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A global dataset of 7 billion 
individuals with socio-economic 
characteristics
Marijn J. Ton   1 ✉, Michiel W. Ingels   1, Jens A. de Bruijn   1,2, Hans de Moel   1, 
Lena Reimann   1, Wouter J. W. Botzen1 & Jeroen C. J. H. Aerts   1,3

In global impact modeling, there is a need to address the heterogeneous characteristics of households 
and individuals that drive different behavioral responses to, for example, environmental risk, socio-
economic policy changes and spread of diseases. In this research, we present GLOPOP-S, the first global 
synthetic population dataset with 1,999,227,130 households and 7,335,881,094 individuals for the year 
2015, consistent with population statistics at an administrative unit 1 level. GLOPOS-S contains the 
following attributes: age, education, gender, income/wealth, settlement type (urban/rural), household 
size, household type, and for selected countries in the Global South, ownership of agricultural land and 
dwelling characteristics. To generate GLOPOP-S, we use microdata from the Luxembourg Income Study 
(LIS) and Demographic and Health Surveys (DHS) and apply synthetic reconstruction techniques to fit 
national survey data to regional statistics, thereby accounting for spatial differences within and across 
countries. Additionally, we have developed methods to generate data for countries without available 
microdata. The dataset can be downloaded per region or country. GLOPOP-S is open source and can be 
extended with other attributes.

Background & Summary
In recent decades, several continental- to global-scale socio-economic impact assessment models have been 
developed to investigate the societal effects of, for example, diseases1 (e.g., Balcan et al.1), transport systems2, 
food security3, energy consumption4, water quality5, and weather extremes6. By simulating the current and 
future projections of societal impacts, such large-scale models can be used to assess how societies may respond 
to (increasing) socio-economic and environmental risk. For example, integrated assessment models can provide 
insights into how sustainable development policies may reduce carbon emissions by providing a quantitative 
description of key processes in human and earth systems and their interactions7.

In the majority of global models, impacts are simulated on the national level in global economic zones, 
focusing on policy responses by governments and the private sector. In these models, households and indi-
viduals are assumed to exhibit uniform behavioral responses to impacts and change8. For example, integrated 
assessment models of climate change typically assume a representative consumer of a single average global or 
regional consumer9. However, there is a need to address the heterogeneous characteristics of individuals and 
households on both the continental and global scales8,10,11. For example, the use of micro-simulation models 
addressing individual behavior during the COVID-19 pandemic has proven crucial in simulating the spread 
of a virus using sociopsychological factors that drive the behavioral responses of individuals across time and 
space12. Additionally, continental-scale agent-based models address interactions between households and the 
government concerning issues such as energy consumption13 and climate risk adaptation6. While these models 
provide valuable insights, they assume generic household types, neglecting the heterogeneity of individuals and 
households under risk, and not considering how individual socio-economic and behavioral drivers influence 
adaptive responses.

To improve large-scale agent-based models, there is a need for a consistent synthetic global dataset on the 
attributes of households and individuals (age, income, education, etc.) that drive behavioral responses under 
environmental risk. In this context, synthetic means that the population in the dataset has socio-demographic 
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attributes that have a similar statistical distribution of characteristics to the real population14. To create a syn-
thetic population that is representative of the actual population, a few key conditions should be considered:

•	 Reflecting the heterogeneity of the distribution of households and individuals across geographic areas15

•	 Reproducing the interdependencies among agents in the same household16

•	 Ensuring data confidentiality17

•	 Avoiding pure replication of the underlying sample17

Recent studies have shown that it is possible to create large-scale synthetic population datasets with indi-
vidual characteristics; examples include the works of Prédhumeau & Manly14 and Wu et al.18. In their study, 
Prédhumeau & Manly14 generated a synthetic population dataset for Canada by integrating various sources 
of microdata and sub-country census data using proven statistical methods, such as the Iterative Proportional 
Fitting algorithm19,20.

In this research, we present GLOPOP-S21, the first global synthetic population dataset of 1,999,227,130 
households and 7,335,881,094 corresponding individuals for the year 2015 that is consistent with population 
statistics (e.g., distributions of age, gender, income, etc.) at an administrative unit 1 level, thus addressing spa-
tial heterogeneity within and across countries15. We focus on the following attributes: age, education, gender, 
income or wealth, settlement type (urban/rural), household size and household type (e.g., single, couple, couple 
with children). We additionally include the feature ownership of agricultural land and dwelling characteristics, 
but these attributes are not available for all countries. The choice of these variables is motivated by the need to 
understand behavior related to environmental risk. Variables such as education and age are often found to be 
related to environmental (risk) awareness22, whereas income or wealth of a household influences the capacity 
of households to act against environmental risk23. Gender has been shown to influence environmental risk per-
ceptions24, while impacts of environmental risk often differ between genders. Settlement types (urban versus 
rural) influence the type of adaptation measures that are applicable in the context of addressing environmental 
risk25,26. Household size and type may also influence preferences for different protection options and the ability 
to act against environmental risks27.

To create the dataset, we apply state-of-the-art statistics (e.g., Iterative Proportional Updating) and paral-
lel computing power to integrate and upscale two key databases on microdata. The Demographic and Health 
Surveys28 (DHS) provide specific household indicators for 90 different countries, including demographics, 
health, psychological and economic indicators. The Luxembourg Income Study29 (LIS) focuses on harmoniz-
ing income microdata for 50 countries over the last 50 years, including countries in Europe, North America, 
Latin America, Africa, Asia, and Australia. We have considered using other databases, such as EU microdata, 
UNICEF’s Multiple Indicator Cluster Surveys (MICS) and Integrated Public Use Microdata Series (IPUMS) 
data, but we preferred LIS and DHS. Despite restricted access to LIS data, we favored it over EU microdata, 
because the latter database does not allow linking individuals to their respective households. MICS and IPUMS 
have similar coverage to DHS, but DHS covers more countries, has more recent data compared to IPUMS, and 
includes dwelling characteristics.

Figure 1 shows which database is available for each country. The two databases complement each other well, 
with DHS data mostly available for low-income countries and LIS data predominantly available for high- and 
middle-income countries. After processing the data, the number of countries with available LIS or DHS survey 
data and regional statistics (i.e., marginal distributions) is 78, covering 81.4% of the global population. There are 
a few countries for which we either have survey data or marginals. For example, when the microdata lacks the 
variable indicating the region, we can still use these data to create the households and individuals, but we cannot 
construct the regional marginals. Alternatively, in the case that the rural/urban indicator is missing, we cannot 
use the survey data, but we can still construct the marginals of the other variables. For 99 countries, covering 

Fig. 1  Source of data for each country.

https://doi.org/10.1038/s41597-024-03864-2


3Scientific Data |         (2024) 11:1096  | https://doi.org/10.1038/s41597-024-03864-2

www.nature.com/scientificdatawww.nature.com/scientificdata/

15.7% of the world population, where no survey data were available, we generated a synthetic population based 
on either DHS or LIS data from other countries. A small number of countries (~1% world population) does not 
have a synthetic population due to a lack of information about the settlement type (urban/rural) or because they 
are (disputed) countries/regions, such as North Korea, Taiwan and Western Sahara.

To construct the dataset, we follow the procedure depicted in Fig. 2 (for details see Methods). Starting at the 
top left of Fig. 2, we obtain national-level household data from survey data (i.e., LIS and DHS) for each coun-
try (steps 1–3). Then, we categorize and harmonize the DHS and LIS data; see Table S1 in the Supplementary 
Information, where we list the original categories in the survey data and the corresponding categories in the 
synthetic dataset. Next, we apply data processing steps (e.g., imputing missing data and merging datasets) to 
make the data comparable and consistent (See Box 1 in Fig. 2 for an example of the processed survey data). 
In steps 4 to 8, we construct the regional marginal distributions of household and individual attributes. These 
marginal distributions indicate the number of households and individuals within each category of the attrib-
utes. For example, the marginal distribution of the age attribute indicates the number of individuals aged 0–4, 
5–14, 15–24, 25–34, and so forth, for each region (see Box 2 in Fig. 2 for an example of the processed marginal 
distributions). After preparing the survey data (Box 1) and the marginal distributions (Box 2), the Iterative 
Proportional Updating algorithm is applied to calculate weights for the households in the survey data such that 
the weighted households match the marginal distributions on the regional level (step 9). By doing so, we account 
for differences in socio-economic characteristics across regions within a country.

The global dataset presented in this paper will be a valuable starting point for conducting research on societal 
impact assessment and risk adaptation, helping to better understand the adaptive capacity or social vulnerability 
of households to risk30. GLOPOP-S is available for download at the regional to the global scale and provides a 
unique input in micro-simulation models addressing individual decision-making under climate and other types 
of risk. Additionally, we provide a data file with the marginal distributions of agent attributes at a regional level 
for all countries.

Fig. 2  Methodological approach in nine steps of creating a global synthetic database of households and 
individuals with attributes (GLOPOP-S).
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In Table S1 in the Supplementary Information, we list the variables used in the LIS and DHS databases and 
we show how the values and categories in the databases correspond to the categories in the synthetic population 
database. For a quick overview of the variables and categories in the synthetic population database, see Box 3 in 
Fig. 2 or Table 2 in the Data Records section.

Methods
In this section, we describe our methods following the steps in the flow diagram shown in Fig. 2.

Survey data from LIS database (step 1).  We begin with a more detailed explanation of the processing 
procedures for the LIS data. The LIS database contains microdata from around 50 middle- and high-income 
countries spanning a wide range of years. Since the base year of GLOPOP-S is 2015, we only use LIS surveys that 
originate from 2015, and if not available, within the time span 2013–2017. The majority of surveys are from the 
year 2015 (22/33), a high number of the surveys are from 2014 or 2016 (7/33)and a small number of the surveys 
originate from 2013 or 2017 (4/33). Even though the base year of GLOPOP-S is 2015, we prefer to maintain some 
flexibility here. We favor using survey data from 2013–2017 rather than replacing it with survey data from 3 
similar countries.

As the LIS data are only accessible through a remote execution system, there are some challenges regarding 
extracting the attributes from this database. In particular, there is no access to individual records in the micro-
data but only to aggregated data (marginal and joint distributions). Therefore, we developed a procedure that 
extracts the joint distributions from the LIS server of both households and individual variables of our interest for 
each country (Step 1a in Fig. 2), which preserves data confidentiality17. These joint distributions, also referred to 
as contingency tables or frequency tables, provide the number of households for each combination of attributes. 
For example, the joint distribution gives us the number of households that are a couple with a child (household 
type), belong to the poorer income group, live in an urban area, and where the household head has finished 
primary school, is aged between 35 and 44 and is male.

When the number of surveyed households is limited, the probability of encountering gaps (zeros) in the joint 
distribution of household attributes increases. This phenomenon, commonly known as the ‘zero-cell problem’, 

Attributes HH/I Levels

Income Individual 1: poorest 20%, 2: poorer 20%, 3: middle 20%, 4: richer 20%, 5: richest 20%, −1: unavailable for 
country

Wealth Individual 1: poorest 20%, 2: poorer 20%, 3: middle 20%, 4: richer 20%, 5: richest 20%, −1: unavailable for 
country

Settlement type Household 0: urban, 1: rural

Age Individual 1: 0–4, 2: 5–14, 3: 15–24, 4: 25–34, 5: 35–44, 6: 45–54, 7: 55–64, 8: 65 + 

Gender Individual 1: male, 0: female

Education Individual 1: less than primary, 2: complete primary, 3: incomplete secondary, 4: complete secondary or 
tertiary, 5: higher

Household type Household
1: single, 2: couple, 3: couple with children, 4: one parent with children, 5: couple with (non-)
relatives, 6: couple with children and (non)-relatives, 7: one parent with children and (non-)
relatives, 8: other

Household ID Household 1, …,

Relationship to head Individual 1: head, 2: partner, 3: child, 4: relative, 5: non-relative

Household size Household 1: 1, 2: 2, 3: 3–4, 4: 5–6, 5: 7–10, 6: 10+

Ownership of agricultural land (DHS) Household 1: yes, 2: no, −1: unavailable for country

Floor material (DHS) Household 1: natural, 2: rudimentary, 3: finished, −1: unavailable for country

Wall material (DHS) Household 1: natural, 2: rudimentary, 3: finished, −1: unavailable for country

Roof material (DHS) Household 1: natural, 2: rudimentary, 3: finished, −1, unavailable for country

Source Country 1: LIS, 2: LIS survey, 3: LIS marginals, 4: Modeled by LIS data, 5: DHS, 6: Modeled by DHS data

Table 2.  Attributes in GLOPOP-S.

Household 
ID

Relationship 
to head Income Wealth

Settlement 
type Age Gender Education

Household 
type

Household 
size

Ownership of 
agricultural 
land

Floor 
material

Wall 
material

Roof 
material

Data 
source

1 1 1 −1 0 3 0 1 1 1 −1 −1 −1 −1 1

2 1 5 −1 0 4 1 4 2 1 −1 −1 −1 −1 1

2 2 5 −1 0 3 0 4 2 2 −1 −1 −1 −1 1

3 1 2 −1 1 5 0 2 3 3 −1 −1 −1 −1 1

3 3 2 −1 1 2 1 1 3 3 −1 −1 −1 −1 1

3 3 2 −1 1 2 0 2 3 3 −1 −1 −1 −1 1

Table 1.  Example of the data in GLOPOP-S.
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occurs when households are missing from the collected sample, but do exist in the actual population31. These 
zeros in the joint distribution lead to a lack of heterogeneity and potential biases in the synthetic population 
because the iterative proportional updating algorithm cannot generate new households that were not part of the 
sample data.

In the LIS data, the number of surveyed households per country ranges from 2,352 to 232,219 (6,237 to 
783,131 individuals) (see Table S2 in the Supplementary Information). Especially in the lower end of this range, 
we observe significant gaps in the joint distributions of countries. Several methods have been proposed to fill the 
gaps in the contingency table (i.e., joint distribution) (e.g., Mueller & Axhausen32; Choupani & Mamdoohi33). 
The simplest solution is to replace the zeros with a small number19, for example, 0.1 or 0.01, so that there is a 
small probability that these households are generated in the synthetic population. However, we do not adopt this 
solution as it does not consider the correlation structure among variables.

Instead, we take the following steps to reduce the number of zeros in the joint distribution and to address any 
remaining zeros, while preserving the interdependencies among household and individual characteristics and 
considering regional differences:

	 1.	 First, we decrease the size of the joint distribution tables by reducing the number of variables or by reduc-
ing the number of categories per variable33–35. For example, we divide the age variable into eight groups 
mostly spanning 10 years, whereas Prédhumeau & Manly14 created 18 age groups, each spanning five years, 
in their synthetic population dataset for Canada.

	 2.	 Additionally, we extract the frequency tables at the national level instead of the regional level, benefitting 
from the larger sample size at the national level, and thus a more realistic population (e.g., more heter-
ogeneity among households). However, a downside of this approach is that it could potentially lead to 
spatialization errors because it increases the homogeneity of households across regions. In other words, a 
household residing in region A may be assigned to region B in the synthetic population. Khachman et al.36 
describes this dilemma of aggregating or disaggregating the spatial resolution in detail, and we find that 
a more aggregate approach is favorable given the small sample sizes. Besides, we still account for regional 
differences because we are fitting the national survey data to regional statistics (marginal constraints).

	 3.	 We fill the remaining zeros by factorizing the joint distribution into a conditional and marginal distribu-
tion (Step 1b in Fig. 2). Considering three attributes, A1, A2, and A3, we marginalize the joint distribution 
as follows: J(A1, A2, A3) = C(A1, A2 | A3) * M(A3). Then, we assume that the joint distribution of A1 and 
A2 is independent from A3, i.e., C(A1, A2 | A3) * M(A3) = J(A1, A2) * M(A3). By marginalizing the joint 
distribution and assuming independence, we have essentially reduced the number of attributes in the con-
tingency table, as proposed by Auld et al.35 and Choupani & Mamdoohi33. However, we want to avoid as-
suming independence for a specific attribute, which, in the example, is A3. Therefore, we iteratively exclude 
one of the attributes from the joint distribution and count the number of households given by the reduced 
joint distribution multiplied by the marginal distribution of the excluded attribute. Then, we take the mean 
across all these counts and impute the missing value from this mean. Since this procedure increases the 
total number of households in the joint distribution, we correct all the frequencies in the distribution by 
multiplying them with the fraction “old number of households”/“new number of households”. We perform 
this procedure to fill all gaps in the joint distribution of household characteristics, except for the zeros that 
are structural zeros37; for example, the probability of a household being a couple and having a household 
size of one is always zero. By applying this approach, we consider the correlation structure between the 
attributes rather than simply imputing the missing values with a small, fixed number.

Thus far, we have only discussed joint distributions of the characteristics of the household and the house-
hold head. Depending on the household type and size, we need to add a partner and/or children, relatives, or 
non-relatives to the household (Step 1c in Fig. 2). Starting with the partner, we extract joint distributions of 
the age, gender and education of the household head and the age, gender and education of the partner. We 
merge the partner’s age conditional on the head’s age, the partner’s gender based on the head’s gender, while the 
partner’s education is assigned based on the head’s education. To add the characteristics of children, relatives 
and non-relatives to the households, we follow a similar method to the previously described approach (see 
Supplementary Information S3). In S3, we give a detailed description of how individuals are merged using the 
joint distributions obtained from the LIS database.

Survey data from DHS database (step 2).  The DHS database is a collection of more than 320 household 
surveys in 90 middle- and low-income countries, which provide information on a wide range of monitoring and 
impact evaluation indicators in the areas of population, health, and nutrition. The DHS data contain a wealth 
index that categorizes individuals into five equal groups, ranging from the poorest 20% to the richest 20% of the 
individuals. The index is not related to a household’s income, but based on a household’s assets, dwelling mate-
rials, access to water and sanitary facilities. In low-income countries, this asset-based index is more commonly 
used as a measure for a household’s economic situation than a household’s income because reliable income data 
are difficult to obtain. For a large portion of the population in those countries, it is difficult to express income 
in monetary terms for various reasons; for example, because they earn their income in the informal sector38,39. 
Hence, there is no income data in the DHS surveys, so the economic situation of households is proxied by the 
wealth index. On the other hand, for developed countries, wealth data are hard to obtain and disposable house-
hold income is the most common proxy for economic well-being40. Therefore, we have two columns in the syn-
thetic population of each country, income and wealth. For synthetic populations derived from LIS survey data, 
the income column contains data, whereas the wealth column is empty. For synthetic populations derived from 
DHS survey data, the wealth column has data, whereas the income column is empty. Since the sample sizes are 
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generally larger in the DHS surveys than in the LIS surveys, we do not impute missing combinations of household 
and individual characteristics. However, we still use survey data at the national level to ensure a larger heteroge-
neity of households within the region, instead of using survey data at the regional level. The number of countries 
with available DHS data is 45, where 12 out of 45 surveys come from 2015, and the other 33 surveys are within a 
2 year time range.

Countries lacking survey data (step 3).  The number of countries with available LIS or DHS survey data 
that contain our variables of interest is 33 and 45, respectively, and the population in these 78 countries covers 
81.4% of the world population. In step 3, we focus on countries lacking survey data, for which we use the pro-
cessed LIS or DHS data (as outlined in steps 1 and 2) of three demographically similar countries. These three sim-
ilar countries are selected using the Human Development Index (HDI) of the Global Data Lab (GDL)41. The index 
is calculated based on a few indicators: mean years of schooling of adults aged 25+, expected years of schooling 
of children aged six, life expectancy at birth, and the gross national income per capita. For each country without 
any survey data, we first select 10 countries with the most similar HDI index and combine the survey data of the 
three countries that are geographically closest (‘nearest distance’) to substitute the missing survey data. To avoid 
combining LIS and DHS survey data, we replace the missing survey data with data from either the LIS or DHS 
database. We select data from the three countries within the respective database that have the most similar HDI 
index and shortest distance. An important reason for not combining LIS and DHS survey data is that LIS contains 
an income variable, whereas DHS contains a wealth index and we do not want to mix the two variables. To equally 
account for the characteristics of the three similar countries, we correct for differences in population size; without 
this correction, there is a risk that the features of a country with a large population will dominate in the synthetic 
population. To correct for population size, we multiply the household weights of the two smallest countries by 
a factor such that the sum of the household weights is equal to the sum of the household weights of the country 
with the largest population size.

Presumably, the survey data from the identified three similar countries do not perfectly represent the popu-
lation of the country lacking survey data. However, this is a minor concern because the replacement survey data 
should only show a comparable correlation structure between the household attributes in the country lacking 
microdata. For example, the probability of earning a certain income given a specific education level should be 
similar in the country lacking survey data and the countries classified as similar.

Marginal distributions at administrative unit 1 level (steps 4–8).  The marginal distributions indi-
cate the number of households or individuals within each category of the attributes. For example, the marginal 
distribution of the age attribute indicates the number of individuals aged 0–4, 5–14, 15–24, 25–34, and so forth, 
for each region. The settlement type (rural/urban) marginal distribution is created by overlaying an SMOD-GHS 
grid with a GHS population grid to count the number of people in the rural and urban grid cells per region for all 
countries (step 4)42,43. The advantage of this approach is that we do not need to estimate the urban/rural marginal 
for countries lacking survey data, as the GHS data provide the number of individuals residing in rural and urban 
areas for each region in the world.

For the other marginal distributions, we use LIS (step 5) and DHS (step 6) data and count the number of 
households and individuals within each category of the attributes. Both LIS and DHS contain a variable that 
specifies the region of a household, but the subnational division of regions in the two databases is not consistent. 
As GDL is available globally for all subnational regions, we use GDL as our baseline. Since almost all DHS sur-
veys are supplied with coordinates per cluster of households, we can link the households to GDL regions based 
on the households’ coordinates. For the LIS surveys (and DHS surveys without coordinates), we assign each 
household to a GDL region manually by name and location to match the subnational regions of GDL.

As some regions lack marginal distributions in both LIS and DHS, we developed the following procedure to 
estimate the marginal distributions of those regions: for each attribute (i.e., education, household size, age, etc.), 
we estimate the marginal distributions by taking the average over the marginals of the k regions (with LIS or 
DHS data) that have the most similar Subnational Human Development Index (SHDI) as provided by GDL. The 
number of regions, k, which varies for each of the attributes and for each of the two databases, is determined by 
minimizing the difference between the mean of the k marginals and the true marginals given by the LIS or DHS 
data. After we have determined the k for each attribute, which is in the range of 50–250 regions (see Table S3 in 
the Supplementary Information), we can predict the marginals of the regions without LIS or DHS data. Again, 
we do not combine LIS and DHS data. For each country without available data, the marginals are estimated 
using either LIS or DHS data depending on which database was selected for replacing the missing survey data. 
Since income and wealth are measured in percentiles, we employ a slightly different procedure to construct the 
income and wealth marginals. Instead of matching regions with a similar HDI index, we match regions based 
on their relative HDI index within the country, meaning the region’s HDI relative to the country’s HDI. First, 
we divide the regions into n equally sized groups based on their relative HDI. This approach results in n groups 
of regions with a similar level of (economic) development within the country. Next, we calculate the average 
percentages for the five income or wealth groups (i.e., % poorest, % poorer, % middle, % richer, and % richest) 
across each of the n groups. For regions without observed marginal data, we calculate the relative HDI index and 
we assign the average percentages of the corresponding group.

Finally, all marginals are scaled to match the region’s population size in 2015 as provided by GHS43 (step 8). 
This means that the shape of the marginal distributions remains the same, regardless of the original year of the 
data. We aim to use survey data from 2015, but if data from that year are missing, we select data from other years. 
To minimize the possible error caused by this procedure, we only use data from years closest to 2015, and not 
from more than 2 years prior or after.
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2.5 Iterative Proportional Updating algorithm (step 9).  Various methods have been developed that 
can generate a synthetic population that is statistically representative of the actual population using sample 
data and aggregated statistics (marginal distributions). The methods can be categorized into three groups: syn-
thetic reconstruction, combinatorial optimization, and statistical learning31,44. The most popular and conven-
tional population synthesis technique is Iterative Proportional Fitting (IPF), which belongs to the synthetic 
reconstruction category. In this approach, a contingency (frequency) table based on survey data is fitted to 
the marginal constraints from aggregated population data in an iterative manner. IPF produces weights for all 
households in the survey data, which represent the probabilities of drawing the household for the synthetic 
population.

The method has been adapted by Ye et al.45 to allow for simultaneously fitting household characteristics 
and the characteristics of individuals within those households. This novel IPF method is referred to as Iterative 
Proportional Updating (IPU). In each iteration of the algorithm, the households are first reweighted based on 
the household’s marginal constraints and then reweighted according to the marginal constraints of the individ-
ual attributes. In this way, households with similar attributes but consisting of individuals with different charac-
teristics result in different household weights. We apply the IPU algorithm to scale the national survey data to 
the regional marginals using the R package mlfit (https://rdrr.io/github/krlmlr/mlfit/man/).

However, IPU creates fractional weights for the agents, whereas an ABM requires an integer number of 
households and individuals. To convert the weights to integers, we apply the ‘truncate, replicate, and sample’ 
(TRS) algorithm developed by Lovelace & Ballas46. They showed that their method performs better than other 
integerization methods, such as simple rounding or the threshold approach.

A drawback of IPU is that it replicates the households in the sample data and cannot generate “new” house-
holds that are not present in the sample31. This could result in a lack of heterogeneity in the synthetic popula-
tion. Nevertheless, for countries derived by LIS data, we expect that this issue is limited because we imputed 
missing households with rare combinations of characteristics. For countries covered by DHS data, the sam-
ple sizes are generally larger than those for LIS countries, which would ensure sufficient heterogeneity in the 
synthetic population. In addition, for countries modelled using DHS or LIS data, we combine survey data 
from three similar countries, thereby increasing the sample size and enhancing heterogeneity in the synthetic 
population.

Data Records
The dataset of households and individuals with socio-economic characteristics is public and freely available on 
Harvard Dataverse: https://doi.org/10.7910/DVN/KJC3RH21. The data can be downloaded per country, whereby 
the folders are named according to the country’s ISO codes, and administrative unit level 1, corresponding to 
GDL regions (see Nr_individuals_data_availability.csv for a csv of the GDL regions). The number of individuals 
per region ranges from 1,285 to 219,533,849, hence, it is recommended to download data per region for large 
countries, such as China and India. To save memory, the data are stored in binary format and should be read fol-
lowing the code in read_synthpop_data.R or read_synthpop_data.py on GitHub: https://github.com/VU-IVM/
GLOPOP-S/. Table 1 provides an example of how the data look like. Note that we have not included a column 
referring to the GDL region in the data since it is already specified in the filename. Additionally, it is important 
to be aware that household IDs are unique per region, not per country. Furthermore, we want to emphasize that 
the income or wealth index is not cross-country comparable, as the poorest 20% in country x does not have the 
same income or wealth as the poorest 20% in country y.

Table 2 lists the different variables and describes the values each attribute can take.

Technical Validation
Following the discussions by Sun and Erath47, Zhou et al.44 and Prédhumeau & Manly14, we evaluate the good-
ness of fit of the synthetic population by quantifying how well the synthetic population resembles the observed 
population in the sample data. We do this by comparing the frequencies of all pairs of agent characteristics in 
the synthetic population with the sample data. Additionally, we evaluate the goodness of fit of our procedures 
to create synthetic agents for countries lacking survey data and marginals by applying these methods to the 
countries for which we have survey data and marginals. The goodness of fit is calculated by the formula in Eq. 1:

∑ ∑ ∑ ∑ ∑= −
= = = + = = ( )f fSum of squared errors (1)r

R
c
C

h c
C

i
I

j
J

ijr
sample

ijr
synth

1 1 1 1 1

2
c h

In Eq. 1, fijr represents the share of households or individuals with two specific characteristics, i and j, for 
example, a rural household in the highest income group, in a region, r. f ijr

sample is the share of households or indi-
viduals with characteristics i and j in the sample data and f ijr

synth is the share in the synthetic population. The set 
C represents the different attributes (age, education, household size, etc.) and the sets Ic and Jh represent the 
categories (e.g., for age we have the categories 0–4, 5–14, 15–24, etc.) within the attribute c and h. For all possible 
pairs of characteristics, we take the sum of the difference between the share in the sample data and the synthetic 
population for all regions, R. When the sum of squared errors is zero, we have a perfect fit.

For countries lacking survey data, it is not possible to calculate the sum of squared errors, because we do not 
have information on f ijr

sample. To validate the performance of the methods for replacing the survey data and esti-
mating the marginals, we apply our procedure from step 3 for countries with data as if the survey data were not 
available. For these countries, we assess the goodness of fit of the synthetic population under three conditions:
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	 1.	 Estimated survey and estimated regional marginals: both microdata and (regional) marginals are missing.  
In this case, the microdata are copied from the three most similar countries (based on HDI; see step 3)  
and regional marginals are based on the 50–250 most similar regions (depending on the attribute; see  
steps 4–8).

	 2.	 Estimated survey and observed regional marginals: for a few countries, the survey data lack the urban/rural 
indicator and, therefore, could not be used. In this case, survey records are copied from the three most sim-
ilar countries (based on HDI; see step 3). However, by augmenting the missing urban/rural information 
with SMOD-GHS data (see step 4–8), regional marginals can be determined from the survey and are used.

	 3.	 Observed survey and estimated regional marginals: if there are microdata on individuals but the survey 
data do not specify the regions from which the individuals originate, the regional marginals cannot be 
determined. In this case, the survey data are used, but the marginals are determined using the 50–250 most 
similar regions (see step 4–8).

In addition to the described variants of the synthetic population related to incomplete data, we determine 
synthetic population for two hypothetical situations to illustrate the value of considering spatial heterogeneity 
and correlations between characteristics. These are:

	 1.	 Benchmark 1 No survey data and observed regional marginals: here we look at the added value of using joint 
probabilities for the individual/household characteristics of agents instead of working with (uncorrelated) 
aggregated data for a whole population. To calculate this error, we determine the sum of squared error by 
replacing fijr

synth with f f( )ir
sample

jr
sample×  in Eq. 1, where fir

sample is the frequency of characteristic i in region r 
independent of characteristic j, and vice versa.

	 2.	 Benchmark 2 Observed survey data and observed national marginals: to show the added value of using 
regional marginals, we calculate the frequencies of all pairs of characteristics at the national level. The error 
is calculated by replacing fijr

synth in Eq. 1 with the frequencies given by the sample data at the national level, 
i.e., replacing fijr

synth with fij
sample. Hence, subscript r is missing in fij

sample, indicating that the share of 
households with characteristics i and j is the same over all regions. Therefore, we refer to this error as the 
national error.

Figures 3, 4 show the sum of squared errors for the synthetic and hypothetical variants mentioned above.
Figures 3, 4 reveal that when we substitute the survey data with survey data from three similar countries, 

the error only increases slightly (Estimated survey and observed regional marginals). More precisely, the median 
error increases by roughly a factor two for DHS countries and a factor three for LIS countries, see Figures S2, S3 
in the Supplementary Information, where we plot the hypothetical errors relative to the synthetic error. When 
marginals need to be estimated (Observed survey and estimated regional marginals), the error increases by a 
factor ten for DHS countries and a factor 12 for LIS countries. When both the survey data and marginals are 
replaced (Estimated survey and estimated regional marginals), errors increase by a factor ten for DHS countries 
and a factor 13 for LIS countries. These results show that, particularly, the estimation of (regional) marginals 
is difficult and predominantly contributes to an increase in errors compared to the substitution of survey data.

The results of Benchmark 1 further illustrate the importance of using survey data to account for correla-
tions between characteristics, instead of merely using regional marginals. The errors increase by a factor 50 for 
countries with LIS data and a factor three for countries with DHS data. In case of Benchmark 2, when regional 
marginals are not used and the population is synthetically generated at the national level, the error increases 
considerably for LIS countries (by a factor 150) and less so for DHS countries (a factor six). It is interesting to 
note that the errors of the benchmarks are a lot higher for LIS countries than DHS countries. This suggest that 
correlations between characteristics are stronger in countries in the Global North than in the Global South. In 
addition, spatial differences seem to be larger in countries in the Global North than in the Global South.

Usage Notes
GLOPOP-S can be used in global, national and regional impact models where individuals or households are 
identified as agents that can make decisions given a set of attributes and their environmental or geographical 
context. Agent-based models are typically applied to study decision-making behavior, and the GLOPOP-S data-
set can be used as input for such models. We provide household and individual characteristics at administration 
level 1, and data specific to geographic regions can be downloaded by identifying the GDL geographical IDs 
in our dataset. GLOPOS-S covers the entire world, but there are some uncertainties when microdata were not 
available for a country. As Figs. 3, 4 show, the synthetic population does not resemble the true population so 
well when there is no information on aggregated statistics at the subnational level (i.e., no regional marginals). 
Hence, the data for these countries should be handled with care. However, these are also generally countries that 
can be considered data-scarce. Also, we want to emphasize that the income or wealth index are not comparable 
across countries, i.e., the poorest 20% individuals in country x have different economic resources than the poor-
est 20% individuals in country y.

Additionally, GLOPOP-S can be extended with other attributes using other survey data. When the additional 
survey data includes variables present in GLOPOP-S, a regression model can be estimated. In the regression 
model, the regressors should align with the attributes in GLOPOP-S, such as age of the household head, house-
hold size, education level of the partner, and the dependent variable represents the new variable a researcher 
aims to include.

https://doi.org/10.1038/s41597-024-03864-2


9Scientific Data |         (2024) 11:1096  | https://doi.org/10.1038/s41597-024-03864-2

www.nature.com/scientificdatawww.nature.com/scientificdata/

Code availability
The synthetic population database is developed in R using the following packages: dplyr, stringr, tidyr, zoo, 
reshape2, tibble, wrswoR, data.table, mlfit and readstata13, and MASS. The scripts are publicly and freely accessible 
on GitHub: https://github.com/VU-IVM/GLOPOP-S/. The code was run on the VU BAZIS cluster, where we used 
up to 500GB of RAM to generate the synthetic populations of the largest countries (China and India).

Received: 21 December 2023; Accepted: 11 September 2024;
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Fig. 3  Size of the errors for countries with LIS data under different conditions.

Fig. 4  Size of the errors for countries with DHS data under different conditions.
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