Comprehensive Methodology for Accessible Analysis and Forecasting of Global Agricultural Commodity Prices

Explain the results

Study & Forecast Price Changes

Rotem Zelingher

Problem: Global Food Trade Knowledge Gap Collect & Screen

Accessible Data

Commodity Price Indices – High Correlation

High Food Price Volatility in Developing Countries

Research Process – Stages I-III

I. 1st Screening: Build an initial dataset

II. Retrospective analysis & 2nd Screening

III. Forecast price changes

Global Food Trade for Everybody

Explain the results

Study & Forecast Price Changes

Collect & Screen Accessible

Data

Problem: Global Food Trade Knowledge Gap

Model Overview

Model Specification & Application

- Two steps of $p_{m,Y}^h$ investigation
 - Analysis → detect previous price changes detect influencive factors
 - Forecasting → for different forecast horizons
- Approach: Explainable & Black box models
- Output: $p_{m,Y}^h$
 - Monthly price, relative annual change $p_{m,Y}$
 - Forecasted 1-12 months ahead h = 1, ..., 12

Algorithm	Stage			Type
Algorithm	-1	Ш	Ш	Type
ARIMA			\checkmark	TS
CART		\checkmark	\checkmark	XML
GAM		\checkmark	\checkmark	XML
GBM		\checkmark	\checkmark	XML
LM		\checkmark	\checkmark	XML
Random Forest		√	√	XML
TBATS			\checkmark	TS
VAR	\checkmark		\checkmark	TS
XGBoost (linear & tree)			√	XML

Stage IV: Explain the Results

I. General Explanation

II. Monthly Explanation

III. Factor Explanation

IV. Explain Specific Event

Global Food Trade for Everybody

Explain the results

Study & Forecast Price Changes

Collect & Screen Accessible Data

Problem: Global Food Trade Knowledge Gap

Price: Observed Vs. Forecasted, Wheat

Global Explanation, All Months & Horizons

Monthly Explanation

Monthly Explanation, Chosen Factor

Specific Event – Wheat Price, July 2022

h	$p_{m,Y}^h$
1	21.7%
2	21.9%
3	21.5%
4	21.3%
5	25.2%
6	19.7%
7	22.0%
8	17.2%
9	15.8%
10	20.6%
11	19.8%
12	21.8%

Observed price change 21.7%

AGRICAF can make price forecasting and analysing Social Good

Because Everybody
Deserves
Food Security!

roblem/Global/Foo rade Knowledge Ga

Thank you!

Rotem ZELINGHER

zelingher@ iiasa.ac.at רתם זלינגר

AGRICAF Primary Goal

- Reliable and accessible forecasts
- Empower stakeholders for informed decision-making
- Enhance
 Food Justice & Social Equity

Why AGRICAF for Food Justice?

Guidelines

- Accessibility: Utilizes publicly accessible, regularly updated data.
- Comprehensiveness: Integrates XML and econometric methods.
- Accuracy: Price forecasts for 1-12 months ahead.
- Interpretability: Clear visual explanations.
- Practicality: A valuable tool for wide audience

Stage I: 1st Screening, Build an initial dataset

How do they behave together?

- Test for stationarity (ADF)
- Associate data relative to forecast horizon

- Correlation between features
- Removal of multicollinearity*
- Importance ranking
- Remove variables with low impact

Part II – 2nd Screening: Retrospective analysis

- 1. Split: Train (i years), Test (1 year) sets
- 2. Train an algorithm using the training set
- 3. Identify prices using the Train set to

$$p_{m,Y} = f(x_{1,y}^d, \dots, x_{k,y}^d, x_{k,m,y}^a)$$

- 4. Test the algorithms based on test dataset
- 5. Assess* detection accuracy using LOOCV
- 6. Rank features by their contribution level
- 7. Filter leave most contributing features

Part III – Price forecast

- 1. Split data: Train ($45 \le i$ years), Test (1 year) sets
- 2. Train an algorithm using the training set
- 3. Forecast using the Train set to

$$p_{m,Y} = f(x_{1,y}^d, ..., x_{k,y}^d, x_{k,m,y}^a); Y = y_{max} + 1$$

- 4. Test the algorithms based on test dataset
- 5. Assess forecasting accuracy using Rolling CV
- 6. Rank features by their contribution level

Model Assessement & Application

- Two types of $p_{m,Y}$ investigation
 - Analysis → detect previous price
 - **Forecast** → for different time zones
- Approach: Explainable Vs. Black box models
- Model accuracy assessment**

Metric	Formula	Stage
СР	$\frac{1}{T} \sum_{t=1}^{T} (step) \frac{p_t - \hat{p}_t}{error_t}$	2,3
MAE	$\frac{1}{T} \sum_{t=1}^{T} p_t - \hat{p}_t $	2,3,4
MAPE	$\frac{1}{T} \sum\nolimits_{t=1}^{T} \frac{p_t - \hat{p}_t}{error_t} $	2,3
R^2	$1 - \frac{\sum_{t=1}^{T} (p_t - \hat{p}_t)^2}{\sum_{t=1}^{T} (p_t - \bar{p}_t)^2}$	2,3
RMSE	$\frac{1}{T} \sum_{t=1}^{T} (p_t - \hat{p}_t)^2$	2,3
RA	$1 - \frac{RMSE}{sd(p_t)}$	2,3,4

Relative advantage

$$RA = 1 - \frac{RMSE}{sd(p_{m,y})}$$

Higher = Better performance

Lower = Worse performance

Wheat Top Producers – Concentrated Market

Maize Top Producers – Concentrated Market

Price: Observed Vs. Forecasted, Maize

Global Agnostic, Maize: General Relative Importance

Marginal Impact on Maize Price, September

Partial Dependence

- Average response of $p_{m,y}$ to variations of USA's maize production
- PDP shows negative correlation

$$x_{k,y} \downarrow \Rightarrow p_{m,y} \uparrow$$

