric

and definite-positive. Then, for any real symmetric H × H matrix A with rank r:

1. If A Σ A = A, then tY A Y is χ2
s (λ) distributed, with s = r and λ = tµ A µ.

2. If tY A Y is χ2
s (λ) distributed, we have A Σ A = A, s = r and λ = tµ A µ.

Based on Theorem 1 and Proposition 2, the QBP(H) statistic is supposed to behave as a
χ2

H distribution when the underlying process is a WN. Actually, Box–Pierce and Ljung–Box
tests are widely used in practice when modeling time series using ARIMA(p, d, q) models.
Indeed, in the Box–Jenkins procedure, the estimated model is checked by applying Box–
Pierce and Ljung–Box tests to the residuals of the model. In this case, the QBP(H) statistic
is supposed to behave as a χ2

H−p−q distribution [41].

3. Theoretical Results
3.1. Contradiction with Theorems 1 and 2

If we apply the convergence in Theorem 2 with H = n − 1, we obtain the following:√
n

n − 1
SACF(n − 1) ∼ AN (0, 1) (6)

where the symbol ∼ stands for "follows the distribution", and AN means "asymptotically
Gaussian". But, it is proved that [17] if n ≥ 2,

Sac f (n − 1) =
1
2

, (7)

for any stationary time series, in particular for WN. Note that this result holds true for
any time series with n ≥ 2, even for the non-stationary ones. Since a Gaussian variable
N (µ, σ2) can be equal to the constant value − 1

2 only if µ = − 1
2 and in the degenerate case

σ2 = 0, then Equations (6) and (7) appear to be contradictory. As a consequence, Theorem 2
does not hold for H = n − 1, and neither does Theorem 1. Thus, (An−1(0, In−1)) does not
hold.

However, let us suppose that (An−2(0, In−2)) is true. In particular,
√

n t(Ξ̂(1), Ξ̂(2),
· · · , Ξ̂(n − 2)) is supposed to be asymptotically Gaussian multivariate. Since from Equa-
tion (7), we have:

Ξ̂(n − 1) =
1
2
−

n−2

∑
h=1

Ξ̂(h) , (8)

then based on the definition of Gaussian vectors,
√

n t(Ξ̂(1), Ξ̂(2), · · · , Ξ̂(n − 1)) would
also have an asymptotic multivariate distribution. More precisely,

√
n t(Ξ̂(1), Ξ̂(2), · · · , Ξ̂(n − 2), Ξ̂(n − 1)) ∼ ANn−1

(
t(0, · · · , 0,−1

2
); Σ

)
,
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with

Σ =



1 0 · · · 0 −1
0 1 · · · 0 −1
...

...
...

...
...

...
0 0 · · · 1 −1
−1 −1 · · · −1 n − 2


.

But this matrix is not definite positive, since (1, · · · , 1) Σ t(1, · · · , 1) = 0.
Thus, (An−2(0, In−2)) is not true either.

Actually, Theorem 1, being an asymptotical result, needs H to remain lower than n − 1
so that H

n converges to 0. For instance, several authors recommend to take a sufficiently
long time series (n ≥ 40) and to consider only H ≤

√
n [42]. Therefore, (AH(0, IH))

should be true until H ≤
√

n. And so Theorem 2 should also hold for H ≤
√

n.

3.2. Asymptotic Normality

In this paper, we wonder if
(
An−1(µ, Σ)

)
can be true, even for a non-zero vector µ or

for a covariance matrix Σ that is not equal to the identity matrix. Let us denote µj as the
coordinates of µ; σ2

j as the diagonal terms of Σ; and ci,j as the non-diagonal terms. Based
on Equation (7) we would have the following:

− 1
2

=
n−1

∑
j=1

µj

0 =
n−1

∑
j=1

σ2
j + 2

n−2

∑
i=1

n−1

∑
j=i+1

ci,j . (9)

Since at least one variance σ2
j is positive (at least for j ≤

√
n), then at least one

covariance is not equal to zero. Consequently, Σ is not diagonal. In other words, the sample
ACFs are correlated, which is well-known from Hassani’s result (7). But Equation (9) also
implies that (1, · · · , 1) Σ t(1, · · · , 1) = 0, which means that the covariance matrix Σ is not
definite positive. Then,

(
An−1(µ, Σ)

)
cannot be true, whatever µ and Σ.

Furthermore, let us suppose that
(
An−2(µ, Σ)

)
is true, where we denote µj tas he

expectation coordinates, ci,j as the terms of the covariance matrix Σ, and σ2
j = cj,j as

the diagonal terms. In other words,
√

n t(Ξ̂(1), Ξ̂(2), · · · , Ξ̂(n − 2)) is supposed to be
asymptotically Gaussian multivariate. Based on Equation (8) and based on the defini-
tion of Gaussian vectors,

√
n t(Ξ̂(1), Ξ̂(2), · · · , Ξ̂(n − 1)) would also have an asymptotic

multivariate distribution. More precisely,

√
n t(Ξ̂(1), Ξ̂(2), · · · , Ξ̂(n − 2), Ξ̂(n − 1)) ∼ ANn−1

(
t(µ,−1

2
−

n−2

∑
h=1

µh); Σ′
)

,

with σ2′
n−1 =

n−2

∑
j=1

σ2
j + 2

n−3

∑
i=1

n−2

∑
j=i+1

ci,j,

and for i, j < n − 1, c′n−1,j =
n−2

∑
h=1

ch,j and c′i,n−1 =
n−2

∑
h=1

ci,h.
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But matrix Σ′ is not definite positive, since the following holds true:

(1, · · · , 1) Σ′ t(1, · · · , 1) = 2 σ2′
n−1 −

n−2

∑
j=1

c′n−1,j −
n−2

∑
i=1

c′i,n−1

= 2
n−2

∑
i,j=1

ci,j − 2
n−2

∑
i,j=1

ci,j

= 0 .

Thus,
(
An−2(µ, Σ)

)
is not true either.

In this paper, we investigate the extent to which the property
(
AH(µ, Σ)

)
is true,

which has implications for the distribution of the associated SACF.

4. Simulation Results for WN

We simulate a white noise series to investigate the lag after which the distribution of
the sample ACF and of the SACF no longer follow a normal distribution. Note that it is
sufficient to consider standard white noise. Indeed, based on the definitions of theoretical
and sample ACFs given in Equations (1) and (2), the underlying process (Zt)t can be divided
by its standard deviation without modifying the ACF values. When modeling, it is common
to assume that the underlying white noise is Gaussian due to its favorable mathematical
properties and simplicity. But in practice, the reality of the data may often present us with
other distributions. Since we want to assess the persistence of the estimators’ normality,
it makes sense to simulate white noise that lacks the typical properties of Gaussian white
noise (symmetry, central peak). We have considered an example of a Gamma distribution,
i.e., a centered exponential distribution. Actually, we run NS simulations of standard
Gaussian WN and NS simulations of exponential WN of length n = 500, with either
NS = 200 or NS = 5000. For every simulation, we compute sample ACF and SACF values
for h = 1, · · · n − 1. We use the Shapiro–Wilk’s test [43] to assess for the normality. We also
ran Lilliefors (composite Kolmogorov–Smirnov) normality test [44], which provided very
similar results. Note that Shapiro and Lilliefors tests focus on the normality behavior of the
sample, whatever the expectation and the variance of the underlying distribution. When
the expectation µ and the variance σ2 of the Gaussian distribution are explicit, we also run
Kolmogorov–Smirnov’s test [45,46] to test the adequacy of the sample with the distribution
N (µ, σ2).

4.1. Check for the Normality of Ξ̂(h) at a Fixed Lag h

At a given lag h, using the Kolmogorov–Smirnov test, we test for the adequacy of Ξ̂(h)
with the Gaussian distribution N

(
0, 1

n

)
, and we also merely test for its normality using the

Shapiro–Wilk test. Figure 1 displays the p values provided by the Kolmogorov–Smirnov
test when applied to either NS = 200 or NS = 5000 simulations of WN with length n = 500.
Figure 2 gives the p-values provided by the Shapiro–Wilk. Note that the same tests have
also been conducting using WN with length n = 100, and the results were very similar, as
shown in the Supplementary Materials.
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Figure 1. p-values when testing for the adequacy of the NS values of ρ̂(h) with N
(

0, 1
n

)
, for any

fixed lag h varying from 1 to n − 1. The involved normality test is Kolmogorov–Smirnov’s. The
left column concerns Gaussian WN, whereas the right one deals with the exponential WN process.
The length of the simulated WN process is n = 500. In the upper figures, the number of simulated
WN processes is NS = 200, whereas it is NS = 5000 in the bottom. The red-dotted horizontal line
represents 5%, while the blue-dotted vertical line represents h =

√
n.

Figure 2. p-values when testing for the normality of the NS values of ρ̂(h) for any fixed lag h varying
from 1 to n − 1. The involved normality test is Shapiro–Wilk’s. The left column concerns Gaussian
WN, whereas the right one deals with the exponential WN process. The length of the simulated WN
process is n = 500. In the upper figures, the number of simulated WN processes is NS = 200, whereas
it is NS = 5000 in the bottom. The red-dotted horizontal line represents 5%, while the blue-dotted
vertical line represents h =

√
n.
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The results in the top line of Figure 1 show that Ξ̂(h) behaves roughly like a Gaussian
distribution N

(
0, 1

n

)
. This was expected based on Theorem 1, even for a lag h that was

much greater than
√

n. But the graphics in the bottom line show that Ξ̂(h) deviates from this
specific normal distribution when we conduct the normality tests on more simulations. We
recall that Theorem 1 provides an asymptotic result so that Ξ̂(h) approximately follow the
N
(

0, 1
n

)
distribution. Its slight departure from this distribution is more easily detectable

with a great number of simulations, and it is even more pronounced for exponential WN,
meaning that the Ξ̂(h) distribution may deviate from the N

(
0, 1

n

)
theoretical distribution

to a greater extent.
Nevertheless, if we focus on the Gaussian behavior of the ACF estimators Ξ̂(h),

Figure 2 shows that the normality behavior is fairly strong, especially for Gaussian WN,
since Shapiro nearly never rejects the normality hypothesis, whatever the lag h < n − 2,
even with a great number of simulations NS = 5000. But for exponential WN, the normality
property is quickly lost when the number of simulations increases.

Based on Figures 1 and 2, we deduce that the lack of adequacy of Ξ̂(h) from the
distribution N

(
0, 1

n

)
might come from its asymptotic property (explaining why it is more

pronounced for exponential WN), but it appears that it also comes from a bad specification
of the expectation and the variance (since the normality behavior is conserved, at least for
Gaussian noises). Actually, Ξ̂(h) may converge to a Gaussian distribution, but with either
µ ̸= 0 or σ2 ̸= 1

n . Thus we obtain in particular that (AH(0, IH)) is not true, but here, we

have not obtained a contradiction with
(
AH(µ, Σ)

)
, which has to be explored.

4.2. Check for
(
SH(µ, Σ)

)
At a given lag H, we test for the normality of the NS values of SACF(H). Figure 3

displays the p-values provided by the Shapiro–Wilk test when applied to either NS = 200
or NS = 5000 simulations of WN with a length of n = 500. Note that the same tests have
also been conducted on WN with a length of n = 100, and the results were very similar.

In Figure 3, we observe that the sum of sample ACFs departs from normality for
almost all the lags H, except maybe for the first lags H, when the white noise is Gaussian
and/or when the number of simulations remains low. Of course, the Kolmogorov–Smirnov
test confirmed the departure of SACF(H) from N

(
0, H

n

)
at any lag, whatever the nature

of the WN (Gaussian or exponential) and even for a low number of simulations. The
departure of SACF(H) from N

(
0, H

n

)
can be explained by the previous finding that Ξ̂(h)

do not converge to a Gaussian distribution with µ = 0 and σ2 = 1
n .

But Figure 3 tells us that none of the variables SACF(H) are Gaussian, so
(
SH(µ, Σ)

)
can not be true, whatever µ and Σ. Thus, even the normality of the vector (Ξ̂(1), · · · , Ξ̂(H))

is called into question. Indeed, if
(
AH(µ, Σ)

)
were true, then

(
SH(µ, Σ)

)
would also be.

Consequently, based on Figures 2 and 3, we conclude that at a fixed lag, h, Ξ̂(h) is
roughly Gaussian, with µ ≃ 0 or σ2 ≃ 1

n . But the vector (Ξ̂(1), · · · , Ξ̂(H)) is not a Gaussian

vector. In other words,
(
AH(µ, Σ)

)
is not satisfied. Hence, the reliability of the Box–Pierce

and Ljung–Box tests is questioned, since they require (AH(0, IH)).
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Figure 3. p-values when testing for the normality of the NS values of Sac f (H) for any fixed lag H
varying from 1 to n − 1. The involved normality test is Shapiro–Wilk’s. The left column concerns
Gaussian WN, whereas the right one deals with the exponential WN process. The length of the
simulated WN process is n = 500. In the upper figures, the number of simulated WN processes is
NS = 200, whereas it is NS = 5000 in the bottom. The red-dotted horizontal line represents 5%, while
the blue-dotted vertical line represents H =

√
n.

4.3. Check for
(
AH(µ, Σ)

)
The previous finding raises questions about the methods used in practice to model a

time series. Indeed, a model has to be validated by checking that the associated residuals
are WN by using Box–Pierce or Ljung–Box tests. We know that (AH(0, IH)) does not
hold. But, we wonder if it is a problem in practice. Then, we adopt another point of
view that is more adequate with the practice, where we have to model a single time series
from the properties of its first ρ̂(h) values. For a given simulation, we test the normality
of the set (ρ̂(1), · · · , ρ̂(H)) when H varying from 1 to n−1. This procedure appears to
be adapted to check for the adequacy of (ρ̂(1), · · · , ρ̂(H)) with a Gaussian vector, but it
requires that the successive sample ACFs form a sample; in other words, that they are the
realizations of the independent variables. Let us suppose that this hypothesis is satisfied.
First, we use the Kolmogorov–Smirnov test to test for the adequacy of (ρ̂(1), · · · , ρ̂(H))

with the Gaussian distribution N
(

0, 1
n

)
. Nexy, we use the Shapiro–Wilk test to test for

the normality behavior. Figure 4 gives the percentage of inadequate testing conclusions
when using the Kolmogorov–Smirnov test when applied to either NS = 200 or NS = 5000
simulations of WN with a length of n = 500. Figure 5 gives the same percentages when
using the Shapiro–Wilk test. Note that the same tests have also been conducted on WN
with a length of n = 100, and the results were very similar.

In Figures 4 and 5, we observe that the percentage of p-values < α = 5% is very
close to 5%, which seems to affirm that, at least for Gaussian WN, (ρ̂(1), · · · , ρ̂(H)) can
be considered as realizations of Gaussian variables until a lag H not too large based on
the expectation and the covariance-matrix given in Theorem 1. These Figures seem to
show that

(
AH(µ, Σ)

)
and even (AH(0, IH)) are true. This last point seems contradictory

with Sections 4.1 and 4.2. But, remember that the normality adequacy is sensitive to the
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number of observations used when applying the normality tests, and a slight departure
from normality is more likely to be detected when this number is large. Here, the normality
of the successive ρ̂(1), · · · , ρ̂(H) values is assessed until a sample size of around H = n

2
is obtained, which is low with respect to NS = 5000. Therefore, making a diagnosis
from the first ACF might be acceptable. But, keep in mind that the tests displayed in
Figures 4 and 5 suppose that ρ̂(1), · · · , ρ̂(H) are realizations of independent variables,
which is not guaranteed. Indeed, Equation (7) proves that ρ̂(1), · · · , ρ̂(n − 1) cannot
be independent.

Figure 4. Percentage of unexpected p-values (< α = 5%) when testing for the normality of

ρ̂(1), · · · , ρ̂(H) with N
(

0, 1
n

)
when H varies from 1 to n − 1. The involved normality test is

Kolmogorov–Smirnov’s. The left column concerns Gaussian WN, whereas the right one deals
with the exponential WN process. In the upper figures, the number of simulated WN processes is
NS = 200, whereas it is NS = 5000 in the bottom. The red-dotted horizontal line represents 5%, while
the blue-dotted vertical line represents H =

√
n.

Figure 5. Cont.



Information 2024, 15, 449 12 of 26

Figure 5. Percentage of unexpected p-values (< α = 5%) among the NS simulations when testing
for the normality of (ρ̂(1), · · · , ρ̂(H)) with H varying from 1 to n − 1. The involved normality test
is Shapiro–Wilk’s. The left column concerns Gaussian WN, whereas the right one deals with the
exponential WN process. The length of the simulated WN process is n = 500. In the upper figures,
the number of simulated WN processes is NS = 200, whereas it is NS = 5000 in the bottom. The
red-dotted horizontal line represents 5%, while the blue-dotted vertical line represents H =

√
n.

5. Simulation Results for Residuals
5.1. Well-Specified Models

Since, in practice, white noise essentially appears as the residuals of an ARIMA(p, d, q)
model, we also ran simulations under several ARIMA(p, d, q) models with either Gaus-
sian or exponential underlying white noise. We simulated MA(2), AR(2), ARMA(1,1),
ARIMA(0,2,2), and ARIMA(1,1,1) processes, as detailed in the Supplementary Materials.
We estimated every simulated series with the convenient ARIMA(p, d, q) model and com-
puted its residuals. All the previous testing procedures introduced in Section 4 were applied
to these residuals, and the obtained results are shown in a supplementary file on our web
page. We obtained very similar results to those given in Section 4 for all the simulated
models, ARIMA(p, d, q).

More specifically, the deviation of the ACF from normality is highlighted mainly
because of the flagrant non-normality of the SACF. It is also well-detected by Kolmogovov–
Smirnov’s test with a larger number of simulations, meaning that the expected value and/or
the expected variance of the ACF might not be well-specified. Departure from normality
is more pronounced for the exponential WN, as detected using Shapiro’s normality test
when the number of simulations increases. In addition to testing the normality of the NS
ACF at a fixed lag h, we also adopt a point of view that is consistent with practical analyses,
since we additionally test the fit of the successive ACFs with a Gaussian distribution. If the
associated process is WN, the H successive ACFs should be identically normally distributed.
Kolmogorov–Smirnov seems to perform very accurately, since the Type I error rate equals
the nominal risk α until a rather large lag H. The Shapiro test also performs very well for
residuals associated with ARIMA(p, d, q) simulations with an underlying Gaussian WN,
but it appears to be too liberal for underlying exponential WN. Furthermore, we show
that the widely used Box–Pierce and Ljung–Box tests are not completely accurate. The
Box–Pierce test appears to be too conservative, whereas the Ljung–Box test is too liberal.

5.2. Misspecified Models

In the previous case, the orders of the underlying model were known, which is rarely
the case, except when running simulations. In this section, we also explore the case where
the estimated model is not the convenient one. We consider both the cases of too restrictive
and too large model specifications. We run simulations under several ARIMA(p, d, q)
models with either Gaussian or an Exponential underlying white noise.
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In the first case, we estimate every simulated series with an unsuitable ARIMA(p’,d’,q’)
model, where p′ < p and/or d′ < d and/or q′ < q. We study the impact of using a too
simple model ARMA(p’,d’,q’) when modeling the residuals using the previous testing
procedures. We simulate MA(2), AR(2), ARIMA(0,2,2) and ARIMA(0,2,2) processes and
estimate them by WN, WN, ARIMA(0,2,0), and AR(1) processes, respectively. In the main
paper, we present the ARIMA(0,2,2) simulations estimated by an ARIMA(0,2,0). The other
examples are detailed in the Supplementary Materials. In the second case, we proceed in
the opposite way, estimating a more complicated model than the one used to generate the
simulations. Actually, we simulate ARIMA(1,1,1) processes and estimate the simulated
series with an ARIMA(2,1,2). This example is shown in the Supplementary Materials. All
the previous testing procedures introduced in Section 4 were applied to the associated
residuals, computed from the unsuitable ARIMA(p’,d’,q’) model.

In the first case of simulations (MA(2) simulations estimated by WN), the results
are very similar to those observed in the main paper for simulations of an ARIMA(0,2,2),
estimated by an ARIMA(0,2,0). Namely, only Shapiro’s test on successive ACFs and the
portmanteau tests detected model mis-specifications. Note that these two cases only imply
a mis-specification of the q parameter. The following case (AR(2) simulations estimated by
WN) involving a mis-specification of the p parameter shows specific behaviors, as if the
mis-specification were more pronounced. Indeed, Shapiro’s test on successive ACFs and
the portmanteau tests still detect model mis-specifications, but additionally, Kolmogorov–
Smirnov’s test applied either to the successive ACF or to the ACF at a fixed lag h detects
a departure from normality. The third case (ARIMA(0,2,2) simulations estimated by an
AR(1)) involves a mis-specification of all the parameters, p, d, and q. The testing procedures
react as if the mis-specification were even more marked and more easily detectable. Thus,
all the procedures systematically reject the null hypothesis of normality. Finally, the last
simulations concern a mis-specification, but with a more general model than the one used
to generate the simulations (ARIMA(1,1,1) simulations estimated by an ARIMA(2,1,2)). In
this case, the testing procedures provide results that are very similar to WN or the residuals
of well-specified models.

Here, we focus on the ARIMA(0,2,2) process, as this is the model that will be used
to model the example in the next section. We simulate an ARIMA(0,2,2) with the follow-
ing equation:

∆2(Zt) = Et −
3
4
Et−1 +

1
8
Et−2 ,

where (Et)t is either Gaussian or exponential WN with a length n = 500. But, instead of
considering the convenient ARIMA(0,2,2) model, we estimate the simulated process using
an ARIMA(0,2,0) model. We suppose that the order difference d is well-estimated from unit-
root tests [47–49] or by using a more complex protocol [25]. In the Supplementary Materials,
we model ARIMA(0,2,0) simulations using a more restrictive AR(1) model. In this more
restrictive case, we determine that all the testing procedures computed on the successive
ACFs (Kolmogorov–Smirnov, Shapiro, Box–Pierce and Ljung–Box tests) drastically reject
the null hypothesis, warning that the model is mis-specified.

5.3. Check for the Normality of Ξ̂(h) at a Fixed Lag h

At a given lag h, using the Kolmogorov–Smirnov test, we test for the adequacy of Ξ̂(h)
with the Gaussian distribution N

(
0, 1

n

)
, and we also merely test for its normality using the

Shapiro–Wilk test. Figure 6 displays the p-values provided by the Kolmogorov–Smirnov
test when applied to either NS = 200 or NS = 5000 simulations of WN with length n = 500.
Figure 7 gives the p-values provided by the Shapiro–Wilk test.
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Figure 6. p-values when testing for the adequacy of the NS values of ρ̂(h) with N
(

0, 1
n

)
for any fixed

lag h varying from 1 to n − 1. The involved normality test is Kolmogorov–Smirnov’s. The left column
concerns Gaussian underlying W,N whereas the right one deals with the exponential underlying
WN process. The length of the simulated WN process is n = 500. In the upper figures, the number
of simulated WN processes is NS = 200, whereas it is NS = 5000 in the bottom. The red-dotted
horizontal line represents 5%, while the blue-dotted vertical line represents h =

√
n.

Figure 7. p-values when testing for the normality of the NS values of ρ̂(h) for any fixed lag h varying
from 1 to n − 1. The involved normality test is Shapiro–Wilk’s. The left column concerns Gaussian
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underlying WN, whereas the right one deals with the exponential underlying WN process. The
length of the simulated WN process is n = 500. In the upper figures, the number of simulated
WN processes is NS = 200, whereas it is NS = 5000 in the bottom. The red-dotted horizontal line
represents 5%, while the blue-dotted vertical line represents h =

√
n.

Here, we observe the same behavior as that of the simulated WN. Indeed, in Figure 7,
we see that Shapiro’s test does not reject the normality of the ACFs at a fixed lag h,
but Kolmogorov–Smirnov’s test detects a lack of fit to the expected normal distribution
N
(

0, 1
n

)
as the number of simulations increases; see Figure 6. This means that the ACFs

follow a distribution that is close to a normal distribution, but with either an expectation
different from 0 and/or variance that is different from 1

n .

5.4. Check for the Normality of SACF(H) at a Fixed Lag H

At a given lag H, we test for the normality of the NS values of SACF(H). Figure 8
displays the p-values provided by the Shapiro–Wilk test when applied to either NS = 200
or NS = 5000 simulations of WN with a length of n = 500.

The SACF associated with WN simulations or with residuals from well-specified
models did not behave at all like normal distributions, contrary to what might be expected,
even with a small number of simulations. Here, in Figure 8, the departure from normality
is less obvious, especially when the underlying WN is Gaussian.

Figure 8. p-values when testing for the normality of the NS values of Sac f (H) for any fixed lag H
varying from 1 to n − 1. The involved normality test is Shapiro–Wilk’s. The left column concerns
Gaussian underlying WN, whereas the right one deals with exponential WN. The length of the
simulated WN process is n = 500. In the upper figures, the number of simulated WN processes is
NS = 200, whereas it is NS = 5000 in the bottom. The red-dotted horizontal line represents 5%, while
the blue-dotted vertical line represents H =

√
n.
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5.5. Check for
(
AH(µ, Σ)

)
For a given simulation, we test the normality of the set (ρ̂(1), · · · , ρ̂(H)), with H

varying from 1 to n−1. This procedure appears to be adapted to check for the adequacy
of (ρ̂(1), · · · , ρ̂(H)) with a Gaussian vector, but it requires that the successive sample
ACFs form a sample; in other words, it requires that they are the realizations of inde-
pendent variables. Let us suppose that this hypothesis is satisfied. First, we use the
Kolmogorov–Smirnov test to test for the adequacy of (ρ̂(1), · · · , ρ̂(H)) with the Gaus-
sian distribution N

(
0, 1

n

)
. Next, we use the Shapiro–Wilk test to test for the normality

behavior. Figure 9 gives the percentage of inadequate testing conclusions when using
the Kolmogorov–Smirnov test applied to either NS = 200 or NS = 5000 simulations of
ARIMA(0,2,2) processes estimated by an ARIMA(0,2,0). Figure 10 gives the same percent-
ages based on the Shapiro–Wilk test.

In Figure 9, we observe that the percentage of p-values < α = 5% for the Kolmogorov–
Smirnov test is very close to 5%, which seems to affirm that (ρ̂(1), · · · , ρ̂(H)) can be
considered as realizations of Gaussian variables N

(
0, 1

n

)
, until a rather large lag H value,

as if the residuals were WN. But, as seen in Figure 10, Shapiro’s test largely rejects the
normality condition for the successive ACFs. Shapiro’s test on successive ACFs is the only
normality test that is sensitive to the fact that the model is mis-specified, alerting us to the
fact that the residuals probably do not form white noise. Indeed, Figure A2 in Appendix B
shows that portmanteau tests do not validate the proposed model.

Figure 9. Percentage of unexpected p-values (< α = 5%) when testing for the normality of

ρ̂(1), · · · , ρ̂(H) with N
(

0, 1
n

)
when H varies from 1 to n − 1. The involved normality test is

Kolmogorov–Smirnov’s. The left column concerns Gaussian underlying WN, whereas the right
one deals with exponential WN. In the upper figures, the number of simulated WN processes is
NS = 200, whereas it is NS = 5000 in the bottom. The red-dotted horizontal line represents 5%, while
the blue-dotted vertical line represents H =

√
n.
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Figure 10. Percentage of unexpected p-values (< α = 5%) among the NS simulations when testing
for the normality of (ρ̂(1), · · · , ρ̂(H)) with H varying from 1 to n − 1. The involved normality test
is Shapiro–Wilk’s. The left column concerns Gaussian underlying WN, whereas the right one deals
with exponential WN. The length of the simulated WN process is n = 500. In the upper figures,
the number of simulated WN processes is NS = 200, whereas it is NS = 5000 in the bottom. The
red-dotted horizontal line represents 5%, while the blue-dotted vertical line represents H =

√
n.

6. Illustration Using an Economic Data Set

We consider money stock evolution in USA, given in billions of USD and annual
averages from 1889 to 1988 [2]. See Figure 11 (Left), for its evolution. This money stock
series has unit roots and should be modeled by an ARIMA(0,2,2) model [25]. We study
the associated residuals, displayed in Figure 11 (Right). If the model is well-calibrated,
the residuals should behave as WN. Then, we plot the successive ACFs of the residuals
in Figure 12 (left), and we test their normality (Figure 13 (right)) and their adequacy to a
N
(

0, 1
n

)
distribution (Figure 13 (Left)). We observe that the set of the successive ACFs

(ρ̂(1), · · · ρ̂(H)) behaves as a N
(

0, 1
n

)
distribution, except when H becomes too close to

n − 1, as expected based on Section 3.2. Let us note that the residuals are not Gaussian-
distributed, since the Shapiro–Wilk test provides a p-value equal to 0.008. Hence, we are in
the situation where the departure from normality is more accentuated for the ACF at a given
lag (see Figure 2 (bottom right)), and for the set of the successive ACFs (ρ̂(1), · · · , ρ̂(H))
(see Figure 5 (right)). To further explore the possible departure of ACF from normality, we
plot in Figure 12 (right) the successive standardized SACF SACF(H)√

H
. If the conditions are

close enough to (AH(0, IH)), then every standardized SACF should behave as a N
(

0, 1
n

)
distribution. In other words, most standardized SACF should lie inside the interval of
[−1.96/

√
n, 1.96/

√
n], plotted with blue dashed lines. Figure 12 (right) shows that the

SACFbehave rather well, implying that the ACFs themselves have sufficiently satisfactory
normality properties for the Box–Pierce and the Ljung–Box tests to be reliable. Finally, in
Figure 14, both portmanteau tests are computed successively for all lags H = 1, · · · , n − 1
to assess for the validity of the constructed model, which can be used for prediction.
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Figure 11. Money stock data evolution (Left) and residuals associated with an ARIMA(0,2,2) model
(Right).

Figure 12. ACF (Left) and standardized SACF (Right) of the residuals. The blue-dotted horizontal
lines represent the thresholds −1.96/

√
n and 1.96/

√
n.

Figure 13. p-values when testing for the normality of the H values of the set of the H successive
values (ρ̂(1), · · · ρ̂(H)) for any lag H varying from 1 to n − 1. The involved normality tests are
the Kolmogorov–Smirnov (left) and Shapiro–Wilk (right) tests, which test the correspondence to a

N
(

0, 1
n

)
distribution. The red-dotted horizontal line represents 5%, while the blue-dotted vertical

line represents H =
√

n.
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Figure 14. p-values when using portmanteau tests on the residuals associated with an ARIMA(0,2,2)
model. Portmanteau tests are computed successively for all lags H = 1, · · · , n − 1 with H − 2 degrees
of freedom. The involved tests are Box–Pierce (left) and Ljung–Box (right) tests. The red-dotted
horizontal line represents 5%, while the blue-dotted vertical line represents H =

√
n.

Note that we ran the same testing procedures when modeling money stock series using
an ARIMA(0,2,0); see Figures A3–A5 in Appendix C. The ARIMA(0,2,0) model results in an
interesting alternative model. But, by using cross-validation (training on 95%, testing on
5%) and by computing the RMSE and MAPE criteria between the predictions and the test
set, we determine that the ARIMA(0,2,2) model is better (see Table A1). Now, let us estimate
a false model for these data with parameters that are too restrictive, such as an AR(1) model.
We apply the same statistical procedures to the produced residuals. In Figure 15, we observe
that several ACFs and numerous standardized SACFare well outside the reference interval
[−1.96/

√
n, 1.96/

√
n]. Next, contrary to the ARIMA(0,2,2) model, Shapiro’s test on the

successive ACFs rejects the hypothesis of normality for numerous lags h (Figure 16). Finally,
both portmanteau tests detect the model mis-specification (Figure 17). As a conclusion, we
find that almost all the procedures (except for the Kolmogorov–Smirnov test) exhibit a very
different behavior from the first case when the model was well-specified.

Figure 15. ACF (left) and standardized SACF (right) of the residuals. The blue-dotted horizontal
lines represent the thresholds −1.96/

√
n and 1.96/

√
n.
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Figure 16. p-values when testing for the normality of the H values of the set of the H successive
values (ρ̂(1), · · · ρ̂(H)) for any lag H varying from 1 to n − 1. The involved normality tests are the
Kolmogorov–Smirnov (left) and Shapiro–Wilk (right) tests, which test for the correspondence to a

N
(

0, 1
n

)
distribution. The red-dotted horizontal line represents 5%, while the blue-dotted vertical

line represents H =
√

n.

Figure 17. p-values when using portmanteau tests on the residuals associated with a AR(1) model.
The portmanteau tests are computed successively for all lags H = 1, · · · , n − 1, with H − 2 degrees
of freedom. The involved tests are the Box–Pierce (left) and Ljung–Box (right) tests. The red-dotted
horizontal line represents 5%, while the blue-dotted vertical line represents H =

√
n.

7. Discussion

According to the theoretical results, the ACF and SACF of innovations in an ARIMA
(p, d, q) process are normally distributed. In this study, we simulate WN, either Gaussian
or exponential, and we also simulate various ARIMA(p, d, q) process. We estimate every
simulated series using an ARIMA(p’,d’,q’) model and compute its residuals. We test
the normality of both the ACFs and the SACFs of these residuals. When the estimated
ARIMA(p’,d’,q’) model matches the model used for the simulation, all the previous testing
procedures introduced in Section 4 are similar to the ones observed for WN simulations.

Thus, we observed that Ξ̂(h) behaves roughly like a Gaussian distribution N
(

0, 1
n

)
,

as it was expected based on Theorem 1, even for a lag h much greater than
√

n. Its slight
departure from this distribution is more pronounced for exponential WN. We can deduce
that the lack of adequacy of Ξ̂(h) from the distribution N

(
0, 1

n

)
might come from its

asymptotic property (explaining why it is more pronounced for exponential WN), but it
also comes from a bad specification of the expectation and the variance (since the normality
behavior is conserved, at least for Gaussian noise). Actually, Ξ̂(h) may converge to a
Gaussian distribution, but with either µ ̸= 0 or σ2 ̸= 1

n .
Moreover, we found evidence that the sum of sample ACFs SACF(H) departs from

normality for almost all the lags H, except maybe for the first lags H when the white noise
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is Gaussian. This implies that the vector (ρ̂(1), · · · ρ̂(H)) is not likely to be a Gaussian
vector. Therefore, Theorem 1 should be applied with caution.

Nevertheless, in practice, at least for Gaussian WN, ρ̂(1), · · · , ρ̂(H) roughly behave as
realizations of Gaussian variables until a lag H that is not too large, with the expectation
and the covariance matrix close to the ones stated in Theorem 1. Consequently, one can
make a diagnosis that is rather reliable based on the rule that, at a fixed lag h that is not too
large, ACF ρ̂(h) should lie inside the interval [−1.96/

√
n, 1.96/

√
n]. But, the asymptotic

covariance matrix might not be diagonal, meaning that ACF independence might not be
satisfied. Then, the current and widely used techniques, such as Box–Pierce and Ljung–Box
tests or a binomial procedure, do not reliably take multiple testings into account, since they
suppose their independence.

We explored the reliability of Box–Pierce and Ljung–Box tests using our simulations
by applying these tests to every simulation at lags of H = 1 to n − 1. We computed the
percentage of unexpected p-values (< α = 5%) among the NS simulations. We observed
that the portmanteau tests are not completely accurate. Indeed, the Box–Pierce test appears
to be too conservative, whereas the Ljung–Box test is too liberal. The low reliability of
the Ljung–Box test has already been identified in [50], and several authors have given
several empirical rules to improve its reliability, notably by limiting the lag H to which
it could be applied. Among them, we have different suggestions, such as H ≤ n

4 [13],
H ≤ min

(
20, n

4
)

[51], H ≤ ln(n) [5], and more explicit lags obtained using simulation
procedures [52].

But, a better estimation of the expectation vector and of the covariance matrix in
Theorem 1 could permit us to improve their performance by using Proposition 2. However,
we suspect that the asymptotic behavior of the ACF vector (ρ̂(1), · · · , ρ̂(H)) might not
even be multivariate Gaussian. In other words,

(
AH(µ, Σ)

)
might not be true, whatever

µ and Σ. In this case, Proposition 2 could not be applied, and we would have to take a
different point of view in order to develop a test to check the adequacy of a time series with
white noise.

In practice, the main risk is the lack of reliability of portmanteau tests when validating
an ARIMA(p, d, q) model. But, among all the testing procedures, several perform accurately
when we estimate the simulated series with the convenient ARIMA(p, d, q) model and
compute its residuals. Thus, Kolmogorov–Smirnov’s test applied to the successive ACFs
performs very accurately, since the Type I error rate is equal to the nominal risk α, whatever
the nature of the underlying WN. This is also the case for Shapiro’s test applied to the
successive ACFs when the underlying WN is Gaussian.

We also explore the case where the estimated model is not the convenient one. In
the case of model specifications that are too liberal, the results are similar to the well-
specified model. But, in the case of model specifications that are too restrictive, the testing
procedures produce very different results. When only q is mis-specified, only Shapiro’s test
on successive ACFs and the portmanteau tests detect model mis-specification. When only
p is mis-specified, Shapiro’s test on successive ACFs and the portmanteau tests still detect
model mis-specification, but additionally, Kolmogorov–Smirnov’s test applied either to
the successive ACF or to the ACF at a fixed lag h detects a departure from normality. And
finally, when parameter d is involved, the testing procedures react as if the mis-specification
were even more marked; therefore, it is more easily detectable. Indeed, all the procedures
systematically reject the null hypothesis of normality.

Thus, in the case of model specifications that are too restrictive, the estimated residuals
do not satisfy white noise conditions, which are detected by portmanteau tests. Note
that Shapiro’s test on the successive ACFs (ρ̂(1), · · · , ρ̂(H)) is the only other procedure
that clearly differentiates the diagnosis between the residuals of a well-specified or of a
mis-specified model. The Kolmogorov–Smirnov test is less sensitive, in particular when
only the parameter q is mis-specified. Thus the non-normality of the successive ACFs is a
good signal of the inaccurate model specifications.
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Consequently, when portmanteau tests validate an ARIMA model, we suggest to
check for portmanteau test relevance by checking the correct behavior of the successive
ACFs by testing the adequacy of ρ̂(1), · · · , ρ̂(H) with a N

(
0, 1

n

)
distribution, or simply, its

normality. If the ACFs show Gaussian behaviors, the validation of the model provided by
the portmanteau tests might be reliable. In the opposite case, the portmanteau tests might
not be reliable. If the model is mis-specified with a model that is too restrictive, it might be
detected by portmanteau tests and by the departure of the successive ACFs from normality.

Supplementary Materials: The Supplementary Materials can be found at: www.i2m.univ-amu.fr/
perso/manuela.royer-carenzi/AnnexesR.SacfWN/SacfWN.html.
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Appendix A. Reliability of Portmanteau Tests for WN

Figure A1 shows that the Box–Pierce and Ljung–Box tests are not completely accurate.
The Box–Pierce test appears to be too conservative, whereas the Ljung–Box test is too liberal.

Figure A1. Percentage of unexpected p-values (< α = 5%) among the NS = 5000 when applying
portmanteau tests to ρ̂(1), · · · , ρ̂(H), when H varies from 1 to n − 1. The involved portmanteau tests
are the Box–Pierce (upper figures) and Ljung–Box (bottom figures) tests. The left column concerns
Gaussian WN, whereas the right one deals with the exponential WN process. The red-dotted
horizontal line represents 5%, while the blue-dotted vertical line represents H =

√
n.

Appendix B. Reliability of Portmanteau Tests for Residuals of a Mis-Specified Model

Figure A2 shows that the Box–Pierce and Ljung–Box tests detected that the model was
mis-specified.

www.i2m.univ-amu.fr/perso/manuela.royer-carenzi/AnnexesR.SacfWN/SacfWN.html
www.i2m.univ-amu.fr/perso/manuela.royer-carenzi/AnnexesR.SacfWN/SacfWN.html
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Figure A2. Percentage of unexpected p-values (< α = 5%) among the NS = 5000 when applying
portmanteau tests to ρ̂(1), · · · , ρ̂(H), when H varies from 1 to n − 1. The involved portmanteau tests
are the Box–Pierce (upper figures) and Ljung–Box (bottom figures) tests. The left column concerns
Gaussian underlying WN, whereas the right one deals with the exponential underlying WN process.
The red-dotted horizontal line represents 5%, while the blue-dotted vertical line represents H =

√
n.

Appendix C. Testing-Procedures for Money Stock Modeled by an ARIMA(0,2,0)

We also model a money stock series using an ARIMA(0,2,0). Figures A3–A5 show
that the ARIMA(0,2,0) model appears as an interesting alternative model. But, by using
cross-validation (training on 95%, test on 5%) and RMSE and MAPE criteria computed
between the predictions and test set, we determine that the ARIMA(0,2,2) model is the best
and the mis-specified AR(1) model is the worst (see Table A1).

Figure A3. ACF (left) and standardized SACF (right) of the residuals. The blue-dotted horizontal
lines represent the thresholds −1.96/

√
n and 1.96/

√
n.
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Figure A4. p-values when testing for the normality of the H values of the set of the H successive
values (ρ̂(1), · · · ρ̂(H)) for any lag H varying from 1 to n − 1. The involved normality tests are
the Kolmogorov–Smirnov (left) and Shapiro–Wilk (right) tests, which test the correspondence to a

N
(

0, 1
n

)
distribution. The red-dotted horizontal line represents 5%, while the blue-dotted vertical

line represents H =
√

n.

Figure A5. p-values when using portmanteau tests on the residuals associated with a AR(1) model.
The portmanteau tests are computed successively for all lags H = 1, · · · , n − 1, with H − 2 degrees
of freedom . The involved tests are the Box–Pierce (left) and Ljung–Box (right) tests.

Table A1. Models comparison for money stock series.

Model RMSE MAPE

ARIMA(0,2,2) 0.095 0.122
ARIMA(0,2,0) 0.141 1.649

AR(1) 0.255 3.156
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