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A B S T R A C T

Projecting migration is challenging, due to the context-specific and discontinuous relations between migration 
and the socioeconomic and environmental conditions that drive this process. Here, we investigate the usefulness 
of Machine Learning (ML) Random Forest (RF) models to develop three net migration scenarios in South Asia by 
2050 based on historical patterns (2001–2019). The model for the direction of net migration reaches an accuracy 
of 75%, while the model for the magnitude of migration in percentage reaches an R2 value of 0.44. The variable 
importance is similar for both models: temperature and built-up land are of primary importance for explaining 
net migration, aligning with previous research. In all scenarios we find hotspots of in-migration North-western 
India and hotspots of out-migration in eastern and northern India, parts of Nepal and Sri Lanka, but with dis-
parities across scenarios in other areas. These disparities underscore the challenge of obtaining consistent results 
from different approaches, which complicates drawing firm conclusions about future migration trajectories. We 
argue that the application of multi-model approaches is a useful avenue to project future migration dynamics, 
and to gain insights into the uncertainty and range of plausible outcomes of these processes.

1. Introduction

Human migration is intrinsically related to societal change and 
development. People leave their place of origin for multiple reasons, 
including better economic or educational opportunities elsewhere, 
family matters or escaping conflict or persecution (IOM, 2022). 
Increasingly, environmental change is understood to shape migration 
patterns via impacts on agriculture and the habitability of regions 
(Adger et al., 2015; Horton et al., 2021). Yet, the identification of causal 
linkages between environmental change and migration is challenging or 
even impossible, due to the intersecting and context-specific nature of 
factors affecting migration decisions (Boas et al., 2019; Cattaneo et al., 
2019; Hermans and McLeman, 2021). Yet, understanding migration 
dynamics in an era of climate change is both scientifically pertinent and 
societally relevant, especially in a world where views and voices in 
national and global migration debates are often ideologically driven 

(Boas et al., 2019; de Haas, 2010a).
The consequences of environmental change, especially climate 

variability impacts, on mobility and immobility have been investigated 
extensively in the past two decades (McLeman et al., 2021; Piguet, 
2022). Specifically, there is a growing recognition that climate-related 
migration is multi-causal and context-specific (Adger et al., 2024; Cat-
taneo et al., 2019; Hunter and Simon, 2023). Empirical studies based on 
interview, survey, or census data have provided an overview of common 
drivers (Afifi, 2011; Hermans-Neumann et al., 2017; van der Geest, 
2011). Evidence strongly suggests that environmental conditions have a 
greater impact on migration within countries as compared to interna-
tional migration (Cissé et al., 2022; Cundill et al., 2021). However, while 
some quantitative research on the importance of environmental condi-
tions to international migration dynamics is available, (Abel et al., 2019; 
Beine and Parsons, 2015; Falco et al., 2019; Grecequet et al., 2017), this 
type of research within countries is largely absent.
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The lack of subnational longitudinal migration data has limited 
progress on large-scale quantitative subnational migration research 
(Piguet, 2022). In line with this, little research has been published on 
developing quantitative multi-country migration scenario projections 
on a subnational level that encompass the potential impact of environ-
mental change (Beyer et al., 2023; McLeman, 2013; Oakes et al., 2023). 
Developing these scenarios is complicated by several factors. There are 
multiple directions of influence of climate change impacts on migration. 
Impacts such as prolonged droughts and rising temperatures can both 
reduce and increase migration, depending on the specific socioeconomic 
conditions of the region and the experiences and resources of those 
being affected (Dallmann and Millock, 2017; Mueller et al., 2020; 
Mueller et al., 2014). Additionally, the availability of subnational so-
cioeconomic scenario projection data are limited, especially within the 
framework of climate change (Buhaug and Vestby, 2019). Some agent- 
based and integrated modelling studies exist of future human migra-
tion which focus on individual countries (Thober et al., 2018). These 
studies use national demographic survey data, reducing their compa-
rability across countries. Furthermore, the two Groundswell reports 
(Clement et al., 2021; Rigaud et al., 2018) and the African Shifts report 
(Amakrane, 2023) develop various scenarios by deploying a gravity 
model with and without hydroclimatic and agricultural variables for 
Sub-Saharan Africa, South Asia, and Latin America. By showing the 
difference between the scenario with and without the hydroclimatic and 
agricultural variables, the studies obtain the number of internal mi-
grants that could be attributed to hydroclimatic conditions. Gravity 
models face criticism when used for developing scenario projections of 
migration, because they are unable to adequately account for the 
changes in-migration patterns over time (Beyer et al., 2022). Further-
more, gravity models cannot handle the discontinues impacts of drivers 
(Robinson and Dilkina, 2018).

The main objective of this article is to better understand the use-
fulness of a new approach to developing migration scenarios in the 
context of climate change: Machine Learning (ML) Random Forest (RF) 
models. RF approaches can combine multiple input data and include 
discontinuous relations (Robinson and Dilkina, 2018), making them 
potentially well-suited for understanding and modelling migration. 
However, RF approaches have not been used before to develop migra-
tion scenarios. To further explore the potential of RF approaches, we 
employ two different models: a RF classification model and a RF 
regression model. The former projects the direction of net migration per 
region, while the latter projects the magnitude of the net migration. We 
test these RF approaches in for South Asia. To do so, we first train both 
models to explain historical net migration patterns based on known 
drivers for migration, using a novel high-resolution large-scale migra-
tion dataset (Niva et al., 2023a). We interpret the result of this training 
as the capability of our models to explain net migration patterns, which 
provides an indication of their capacity to also explain future patterns. 
We project net migration in the year 2050 under different socioeco-
nomic and environmental change scenarios using both trained models. 
Results are analysed mainly in the context of the usability of the two RF 
approaches for envisioning migration scenarios. By doing so, we can 
discern the insights they offer, facilitating a more robust evaluation and 
interpretation of approaches to developing migration scenarios.

2. Data & methods

2.1. Case study region

We focus on South Asia, including Bangladesh, Bhutan, India, Nepal, 
Pakistan, and Sri Lanka, following the delineation of this region by the 
World Bank. World Bank regions represent relatively homogenous so-
cioeconomic regions, making them appropriate for assessing migration 
dynamics and interpreting model results with the same model. South 
Asia was selected for two reasons. The region was selected for two 
reasons. First, the region is characterised by a high dependency on 

climate-sensitive livelihoods, mostly in agriculture (Tucker et al., 2015). 
Second, the death and birth rates are well documented on the subna-
tional level, compared to large parts of the Middle East region and the 
African continent (Niva et al., 2023a). South Asian net migration data 
can therefore be regarded as more accurate than other regions with a 
high dependency on climate-sensitive livelihoods. We excluded 
Afghanistan ex-ante from the analysis. In this country, 3.9 million ref-
ugees were repatriated to Afghanistan between 2002 and 2015 (UNHCR, 
2022). Overall, 5.3 million people returned to Afghanistan since 2002 
until the Taliban took over control in 2021 (UNHCR, 2023). These 
exceptional conditions make the country unsuitable for assessing gen-
eral migration dynamics driven by socioeconomic and environmental 
changes.

As spatial units we employed the Global Administrative Areas 
(GADM) level 2 (Global Administrative Areas, 2022), which represents 
sub-divisions of provinces or districts. Level 2 areas which were smaller 
than 100 km2 or inhabited by less than 500 people in the year 2001 were 
merged with the adjacent area in the same province with which it shared 
the longest border. This avoids a potentially large influence of small 
population numbers on the model. Table 1 provides the demographic 
characteristics of these regions per country.

2.2. Data description

2.2.1. Target data
We used the global net migration dataset developed by Niva et al. 

(2023a) as target data, which is based on annual harmonised subna-
tional data for births and deaths for the 2001–2019 period. This sub-
national data was downscaled to a 5 arc-minute resolution globally and 
then combined with observed changes in population numbers 
(WorldPop, 2021). Net migration is defined as the difference between 
the total population change and the natural population change (births 
minus deaths) per year, reflecting the net number of people moving into 
or out of a given area. Simulated data was validated against reported 
detailed net migration data of various countries, indicating a good 
performance of the downscaling method (Niva et al., 2023a). The final 
dataset provides information on the net number of people moving in or 
out of a grid cell per year. Following this approach, migration entails 
both national and international migration, and the two cannot be 
separated. Consequently, the case study region for this study is not a 
closed system, and the sum of all migration can be higher or lower than 
0.

We pre-processed the target migration data to facilitate the setup of 
our RF models. For the Random forest regression (RFR), the net per-
centage of the population per administrative area that migrates was 
calculated by dividing the total number of net migrants by the total 
population of that area. We used the WorldPop population data 
(WorldPop, 2021) as used by Niva et al. (2023a). For the Random forest 
classification (RFC) model, an area was classified as 0 when the area 
faced net out-migration in a particular year, and as 1 when the area 
faced net in-migration in a particular year. In seven areas we observed 

Table 1 
Demographic characteristics of the countries in the study region.

Country Population 
2015 
X 1 000

Number 
of admin 
level 2 
areas 
included

Average population*/admin level 2 
area 
X 1 000

Bhutan 740 133 6
Bangladesh 152 513 65 2 346
India 1 284 631 664 1 935
Nepal 26 813 14 1 915
Pakistan 193 696 33 5 870
Sri Lanka 19 607 227 86

* Population numbers as used by Niva et al. (2023b) fromWorldPop (2021).
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net migration values exceeding 20 %, which are likely errors following 
the skewed pattern (e.g., one year facing net out-migration of 20–40 % 
followed by net in-migration in a following year of 20–40 %). Therefore, 
we decided to remove these regions from our analysis. Fig. 1A presents 
the average yearly net migration ratio (%) for the reference period. 1B 
presents the average of net in (1) and net out (0) migration per year for 
the entire reference period 2001–2019.

2.2.2. Independent variables
We used a combination of socioeconomic and environmental vari-

ables as the independent variables which are further detailed in Table 2. 
The variables were selected based on three criteria. First, we selected 
variables that are potentially relevant for explaining migration accord-
ing to previous research. Second, we selected those variables for which 
consistent historical and future data for the whole study region is 
available. Third, we analysed multi-collinearity, and removed variables 
that are too strongly correlated with each other (Chan et al., 2022). 
Although RF-models can handle (multi)collinearity in terms of predic-
tion, having highly correlated predictors can affect the interpretability 
of the variable importance. It might assign relatively lower importance 
to one of the correlated variables compared to what it would if the 
variables were not highly correlated (Chan et al., 2022). For more details 
on (multi)collinearity between the selected variables and cut-off values, 
see Fig. S1 and Table S1 on (multi)collinearity in the Supplementary 

Material.
The socioeconomic variables included are built-up land, conflict, 

education, Gross National Income (GNI) per capita and economic 
inequality (GINI). Built-up land was included as a proxy for the level of 
urbanicity and the access to services, conditions generally attracting 
migrants (Selod and Shilpi, 2021). Conflict was included since it can 
lead to forced displacement (Braithwaite et al., 2019), although it is not 
clear to what extent conflict events are a factor of importance to 
migration over large regions and long-time spans. Education levels 
affect migration following the opportunities that come with being 

Fig. 1. (A) The average migration ratio for the reference period 2001–2019. (B) 
The average of net in (1) and net out (0) migration for the reference 
period 2001–2019.

Table 2 
Characteristics of the socioeconomic and environmental annual variables.

Variable Brief 
description

Unit Source Original 
resolution

Built-up area The average 
built-up area.

Km2/cell Wolff et al. 
(2018)

9.25 × 9.25 km

Conflict Armed 
conflict 
events with 
over 10 
deaths.

Number of 
events

UCDP 
Georeferenced 
Event Dataset 
V23.1 (Davies 
et al., 2023; 
Sundberg and 
Melander, 
2013)

Georeferenced 
events

Education Average total 
years of 
schooling per 
person.

Years of 
schooling

Smits and 
Permanyer 
(2019), 
harmonised 
and rasterised 
using methods 
by Kummu et 
al (2018).

Admin 1 level, 
except for Sri 
Lanka, which is 
country-based.

GNI per cap Gross 
domestic 
income per 
capita.

US$2017 Smits and 
Permanyer 
(2019)
harmonised 
and rasterised 
using methods 
by Kummu et 
al (2018) and 
further 
downscaled to 
admin 2 level.

5 arcminutes

Inequality 
(GINI)

Income 
inequality 
between 
people, 
following the 
Gini index.

0–1 index Solt (2020)
downscaled 
using 
subnational 
GINI data

Admin 1 level, 
except for Sri 
Lanka, which is 
country-based.

Dry spell Number of 
days in the 
longest 
period 
without 
significant 
precipitation 
of at least 1 
mm.

Number of 
days

World Bank 
Group (2023)

0.5x0.5 
degrees

Fluvial flood 
Volume

Volume of 
the largest 
flooding 
event in an 
area.

M3 Sutanudjaja 
et al. (2018)

5 arcminutes

Precipitation Total 
precipitation.

Millimetres World Bank 
Group (2023)

0.5x0.5 
degrees

Temperature Average 
temperature.

Degree C◦ IMAGE model (
Doelman et al., 
2018; Stehfest 
et al., 2014), 
2023 update.

0.5x0.5 
degrees

Actual crop 
yield

The actual 
simulated 
total crop 
yield.

Ton/km2 IMAGE model (
Doelman et al., 
2018; Stehfest 
et al., 2014), 
2023 update.

5 arcminutes
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educated (de Haas, 2010b; Neumann and Hermans, 2017). Income 
levels, in this study GNI per capita, are an important requirement for 
migration (Neumann and Hermans, 2017; Niva et al., 2021). The role of 
economic inequality in-migration dynamics is equivocal. However, 
earlier research has showed that inequality is often high in fast-growing 
cities what would imply that it could be a factor explaining rural–urban 
migration (Østby, 2016).

The environmental variables included in this study are the length of 
dry spells, flood volume, precipitation, temperature, and actual crop 
yields. Dry spells have been included since these have been associated 
with out-migration (Carrico and Donato, 2019). Flood volume was 
included because floods can affect agricultural yields, as well as habit-
ability of an area affecting migration dynamics (Horton et al., 2021; 
Mueller et al., 2014). Precipitation and temperature have been found to 
affect migration mainly via agricultural productivity, although often to a 
limited extent (Bohra-Mishra et al., 2014; Cattaneo and Peri, 2016; 
Mueller et al., 2014). Finally, we included actual crop yields to account 
for the large-scale trends of productivity of an area. Productive areas 
might indicate that these areas are attractive to rural-rural migrants 
(Hathie et al., 2015). At the same time, people living in productive areas 
might have the financial means required to migrate (Groth et al., 2020).

From most variables, we calculated the yearly varying average value 
per administrative area. For conflict, the total number of conflict events 
per year per area was used. For flooding, the maximum annual fluvial 
flood volume per area was taken, representing the largest flood event for 
that year following exceeding river discharge following excess rainfall 
after accounting for soil infiltration and evapotranspiration. For all runs, 
a one-year time lag was applied for all variables except for conflict 
events and flood volume, assuming that those trigger migration directly. 
For more context regarding the socioeconomic and environmental var-
iables regarding the minimal, maximal, average values and standard 
deviation, see Table S2 in the Supplementary Material.

2.2.3. Projection data
Three SSP-RCP combinations were employed to reflect a range of 

socioeconomic and climate developments: SSP1 with RCP2.6, SSP2 with 
RCP4.5, and SSP3 with RCP7.0. See Table 3 for a brief description of 

these scenarios. The SSP-RCP scenario projection data are consistent 
with the historical data. For the environmental data, CMIP6-based ISI-
MIP-3 protocol projections were used for RCP2.6, RCP4.5 and RCP7.0, 
except for flood volume since this data was not available in CMIP6. 
Therefore, we use CMIP5-based ISIMIP-3 protocol data for RCP2.6, 
RCP4.5 and RCP6.0 for flood volume. Although CMIP5 and CMIP6 are 
different in terms of variables, resolution, and scenarios, the phases are 
consistent in terms of simulation protocols and model evaluation stan-
dards (Tebaldi et al., 2021). It is therefore justified to use data from both 
phases in one analysis. For more scenario details per variable see 
Table S3 in the Supplementary Material. Conflict events were not 
included in any scenario because projections of conflict risk are not 
available for the region. While projections of conflict are lacking, we 
incorporate historical conflict events nonetheless, to gain insights into 
the importance of these events in shaping the migration patterns.

2.3. Set-up of the Random Forest models

To evaluate the importance of the socioeconomic and environmental 
variables to the magnitude and direction of migration, we employed an 
RFR model and an RFC model. For our analysis we used the existing 
CoPro framework, which is designed to apply machine-learning ap-
proaches for projections, used before to develop conflict risk projections 
(modified from Hoch et al., 2021a). Within the CoPro framework, the 
Scikit-learn library is used to implement the RFR and the RFC algorithms 
(Pedregosa et al., 2011). Both algorithms are trained with 20 years of 
data (2001–2019) to quantify the historical relation between the inde-
pendent variables and net migration, the target data.

To explore the explanatory power of the two approaches, we first 
trained the RFR and RFC for each country separately. For our final 
projections in the entire region, we included only those countries where 
historical migration could be explained by the model. Moreover, by first 
assessing the individual countries, we could also examine to what extent 
the variable importance was comparable between the individual coun-
tries for the two approaches.

For projecting future migration patterns, we aggregated those 
countries where migration could be (partly) explained by the RFR and 
RFC approach. This aggregation excludes Bhutan and Pakistan (see re-
sults and discussion). The RFR and the RFC were subsequently trained 
over this combined study region to develop the out-of-sample scenario 
projections.

For each year in the reference period, values were extracted from the 
independent variables for each administrative area. In total, this yields 
data points equal to the number of administrative areas times the 
number of years. Subsequently, for both the regression and the classi-
fication run, 100 RF trees were initialised to capture the variance in the 
data without overfitting. For each tree, 70 % of the data points were 
randomly drawn to train the model, and the remaining 30 % were used 
for validation using several evaluation metrics (Skicit-learn, 2023; Ting, 
2011):

- Accuracy: reflects the fraction of correct classifications [0–1] −
higher represents more correct classifications.

- Recall: presents the total number of true positives out of the total 
number of positives [0–1] – higher represents more correct 
classifications.

- Precision: the number of true positives out of the total number of 
positives predicted, including the false positives [0–1] – higher 
represents more correct classifications.

- The ROC AUC (Receiver Operating Characteristic − Area Under the 
Curve): this value quantifies the overall ability of a binary classifi-
cation model to distinguish between the positive and negative classes 
[0 − 1] – higher represents more correct classifications.

- R2: For the regressions runs the R2 is presented. This is a statistic that 
measures the proportion of the variance in the target variable 
explained by the independent variables in the model. It provides a 

Table 3 
Summary of the scenario narrative of the SSP-RCP combinations used in this 
study based on O’Neill et al. (2016) and Kriegler et al. (2012).

SSP-RCP Scenario description

SSP1 – RCP2.6 Sustainable 
Development ¡ Low 
Emissions

This scenario envisions a future where the 
world follows a sustainable development 
pathway with low greenhouse gas emissions. It 
assumes that society places a strong emphasis 
on environmental sustainability, energy 
efficiency, and the reduction of carbon 
emissions. Challenges for mitigation and 
adaptation are low. Under RCP 2.6, total 
radiative forcing increases to 3.0 W m − 2 until 
mid-century before a decline begins. The goal 
is to limit global warming to well below 2 
degrees Celsius above pre-industrial levels.

SSP2 – RCP4.5 Middle of the 
Road

This scenario represents a middle-of-the-road 
development pathway, with moderate 
greenhouse gas emissions without 
fundamental breakthroughs. It anticipates a 
world where efforts to mitigate climate change 
are moderate, with a focus on balancing 
economic growth and environmental 
concerns.

SSP3 – RCP7.0 Regional Rivalry 
¡ High Emissions

In this scenario, a future is envisioned where 
there is a lack of global cooperation, leading to 
regional rivalries and fragmentation of efforts. 
Greenhouse gas emissions are relatively high, 
resulting in substantial global warming. This 
pathway highlights the potential consequences 
of limited international collaboration.

S. de Bruin et al.                                                                                                                                                                                                                                Global Environmental Change 88 (2024) 102920 

4 



value between 0 and 1, a higher R2 indicates a better fit of the model 
to the data.

We calculated the variable importance based on the same training 
runs for both models. Variable importance refers to the relative impor-
tance of each input variable in explaining migration, the target variable. 
In total, the variable importance of the combined independent variables 
is 1. Quantifying the importance of the separate variables for the model 
predictions enhances our understanding of the importance of the so-
cioeconomic and environmental conditions to net migration. Although 
variable importance provides the magnitude of influence it does not 
provide the direction of influence, since the direction can go both ways 
within the same model, depending on the other variables. This property 
is both a strength and a weakness of RF models since it makes them 
flexible but also harder to interpret.

From the end of the reference period (2019) until 2050, we made 
annual out-of-sample projections. The projections are made for the 
combined region of countries where a share of the historical migration 
could be explained in both the RFR and the RFC. To maintain the in-
ternal consistency of each projection pathway, this was done for each 
selected SSP-RCP combination. For the RFR, the projections represent 
the average net in or out-migration ratio in 2050 for the 100 trees in the 
model. For the RFC, the projections represent the average probability of 
net in-migration in 2050 for the 100 trees in the model. For both the RFR 
and RFC we compared the 2050 values with the average net migration 
value per region for the reference period to indicate where future 
migration might deviate from historical patterns. The last step involved 
a comparison of the scenario projections based on the RFR and the RFC 
approach to check for consistency. This was done by comparing the 
projected net in- and net out-migration. For the RFC approach, net in- 
migration was defined as a probability of net in-migration of over 0.5, 
while for the RFR net in-migration was defined as a positive migration 
percentage.

3. Results

3.1. Model validation

For the RFR run, which aims to predict the annual net migration as a 
percentage of the population, the R2 varies markedly between the 
countries. For India, the explained variance is low with 0.17. The R2 for 
Bangladesh, Nepal and Sri Lanka are relatively high, respectively 0.59, 
0.91 and 0.53. For Bhutan and Pakistan, migration could not be 
explained, as indicated by the negative R2 values in Table 4. These 
countries are therefore excluded from the runs to make scenario pro-
jections of the combined region (see Discussion for further interpreta-
tion of these results). The explained variance of the combined region, 
Bangladesh, India, Nepal and Sri Lanka is 0.44.

For the RFC run, which aims to predict binary in (1) or out (0) 
migration, the overall model performance is good, as indicated by ROC- 
AUC scores of above 0.8, except for Bhutan (Table 4). For Bhutan, 

historical migration cannot be explained with the RFC approach. Overall 
accuracy of the other countries— the fraction of correct classi-
fications—is reasonable to good. Mean precision − the ability of the RFC 
not to label an observation as in-migration that is out-migration – is also 
reasonable to good. The recall scores are lower for all areas, indicating a 
restricted ability of the classifier to find all positive observations. 
Migration in the combined region of Bangladesh, India, Nepal and Sri 
Lanka can be explained relatively well, as indicated by an overall ac-
curacy of 0.75.

3.2. Predictors of net migration

The variable importance in the RFR and RFC run per country are 
rather comparable (Fig. 2). The average annual temperature is the most 
important variable in both analyses. Built-up land, yields and annual 
precipitation rates also have a relatively high importance across the 
countries and for the combined region in both runs. Conflict is not 
important to explain net migration in the reference period. The impor-
tance of the variables in the two models is fairly comparable between 
countries for many, though not all, variables. For the variable impor-
tance per country see Fig. S2 in the Supplementary Material. Especially 
in Nepal there are major differences in the importance of the same 
variable between runs. The importance of some variables, including 
inequality and temperature, differ considerably among countries.

3.3. Scenario projections

Based on the historical relations learned in the RFC and RFR run, 
projections with data from three SSP-RCP combinations are made for the 
combined South Asian regions of Bangladesh, India, Nepal and Sri 
Lanka.

The RFR projections, which yield the magnitude of net in- or out- 
migration in 2050, show a scattered image across the region (Fig. 3a, 
c, e). Some regions are projected to face net out-migration in all SSP-RCP 
combinations, including western Nepal, north-eastern India, and large 
parts of northern and southern Sri Lanka and coastal zones of 
Bangladesh. At the same time, net in-migration is projected in all sce-
narios for the coastal areas of western India, South-East India and large 
parts of inland Bangladesh, including the capital region of Dhaka. The 
magnitudes of net in- or out-migration are in general more moderate for 
SSP1-RCP26, as compared to the other two scenarios. The SSP2-RCP45 
scenario projection is most outspoken in terms of differences in net in- 
and out-migration. Most areas are projected to face net in-migration in 
the SSP3-RCP70 scenario, 474 out of the 969 areas. This number is 286 
for the SSP1-RCP70 and 273 for the SSP2-RCP45 scenario. However, the 
average net migration over all administrative areas is more similar 
among the scenarios, with a weighted average of 0.1 % in SSP3-RCP70, 
while this is − 0.1 % for the SSP1-RCP70 and − 0.5 % for the SSP2-RCP45 
scenario. There are some notable differences between the scenario 
projections and the reference period. Especially in northern Sri Lanka, 
northern Nepal, north-east India and parts of central-western India, the 
differences between the scenario projections and the reference period 
are substantial (Fig. 3b, d, f).

The RFC projections show a rather uniform net migration pattern 
across the region for all three scenario projections (Fig. 4a, c, e). For the 
majority of the regions, the projected probability of net in-migration is 
below 0.5, indicating that these regions are mostly characterised by 
socioeconomic and environmental conditions historically associated 
with out-migration. In SSP1-RCP26 64 out of 969 regions are projected 
to face net in-migration, while this is 69 for SSP2-RCP4.5 and 289 for 
SSP3-RCP70. In all scenarios, the North-West of India is projected to 
have the highest probability of net in-migration. The differences be-
tween the SSP-RCP runs are notable, with SSP3-RCP70 facing the lowest 
level of out migration. Comparing the scenario projections to the 
average of the reference period, the picture is scattered though. Changes 
in net migration are considerable. Major parts of Nepal, the north and 

Table 4 
Mean evaluation metrics for RFC and RFR run.

Country RF Classifier RF 
Regression

ROC 
AUC

Accuracy Precision Recall R2

Bangladesh 0.88 0.88 0.80 0.53 0.59
Bhutan 0.51 0.50 0.51 0.53 − 0.19
India 0.82 0.75 0.74 0.66 0.17
Nepal 0.98 0.93 0.95 0.86 0.91
Pakistan 0.90 0.83 0.80 0.72 − 0.25
Sri Lanka 0.80 0.73 0.67 0.56 0.53
South Asia (excl. 

Bhutan and 
Pakistan)

0.82 0.75 0.72 0.61 0.44
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central parts of Sri Lanka, most of inland Bangladesh, central and 
southern India are projected to have a probability of net in-migration 
below 0.5, indicating a higher chance on out-migration then in- 
migration. Since the average share of net out-migration in the refer-
ence migration was lower than the projected probability of net in- 
migration by 2050, these regions face a positive difference when 
comparing the reference period with the projection period (Fig. 4b, d, f).

The agreement between the RFR and RFC approaches is moderate 
(Fig. 5). Areas are marked green if the RFR ratio is positive and the RFC 
probability is above 0.5, or if the RFR ratio is negative and the RFR 
probability is below 0.5. For SSP1-RCP26, 72 % of the areas overlap in 
terms of direction, 73 % for SSP2-RCP45 and 61 % for SSP3-RCP70. The 
correlation coefficient between the projections is 0.2, 0.22 and 0.27(p <
0.01) for respectively SSP1-RCP26, SSP2-RCP45 and SSP3-RCP70. The 
approaches are thus weakly in agreement.

4. Discussion

4.1. Interpretation of the results

We use two different models to explain historical migration patterns 
in South Asia and find largely similar patterns in variable importance for 
both models. The evaluation results of both models show that the degree 
to which net migration can historically be explained differs between 
countries and between the two approaches. An ROC of 0.83 for the RFC 
model and the R2 of 0.44 for the RFR model indicate that both are able to 
explain a considerable share of historical migration. At the same time, 
these evaluation metrics also indicate that a significant part of this 
process is either explained by variables that are not included or that the 
process is, to some extent, intrinsically uncertain. For example, societal 
and political sentiment towards migrants or migration and refugee 
policies (Hatam, 2019), could not be included due to the absence of 
suitable subnational data. Also, perceptions of risks and opportunities in 
the place of origin or destination can affect migration decisions, which 
might not always reflect the objective reality (Fischer et al., 1997). 
Furthermore, factors such as place attachment, people’s aspirations, and 
cultural preferences contribute to the complexity of understanding 

migration, rendering it often an irrational and unpredictable decision 
(de Haas, 2021).

The importance of different variables largely confirms the existing 
understanding of processes driving migration. In both approaches, the 
annual average temperature is the most important variable, followed by 
built-up land. This implies that rising temperatures and a rising pro-
portion of built-up land could change migration patterns considerably. 
Existing literature has also showed that temperature can affect migra-
tion in various ways. For example Cattaneo and Peri (2016) show that 
higher temperatures can increase out-migration levels in middle-income 
countries by lowering agricultural productivity. Mueller et al. (2014)
conclude that heat stress consistently increases the long-term migration 
of men in Pakistan, driven by a negative effect on farm and non-farm 
income. Another explanation for this study could be that in the refer-
ence period, people tended to move from the colder, more inaccessible 
mountainous areas in Nepal and India to warmer, more fertile and urban 
areas (Biella et al., 2022; Maharjan et al., 2020). This could explain why 
net in-migration is projected in most areas in the RFR projection of SSP3- 
RCP70, since temperatures rise quicker and built-up land grows faster 
compared to SSP1-RCP26 and SSP2-RCP45. This possibly makes areas 
more attractive in the projections based on the obtained historical re-
lations, although it is questionable to what extent this historical relation 
will be a predictor for future dynamics. In the RFR SSP3-RCP70 pro-
jections, least out-migration is projected in the colder climates of the 
Mountainous North of India and Nepal, compared to the other two 
scenarios. This dynamic is not captured in the RFC scenarios, since here 
out-migration is more probable in the colder mountainous regions in all 
scenarios.

Contrary to existing insights (Neumann and Hermans, 2017; Niva 
et al., 2021), we did not find income to be of primary importance for 
explaining migration. This observation might be explained by the fact 
that we assess net migration, rather than absolute flows of in- and out- 
migration While high income regions are potentially attractive to mi-
grants following the perceived economic opportunities while at the same 
time out-migration is also found to increase with higher incomes due to 
associated migration costs (Clemens, 2020; de Haas, 2021; Groth et al., 
2020). Yet, this might not be visible in the net migration numbers. The 

Fig. 2. Distribution of the variable importance based on the initial trees for the RFR and the RFC run for the separate country runs. The boxes represent the 
interquartile range, the line in the box is the average value, the whiskers maximum is 1.5 times the interquartile range, and the red dots are data outliers. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 3. Left maps: RFR scenario projections of the magnitude of net migration in percentage. Right maps: The absolute difference between the projected 2050 net 
migration percentage and the average net migration percentage over the reference period 2001–2019.
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Fig. 4. Left maps: RFC scenario projections of the probability of net in-migration. Right maps: The absolute difference between the projected 2050 probability of net 
in- (1) to out- (0) migration and the average net in- (1) to out- (0) migration over the reference period.
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importance of built-up area can be explained by the fact that South Asia 
is already for decades characterised by rural to urban migration. This 
explanatory variable also represents the search for economic opportu-
nities, and its’ importance is apparent in both modelling approaches 
(Maharjan et al., 2020; Selod and Shilpi, 2021). The other variables, 
both socioeconomic and environmental, have a medium influence, 
consistent with prior findings as underlying the design of our model 
(Bohra-Mishra et al., 2014; de Haas 2010b).

Conflict stands out as a variable of little importance in explaining 
migration, despite the fact that conflict has affected displacement in 
several of the regions analysed in the reference period, including the 
long-lasting civil wars in Sri Lanka (1983–2009) and Nepal 
(1996–2006). Possibly, this reflects the fact that in both countries most 
people were displaced within their own region (Singh et al., 2007; 
Steele, 2019). Alternatively, the number of people displaced was limited 
compared to the total number of migrants in the reference period. Due to 
a lack of future scenarios on conflicts, this variable was not included in 
our projections, and the low variable importance suggests this decision 
will have little effect on our projections.

For Pakistan, no relation was detected between the sample and target 
data in the training of the RFR model. This could possibly be explained 
by the fact that the average area size is larger than in other countries, 
27,411 km2, including almost 6 M inhabitants on average. This obscures 
local differences between more rural and urban areas, as well as dif-
ferences between socioeconomic and environmental conditions. For 
Bhutan, no relation between the sample and target could be detected in 
neither the RFR nor the RFC run. This could be due to the relatively 
small average administrative area size, 294 km2, combined with the low 
total population per administrative area, which makes the analysis more 
sensitive to local migration drivers, such as labour demand for the 
construction of a new neighbourhood. An additional explanation could 
be that the quality of the migration data is limited.

When making out-of-sample predictions for the scenario projections 
we assume that the historically identified relationship remains stable 
over time. This is a limitation shared in previous research on conflict 
projections (Bowlsby et al., 2019; Hoch et al., 2021b). This assumption 
overlooks the dynamic nature of socioeconomic and environmental 
conditions, thus potentially limiting the accuracy of long-term migration 
projections. Climate change impacts in South Asia are expected to 
worsen, especially after 2050 (Shaw et al., 2022), making it harder to 
sustain agricultural-dependent livelihoods. Especially temperatures are 
projected to rise considerably in many places in South Asia, which will 
affect the habitability of these places (Lenton et al., 2023; Xu et al., 
2020). It is not straightforward how this will affect migration, since 
currently popular migrant destinations, such as Mumbai or Delhi, are 

projected to be exposed to unliveable temperatures. Still, extremely high 
temperatures can compromise living conditions in such a way (Xu et al., 
2020), that liveability can only be safeguarded when air-conditioned 
rooms and greenhouses are available to a wide public. Additionally, 
climate change impacts such as sea level rise and changing monsoon 
dynamics might affect migration in unprecedented ways (Dallmann and 
Millock, 2017; Hauer et al., 2020).

The projections for the three SSP-RCP combinations provide a mixed 
picture. In both the RFR and the RFC projections, we find hotspots of net 
in-migration in North-western India. North-western India is also in the 
reference period mostly characterised by net in-migration. However, the 
extent of in-migration along all scenarios decreases, albeit in different 
magnitudes, suggesting a decrease in overall net in-migration by 2050. 
Net out-migration regions across the RFR and the RFC projections are 
found in most parts of eastern and northern India, and large parts of Sri 
Lanka. For eastern and northern India, these projections differ from the 
observed trend in the reference period, in which those regions faced, on 
average, in-migration. These are the mountainous parts of the country 
which are rich in cultural heritage, had limited accessibility, and people 
have a strong place attachment. These characteristics have resulted in 
reduced out-migration, a trend that could change in a future with more 
urban development, higher education attainment and cultural connec-
tions with wider India. Consequently, the projected difference in 
migration dynamics when comparing the various SSP-RCP combinations 
by 2050 with the reference period is plausible. For the South and North 
of Sri Lanka, net out-migration is projected in all SSP-RCP combinations, 
while the pattern of net in- or out-migration was heterogenous in the 
reference period. North Sri Lanka is a dry zone and Jaffna in North-East 
has been the centre of decades long civil war resulting in isolation and 
missed developmental opportunities. Lastly, the direction of future 
migration in most parts of Bangladesh and the remaining parts of India 
differ between the two approaches and between the SSP-RCP 
combinations.

4.2. Challenges related to projecting migration

In this study we present two Random Forest-based approaches to 
explain and project migration scenarios for South Asia. The approach of 
this study is innovative and constraining at the same time. It is inno-
vative, because projecting migration using RF models is novel to the 
field, although machine-learning approaches have been applied to un-
derstand historical migration patterns (Aoga et al., 2024; McLeman 
et al., 2022; Molina et al., 2023). It is constraining, because there are 
limitations to this approach, which are discussed in the comparison of 
both methods below.

Fig. 5. Overlap in scenario projection direction for (A) SSP1-RCP26, (B) SSP2-RCP45, (C) and SSP3-RCP70.
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The three SSP-RCP scenarios analysed using both methods provide 
insight in where net in- or out-migration is projected based on the 
identified historical relations. By developing scenarios for direction 
(based on the RFC model), and magnitude of migration (based on the 
RFR model), we can compare the two approaches in terms of variable 
importance and scenario projections. The two approaches demonstrated 
reasonably good predictive performances individually and similar var-
iable importance (Fig. 2) for the combined region which implies at first 
sight comparable underlying processes. However, the migration pro-
jections show notable disparities between the scenarios, particularly 
evident in the SSP3-RCP70 scenario (Fig. 5). The variation in these 
projections highlights the need to investigate the underlying factors 
responsible for these discrepancies. The differences in outcomes be-
tween both models align with a wider academic concern about analyses 
and projections based on single model applications (Gould et al., 2023).

The discrepancy between the RFR and RFC model is particularly 
interesting since both models are driven by the same set of input data 
and the feature importance of these input data is also well aligned. This 
could lead to the intuitive expectation that errors would also be corre-
lated, as the same unobserved variables are missing from both models. 
Instead, the large discrepancy and low correlation suggests that un-
certainties in both models are at best weakly related. This observation 
complicates articulating firm conclusions about future migration pat-
terns. We see the explicit analysis of this uncertainty as a strength of this 
study, rather than a weakness. When only the results of either the RFR or 
RFC model would be presented, this uncertainty would remain hidden, 
and the reasonable validation scores could suggest a higher certainty to 
either of these.

While our chosen methodological approaches excel in detecting 
complex, nonlinear, and discontinuous relations between independent 
and dependent variables, their inherent black box nature restricts 
transparency. Consequently, the study’s contribution to migration the-
ory remains confined to the confirmation of the importance of the var-
iables identified in advance, but we cannot provide further insights into 
their direction or role in shaping migration patterns, as also concluded 
by Best et al. (2022). A related limitation of the RFR model is that it 
cannot predict results outside the scope of the training data (i.e., higher 
net in-migration or out-migration than observed during the training 
period). This contrasts with standard regression, which permits 
extrapolation, enabling predictions beyond the range of observed 
training data, and limiting the ability of our models to deal with unseen 
and more extreme socioeconomic and environmental conditions that are 
expected in South Asia (Shaw et al., 2022).

The value of developing the migration scenarios presented in this 
study remains significant, despite, and to some extent because of the 
methodological challenges. Employing multiple methodological ap-
proaches can enhance the comprehensiveness of an analysis. While the 
resulting projections vary, the disparities highlight the complexity and 
the multifaceted nature of migration. The disparities between the two 
approaches’ projections may raise questions about consistency. How-
ever, the contrasting outcomes emphasise the intricacy of migration 
analysis, and this would remain hidden when presenting only one 
approach. The main value of this study lies in exploring two methodo-
logical approaches, to provide a more nuanced, comprehensive, and 
critical assessment of migration scenarios. This is not solely valuable in 
terms of academic interest; this study also provides foundational 
knowledge for informed discussion in decision-making arenas. This 
knowledge can contribute to the development of a more comprehensive 
understanding of what can and what cannot be known about future 
migration patterns. For example, the influential Groundswell reports 
(Clement et al., 2021; Rigaud et al., 2018) use one (gravity modelling) 
approach to project climate-related migration and one evaluation 
metric. Our study suggests that applying a multi-model approach could 
provide a more nuanced and complete view on possible migration 
futures.

5. Concluding remark

Our study has investigated the usefulness of two machine learning 
approaches to developing net migration scenario projections for 
different socioeconomic and environmental future trajectories in South 
Asia. Both approaches achieve a reasonable accuracy for the training 
period for the major parts of the region, and further analysis shows 
rather consistent patterns of variable importance. We found that tem-
perature was the most important variable to explain net migration, 
followed by built-up land and yields. These conditions are expected to 
change considerably following demographic change and climate change 
impacts, implying changing migration patterns as well. Besides, we 
show that with the same data but different methodological approaches 
scenario projections can differ considerably. While we find overlapping 
areas of in-migration North-western India and areas projected to face 
out-migration in eastern and northern India, large parts of Nepal and Sri 
Lanka, there are also substantial disparities in other areas between the 
two approaches. This indicates that not one approach to modelling 
future migration patterns on its own should be considered as complete 
or reliable. With this study, we take the underdeveloped field of devel-
oping net migration scenario projections a step forward.
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