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A B S T R A C T

The impact of ambient air pollution on human health, particularly fine particulate matter (PM2.5) and tropo-
spheric ozone (O3), is a critical global concern. Atmospheric chemical transport models (CTMs) are widely used 
to predict air pollutant concentrations and assess associated health risks. However, there is a need to better 
understand how the horizontal resolution of these models influences their accuracy, especially in future as-
sessments. In this study, we compared the performance of global low-resolution CTMs with high-resolution 
nested simulations for estimating O3 and PM2.5 concentrations. The models were validated against observa-
tional data to determine their accuracy across different spatial scales and to evaluate their suitability for future 
scenario assessments. Our findings demonstrate that while the nested-grid simulations improved the reproduc-
ibility of regional observations, especially in areas with complex topography or localized emissions, the overall 
global-scale performance of the model did not significantly benefit from higher resolution. Additionally, the 
differences in global health and agricultural impacts between low- and high-resolution simulations were minor 
and within the range of uncertainty typically associated with emission inventories and CTMs. However, for 
specific regional studies or policy applications, higher resolution may offer improved accuracy. Ultimately, the 
current low-spatial-resolution model provides sufficient accuracy for many global-scale applications, but the 
choice of resolution should be carefully considered depending on the specific objectives of the study especially in 
future scenario.

1. Introduction

Climate change is one of the most urgent and complex challenges 
facing modern society, with profound implications for ecosystems, 
economies, and human health. In addition to its global effects, climate 
change interacts with local air quality through a range of intricate and 
multifaceted processes. For example, climate change contributes to 
increased frequency and intensity of wildfires, leading to elevated 
emissions of fine particulate matter (PM2.5) while higher temperatures 
from climate change can increase the formation of ground-level ozone 
(O₃) (Fiore et al., 2015; Jacob and Winner, 2009; Schneidemesser et al., 
2015). These pollutants has detrimental consequences on human health 
and agricultural production (Agrawal, 2005; Ashmore, 1991; Bru-
nekreef and Holgate, 2002).

To combat climate change, reducing greenhouse gas emissions, 
particularly carbon dioxide (CO2), is a critical priority as outlined by the 
Kyoto Protocol (Iwata and Okada, 2014; Occhipinti and Verona, 2020). 
While climate change mitigation policies, such as phasing out fossil 
fuels, primarily aim to reduce greenhouse gas (GHG) emissions, they 
often have the co-benefit of improving air quality. The transition away 
from fossil fuels reduces the release of air pollutants, such as sulfur di-
oxide (SO2), nitrogen oxides (NOx), and particulate matter (PM), which 
are major contributors to air pollution (Jiang et al., 2013; Nemet et al., 
2010; Thurston and Bell, 2021; Vandyck et al., 2018; West et al., 2013). 
This benefit can lead to significant improvements in public health by 
lowering the incidence of respiratory and cardiovascular diseases linked 
to poor air quality. Thus, climate policies not only address long-term 
climate goals but also deliver immediate health and environmental 
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gains at the local level.
Recently, chemical transport models (CTMs) and source receptor 

models have been used to convert the emissions of air pollutants into 
atmospheric concentrations of the air pollutants (Askariyeh et al., 2020). 
The outcome form the CTM model can be used to assess the impacts of 
air pollutants such as PM2.5 and tropospheric O3, which are linked to 
significant human health risks and agricultural losses (Anenberg et al., 
2010; Chuwah et al., 2015; Cissé et al., 2022; Cohen et al., 2017; Xiong 
et al., 2022). CTMs are particularly useful for capturing complex 
chemical-transport interactions, although they require substantial 
computing power. In contrast, source-receptor models are less compu-
tationally intensive but may not account for nonlinear interactions as 
effectively. Given these constraints, global CTM simulations often use 
coarse horizontal resolutions, which may limit the accuracy of the out-
comes. One approach to improving this is to use nested-grid simulations, 
which focus on a specific region with finer spatial resolution (Chen et al., 
2009; Protonotariou et al., 2010; Zhang et al., 2011). However, the 
impact of horizontal resolution on simulation accuracy remains unclear, 
making it important to evaluate whether finer resolutions provide sig-
nificant advantages. The primary objective of this study is to evaluate 
the accuracy of nested-grid simulations by comparing them with 
global-grid models to assess whether the increased resolution signifi-
cantly enhances predictive accuracy. Additionally, we apply our 
modeling framework to future scenarios, focusing on the co-emission of 
greenhouse gases (GHGs) and air pollutants. Given the uncertainty 
surrounding the necessity of nested simulations, this study examines 
whether higher resolution is essential for drawing robust conclusions in 
future research. It is important to note that our study does not directly 
address the climate change penalty on air quality.

Our hypothesis is that while nested-grid simulations have the po-
tential to provide more detailed air quality predictions, their impact on 
the overall accuracy of PM2.5 and O3 predictions and their broader 
social and environmental implications remains uncertain. Although the 
nested-grid approach offers finer spatial resolution and is expected to 
capture localized variations more effectively, no comprehensive study 
has yet evaluated its accuracy compared to global low-resolution models 
in the context of future air quality assessments.

In this study, we assess the effectiveness of nested-grid (0.5◦ ×

0.625◦) simulations compared to global-grid (4.0◦ × 5.0◦) simulations in 
predicting air pollutant concentrations using the GEOS-Chem model. 
This model is driven by meteorological inputs provided by the NASA 
Global Modeling and Assimilation Office, ensuring accurate represen-
tation of atmospheric conditions. For emissions flux data, we utilize 
gridded emissions from Integrated Assessment Models (IAMs), specif-
ically The Asia-Pacific Integrated Model (AIM-Hub). This approach al-
lows for a comprehensive evaluation of the model’s performance across 
different spatial resolutions, providing insights into the strengths and 
limitations of each configuration in predicting air quality under various 
emission scenarios. To assess the accuracy of the GEOS-Chem model, we 
compare simulation outcomes for the year 2015 with observational data 
from ground monitoring stations. This study extends the evaluation to 
future scenarios, exploring whether resolution-induced discrepancies in 
impact assessments become more pronounced over time. By focusing on 
the effects of different resolutions on both present and projected air 
quality, particularly in the context of evolving climate policies, we aim 
to determine if present-day discrepancies persist or intensify in future 
conditions. Notably, this study does not account for future climate 
feedback from changes in GHG emissions, as our primary focus is on the 
impact of climate change policies on co-emissions of GHGs.

In summary, this study evaluates the influence of horizontal reso-
lution on global simulation outcomes to determine the most effective 
approach for assessing air pollution in the context of climate change 
mitigation. If higher-resolution models are found to be non-essential, 
environmental assessments could be conducted accurately and more 
efficiently, enabling quicker evaluations. This would particularly benefit 
studies examining air pollution impacts within IAMs, allowing for rapid 

assessment of air quality issues related to new climate policies without 
the need for intensive computing, thus providing results almost 
immediately.

2. Methodology

We used the GEOS-Chem model to predict the ground surface con-
centrations of PM2.5 and O3 using an air pollution emission inventory 
and meteorological data as inputs in the simulations with (0.5◦ ×

0.625◦) and without (4◦ × 5◦) nested grids (Fig. 1). We implemented 
several future emissions scenarios derived from AIM so that the validity 
of the nested-grid simulation could be tested under multiple plausible 
future scenarios. We conducted two types of assessment. First, we 
compared the simulated PM2.5 and O3 concentrations with monitoring 
data to confirm the validity of the simulation results at both resolutions. 
Second, crop production losses caused by O3 and the mortality changes 
due to PM2.5 exposure were used to evaluate how the resolution would 
change the implications for the human social system.

2.1. Model description

2.1.1. GEOS-chem
We used a chemical transport model (CTM) to simulate the distri-

bution of PM2.5 and ozone in the atmosphere. For this, we relied on 
GEOS-Chem, a global 3-D model of atmospheric composition that helps 
track how chemicals move and change in the atmosphere. We used 
version 12.9.3 of GEOS-Chem, driven by NASA Global Modeling and 
Assimilation Office’s MERRA2 reanalysis weather data (Bey et al., 2001; 
v12-09, http://www.geos-chem.org). This weather data can be less 
detailed when using a lower-resolution grid. For example, when we ran 
the simulation at a global scale with a coarser resolution of 4.0◦ × 5.0◦, 
the original high-resolution MERRA2 weather data (which has a grid 
resolution of 0.5◦ × 0.625◦) was aggregated to match the coarser grid. 
This aggregation reduces the level of detail in the meteorological inputs, 
which can affect the precision of the simulated atmospheric processes at 
this scale.

In our study, we ran simulations at two different scales: a global scale 
with a global grid resolution of 4.0◦ × 5.0◦ (Fig. 2: gray) and a regional 
scale with a finer grid resolution of 0.5◦ × 0.625◦, known as a nested 
simulation (Fig. 2: red). The choice of the nested simulation was influ-
enced by the emission data we used, which came from the AIM-Hub 
model, limiting us to a 0.5-degree resolution. We configured the 
GEOS-Chem model to include 72 vertical layers, which allowed us to 
capture the atmosphere’s chemical composition at different heights. 
Before starting the main simulation, we ran a two-month spin-up period. 
This preliminary phase helped the model balance and stabilized atmo-
spheric and chemical processes, ensuring that the results from the main 
study period would be more accurate and realistic. Regarding the trans- 
boundary transport, the GEOS-Chem model uses a one-way coupling 
configuration for nested-grid simulations, where the global model sup-
plies boundary conditions to the nested grids without feedback from 
nested back to the global domain.

GEOS-Chem included a detailed chemical mechanism involving 
Ox–NOx–hydrocarbon–aerosol–bromine (Mao et al., 2013; Parrella 
et al., 2012). In the GEOS-Chem model, PM2.5 is composed of natural 
mineral dust, sea salt, primary BC aerosols, primary organic aerosols, 
secondary inorganic aerosols (sulfate, nitrate, and ammonium), and 
secondary organic aerosols. In addition, ISORROPIA II was used to 
simulate the thermodynamics of secondary inorganic aerosols 
(Fountoukis and Nenes, 2007; Pye et al., 2010).

2.1.2. AIM-Hub
The Asia-Pacific Integrated Model (AIM-Hub) modeling framework 

allows the quantification of future scenarios. This comprehensive model 
framework, as presented by Fujimori et al. (2018), facilitated the eval-
uation of critical sectors, including energy, land use, agriculture, GHG 
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emissions, and air pollutant emissions. The framework adopts the 
Shared Socioeconomic Pathways (SSPs) for scenario development, 
focusing on population and economic projections. For this study, we 

applied the SSP2 scenario, known as the "middle of the road" scenario, as 
outlined by O’Neill et al. (2017). Details regarding the model structure 
and mathematical formulation are extensively documented in Fujimori 

Fig. 1. The framework of GEOS-Chem simulations (top) and the impact assessment (bottom).

Fig. 2. GEOS-Chem nested-grid domain (0.5◦ × 0.625◦: red) for the target area. BRA = Brazil; NA = North America; CHN = China; EU=Europe; IND = India; JPN =
Japan; ME = Middle East; SEA = Southeast Asia; NAF = North Africa; EAF = East Africa; CAF = Central Africa; XAF = South Africa. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the Web version of this article.)
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et al. (2012).
The model assumes that production sectors aim to maximize profits 

using multi-nested constant elasticity substitution (CES) functions, tak-
ing into account input prices. Emissions from land-use changes are 
computed by considering the variations in forest area relative to the 
previous year, adjusted by carbon stock densities specific to global ag-
roecological zones. Non-energy-related emissions, excluding land-use 
changes, are assumed to correlate directly with activity levels, such as 
production output (Fujimori et al., 2022). To illustrate the variations in 
emissions associated with land-use changes, we have included a figure in 
the supplementary material (Fig. A1), showing the trends in global 
land-use-related CO2 emissions. This figure captures the regional dy-
namics and temporal changes in emissions from land use, offering a 
clearer picture of how these emissions evolve from 2015 to 2100 under 
the AIM-Hub framework.

The model was calibration across various sectors with the Global 
Trade Analysis Project (GTAP) database and the International Energy 
Agency (IEA). This detailed calibration enhances the model’s alignment 
with empirical data, improving the robustness and precision of simula-
tions across sectors and timeframes. AIM-Hub model allows us to 
quantified emissions of GHGs and various major air pollutants across 
multiple scenarios which play a critical role in atmospheric chemistry, 
influencing the formation of PM2.5 and O3. The derived emissions were 
influenced by a combination of factors, including food production, 
consumption patterns, population growth, GDP evolution, and techno-
logical advancements.

2.2. Emission inventory

In this study, the AIM-Hub model was used to derive an anthropo-
genic emission inventory using the shared socioeconomic pathways 
(SSPs) developed by Fujimori et al. (2017, 2018) as an input. The GHGs 
were defined by AIM-Hub to include carbon dioxide (CO2), methane, 
nitrous oxide, and fluorine gas. The other pollutants were black carbon 
(BC), carbon monoxide, ammonia, non-methane volatile organic com-
pounds, nitrogen oxides (NOx), organic carbon, and sulfur oxides (SOx). 
The Harmonized Emissions Component (HEMCO) is used for providing 
the natural emission inventory for simulation (Keller et al., 2014; Lin 
et al., 2021), which including biogenic emissions sourced from MEGAN 
(Guenther et al., 2012), NOx emissions from lightning (Murray et al., 
2012), dust, sea salt (Weng et al., 2020), soil (Hudman et al., 2012) and 
volcanic eruptions.

To generate the anthropogenic emission flux grid 0.5◦ × 0.5◦ grid 
resolution format which require for GEOS-Chem model, we applied the 
AIM Downscaling (AIM-DS) tool, which disaggregated the emissions 
from a 17-region global inventory outcome from AIM-Hub. The down-
scaling approach was tailored to different emission sectors, as catego-
rized into three groups. Group 1 emissions, from energy, industry, 
inland transport, buildings, solvents, and waste sectors, were primarily 
driven by GDP and population trends. In this context, energy-related 
emissions are hypothesized to be closely linked to these socioeco-
nomic drivers. Group 2 emissions, originating from agriculture, forestry, 
and land use, were downscaled in proportion to the base year (2015) 
emissions. Finally, Group 3 emissions, pertaining to aviation, were 
downscaled in proportion to the global geographic distribution of total 
emissions for the base year. These sector-specific downscaling method-
ologies are elaborated in detail by Fujimori et al. (2017, 2018).

2.3. Experimental design

2.3.1. Target area and spatial resolution
In this study, the selection of target areas across different regions 

followed a consistent methodology, with China as a notable example. 
Areas were selected based on the severity of air pollution and various 
socio-economic factors, including population density and energy in-
tensity. To optimize efficiency and reduce computational time, we 

introduced a customized nested configuration, as illustrated in Fig. 2. 
This customization allowed us to extend the simulation capabilities to 
many additional regions worldwide, which were not originally sup-
ported by the standard GEOS-Chem code. For example, in Asia, while 
the standard code covered all of East Asia, our study tailored the nested- 
grid simulations to China, Japan, and two additional Southeast Asian 
domains (Southeast Asia 1 and 2). Here, the initial species concentration 
at boundary of nested grid target area was taken from the boundary 
condition outcome of entire global simulation at a coarse resolution 
(4.0◦ × 5.0◦) as suggested by GEOS-Chem Support Team.

To assess model accuracy across different horizontal spatial distri-
butions, we selected a variety of regions within the nested-grid GEOS- 
Chem simulation. These regions, including the United States, Canada, 
the European Union, Japan, China, Thailand, Singapore, and Brazil, 
were chosen to represent diverse geographical areas and varying scales 
of anthropogenic emissions, which contribute to PM2.5 and tropospheric 
O3 precursors. The ground surface concentrations obtained from nested- 
grid simulations in these regions were then compared with global con-
centration data simulated by the non-nested-grid model.

We assessed the health and agricultural effects arising from the 
model outputs of the global and nested-grid simulations. Consequently, 
the spatial distribution of each pollutant was aggregated to a resolution 
of 0.5◦ × 0.5◦, which corresponded to the data inputs from other sour-
ces. The first-order conservative remapping technique was applied as a 
mapping method.

2.3.2. Emission scenarios
To evaluate the performance of the model, we divided the scenarios 

into two distinct sets. The first set is the baseline scenario, which as-
sumes that future business activities will remain consistent with those in 
the base year, 2015. This allows us to assess how the model performs 
under the assumption that no significant changes in activities occur from 
the base year onward. We used the 2015 simulation to compare with 
observational data, which helps us evaluate the accuracy of the model at 
both global and nested-grid resolutions. This comparison is crucial for 
understanding the model’s performance in replicating present-day 
conditions and validating its reliability before extending it to future 
scenarios.

The second set of scenarios is the mitigation scenario, which exam-
ines the impact of different anthropogenic emission conditions on air 
quality. Specifically, we implemented a low greenhouse gas (GHG) 
emissions scenario that aligns with pathways designed to limit the global 
average temperature increase to 1.5 ◦C. By including this scenario, we 
provide a comprehensive visual representation of the emissions re-
ductions, as shown in Supplementary Material Fig. A1. This figure il-
lustrates the potential effects of reduced emissions on air quality and 
allows us to evaluate the model’s performance under future conditions. 
This analysis is critical for understanding the broader implications of 
ambitious climate mitigation efforts on environmental quality and 
public health outcomes.

For future scenarios, we aim to test whether the global or nested grid 
simulation approach is applicable under these evolving conditions. This 
is an important step because it can strengthen our conclusions by 
revealing whether the model introduces biases in its predictions of 
future scenarios. Identifying these potential biases is essential for eval-
uating the model’s accuracy and reliability in projecting future condi-
tions. By including future scenarios in this study, we can assess the 
model’s performance across different land-use and climate conditions, 
providing a more comprehensive understanding of its limitations and 
strengths. This ensures that the model remains a robust tool for 
informing long-term environmental and public health policies, espe-
cially as they relate to future climate challenges.

Note that the climate change impacts such as temperature and pre-
cipitation changes were not included in these two scenarios and thus the 
meteorological condition is same among the scenarios and years while 
socio-economic for both scenario is based on SSP2 scenario. The 
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emissions were then entered into the GEOS-Chem model. We selected 
the years 2015, 2050, and 2100 for CTM simulations to examine the 
immediate, medium-term, and long-term effects. Data used in this study 
are available as detailed in the Data Availability section.

2.3.3. Comparison of model outputs with monitoring station observations
To evaluate the results of the GEOS-Chem model, observation data 

from developed and developing countries (Table 1 and Fig. 3) were 
compared using 2015 as the baseline year. Due to restricted access to 
data from ground monitoring stations in certain locations observational 
data were highly limited.

In the process of comparing observational data with modeled con-
centrations, the observation point within the target region was assigned 
to its corresponding grid cell. To assess the accuracy of the model, we 
utilized monthly average concentration data and computed the mean 
absolute error (MAE) and the correlation coefficient (R) between the 
observed and modeled concentrations.

2.3.4. Agricultural impacts
We selected the five main global crops, i.e., sugar cane, maize, soy-

beans, rice, and wheat, to assess the crop production losses due to O3 
exposure. These crops were selected based on the major crop categories 
used in the AIM-Hub model.

Formula (1) was used to quantify O3 exposure in each grid. For the 
assessment of crop production losses, the accumulated dose of ozone 
over a threshold of 40 ppb (AOT40) was used to indicate the accumu-
lated O3 exposure during the daytime in the 3 months before harvesting 
(Sacks et al., 2010; Tai et al., 2014). (AOT40 was estimated over the time 
period of 08:00 until 19:59 UTC for the vast areas of agricultural land in 
temperate and tropical zones. 

AOT40(ppb) =
∑n

t=1
max([O3]t − 40,0) (t ∈ 08 : 00 − 19 : 59) (1) 

While the response function (2) is used to depict the dose–response 
relationship between the relative crop yield and O3 exposure to deter-
mine the relative crop yield from AOT40. Different coefficients (a and b) 
were allocated to different crops as shown in Table A.1 in supplementary 
material (Mills et al., 2007). 

y = ax + b (2) 

where x is AOT40 in ppmh and y is the relative yield.
The Lund–Potsdam–Jena managed land 2 crop model was used for 

the calculation of the potential production volume and regional 
consolidation, and potential harvestability and land-use data for the 
major crops in 2015 from Fujimori et al. (2018) were applied. First, the 

grid yield was calculated by multiplying the production volume grid by 
the relative yield. The grid yield was then determined by country and 
divided into 17 regions (Supplementary Material, Table A.1). The rela-
tive yields by country were then calculated by comparing aggregated 
yields with and without O3 effects.

2.3.5. Mortality due to PM2.5 exposure
We also studied the human health impact of PM2.5 exposure using the 

integrated exposure–response (IER) function established by Burnett 
et al. (2014). The IER function is a nonlinear function that calculates 
excess mortality due to long-term exposure to ambient PM2.5.

We used the Global Burden of Disease tool to provide the specific 
causes of death following exposure to ambient air pollution. Ischemic 
heart disease, cerebrovascular illness, acute lower respiratory tract 
infection, chronic obstructive pulmonary disease, and lung cancer were 
the target disorders, and data from cohort studies from several countries 
with varying PM2.5 concentrations for these diseases were integrated. 
Formula (3) expresses the relative risk (RR) due to ambient PM2.5 
exposure. The IER was established for PM2.5 concentrations surpassing 
C0 (7.5 μg/m3), as concentrations lower than 7.5 have not shown any 
significant association with mortality in cohort studies 

RRj(Ci) = 1 + a(1 − exp ( − β(Ci − C0)
δ
) ) (3) 

where Ci is PM2.5 concentration. ‘α’, ‘β’, and ‘δ’ are bare constants in the 
IER that are age- and disease-specific (j) as shown in Table A.2 in sup-
plementary material.

Mortality was calculated using the RR from equation (3) by using 
following formula (Apte et al., 2015). 

Mortality =
RR(z) − 1

RR(z)
× Pop × B (4) 

where z is the PM2.5 concentration (μg/m3), Pop is grid population 
(number of people), and B is the baseline mortality rate by country (%).

In this study, we used gridded population estimates based on the 
SSP2 scenario for both present-day and future scenarios (Jones and 
O’Neill, 2016). The estimated deaths attributed to PM2.5 exposure for all 
diseases were calculated by combining the death counts for each disease 
after grouping them by regional divisions.

3. Results

3.1. Spatial distribution of tropospheric O3 and PM2.5 concentrations 
representation in nested-grid simulations under present-day and future 
scenario

Fig. 4a illustrates the spatial distributions of O3 and PM2.5 concen-
trations in nested-grid simulations, demonstrating significant improve-
ments in model performance and the ability to capture localized 
pollution hotspots compared to global-grid simulations. The global-grid 

Table 1 
Sources of air quality monitoring data and number of monitoring station.

Country Organization (Data sources) Number of 
monitoring 
station

PM2.5 O3

United 
States

Clean Air Status and Trends Network (CASTNET), 
U.S. Environmental Protection Agency Clean Air 
Markets Division

396 396

Canada Ministry of the EnvironmentConservation and 
Parks

39 39

European 
Union

European Environment Agency 2021 2700

Japan National Institute for Environmental Studies 1915 1915
China China National Environmental Monitoring Centre 1482 1482
Thailand Air4Thai, Pollution Control Department 12 –
Singapore Pollution Central Department, National 

Environment Agency
5 –

Korea Air Korea, Korea Environmenat Corperation 125 125
Brazil Environmental Company of the State of São Paulo 14 –

Fig. 3. As shown in Table 1, the spatial distribution mapping of air quality 
ground monitoring stations.

T. Jansakoo et al.                                                                                                                                                                                                                               Atmospheric Environment: X 24 (2024) 100303 

5 



simulations (4.0◦ × 5.0◦ resolution) provide a broad and generalized 
view, often missing finer details of regional pollution patterns. In 
contrast, nested-grid simulations (0.5◦ × 0.625◦ resolution) capture 
substantial spatial variability, enhancing the representation of local 

pollution dynamics, particularly in high-pollution regions.
This improved spatial resolution is essential for assessing the model’s 

ability to capture the complexities of air quality responses under 
present-day and future emission scenarios. For example, while global 

Fig. 4. (a) Spatial distributions of O3 and PM2.5 concentrations simulated using global (upper) and nested (lower) grid simulation under baseline scenario in 2015 
(the blue box represents Japan, while green box corresponds to USA and Canada); (b) Monthly O3 and PM2.5 concentrations comparing ground-based observations 
(black line), global grid simulation with coarse resolution (blue line), and nested-grid simulation (red line) for Japan, the USA, and Canada in 2015. (For inter-
pretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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grids show widespread elevated PM2.5 levels across South Asia, East 
Asia, and the Middle East, they fail to accurately depict smaller-scale 
pollution sources and localized emissions. The nested-grid simulations 
address these gaps by providing enhanced granularity, thereby allowing 
for a more precise representation of localized emissions and pollution 
transport mechanisms.

In the present-day (2015) nested-grid simulations, annual average 
tropospheric O3 concentrations of 30 ppbv or more are observed across 
extensive regions of the Northern Hemisphere’s mid-latitudes, particu-
larly in Asia, Africa, and the Middle East. Notably, high concentrations 
exceeding 50 ppbv are found over the Tibetan Plateau and parts of 
central Africa. The elevated O₃ levels in the Tibetan Plateau can be 
attributed to its high altitude, which enhances the atmospheric column 
and increases exposure to ultraviolet radiation, promoting ozone for-
mation. In central Africa, high O₃ concentrations are largely due to 
emissions of volatile organic compounds from widespread vegetation 
burning, both anthropogenic and natural. For PM2.5 concentrations, the 
nested-grid simulations indicate annual averages surpassing 30 μg/m3 

across large areas of Asia and Africa, with severe pollution observed in 
China and India, where levels reach or exceed 120 μg/m3. High PM2.5 
concentrations are also evident in African desert regions, reflecting the 
inclusion of naturally derived emissions, such as dust, in the simulations.

Moreover, we found that Organic Aerosol (OA), Organic Carbon 
(OC) and Nitrate (NIT) are better represented in nested high-resolution 
models compared to low-resolution models, as shown in Figure A.4 of 
the supplementary material. The nested high-resolution approach cap-
tures local meteorological phenomena, such as temperature inversions, 
local wind patterns, and boundary layer dynamics, with greater accu-
racy, leading to improved simulations of pollutant dispersion and con-
centration. These meteorological factors play a significant role in the 
spatial distribution of OA, OC, and NIT (Wang et al., 2015; Ye et al., 
2017; Chen et al., 2024).

A similar spatial distribution pattern of tropospheric O3 and PM2.5 
concentrations is observed in the future scenarios for 2050 under both 
baseline and mitigation conditions (Fig. 5). Elevated O₃ concentrations 
continue to be prominent over the Tibetan Plateau and central Africa, 
highlighting the persistent influence of altitude-related factors and 
regional emissions of ozone precursors, respectively. Similarly, high 
PM2.5 levels remain in Asia, particularly in China and India, as well as in 
desert regions of Africa, underscoring the ongoing impact of anthropo-
genic activities and natural sources like dust in these regions.

Fig. 5 projects the spatial distribution of O3 and PM2.5 concentrations 

for the year 2050 under both baseline and mitigation scenarios using 
nested-grid simulations. The future scenario analysis underscores the 
spatial variability of air quality responses to mitigation efforts, revealing 
that while there are improvements in PM2.5 concentrations under miti-
gation scenarios, reductions are modest, and pollution hotspots persist.

3.2. Model validation for present-day scenario

The daily and monthly mean average data for the grids corre-
sponding to the observation points were used to compare the observa-
tion data to the modeling outcomes. This approach ensures that the 
comparison is made between the model’s daily and monthly means and 
the corresponding observed data, allowing for a direct and accurate 
evaluation; however, in the European Union and Brazil, only annual 
average observation data could be obtained due to the limited data 
accessibility. The observed O3 (left) and PM2.5 (right) concentrations on 
a monthly scale are shown in Fig. 4b.

The nested-grid simulation for tropospheric ozone provided a modest 
enhancement in the performance of the model. As shown in Table 2, the 
Mean Absolute Error (MAE) was reduced while the correlation coeffi-
cient (R) was marginally improved in all regions. In Japan, the nested 
grid simulation leads to a slight decline in MAE and a marginally in-
crease in R for both monthly and daily estimation. However, in Canada, 
while the nested grid simulation results in a slightly lower MAE, there is 
no notable improvement in R for daily.

The efficiency of the nested-grid simulation in enhancing the per-
formance of the model for PM2.5 estimation varied by region. While 
some locations showed tremendous improvement, others displayed little 
or no change (Table 3). In the United States, the nested grid simulation 
resulted in a marginally reduced MAE for both monthly and daily esti-
mates, but in R, no meaningful improvement was observed (Fig. 4c). 
Even if Canada’s MAE was reduced, R did not improve substantially. 
Nevertheless, nested-grid simulation does not significantly improve the 
model’s overall performance in compared to non-nested grid simulation. 
Moreover, in many regions, such as China, Japan, and Korea, the R was 
improving while the MAE was declining.

With the application of the nested-grid simulation, the estimated 
PM2.5 concentrations in the 2015 data set had a tendency to be over-
estimated compared to the observations while the nested-grid simula-
tions for O₃ generally provided more accurate results than the global- 
grid simulations, with lower O₃ levels compared to global-scale simu-
lations, resulting in increased correlation (R) and decreased mean 

Fig. 5. Projected global distribution (nested-grid simulation) of PM2.5 and O3 concentrations in 2050 under Baseline (left) and Mitigation (right) scenarios.
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absolute error (MAE) when compared to observations (Fig. 4b). The 
overall O3 concentration was overestimated by around 3.5 ppbv (11.8%) 
on a monthly basis, whereas the PM2.5 concentration was overestimated 
by approximately 20.9 μg/m3 (122%). For daily investigations, the 
result was a 12% (3.6 ppbv) overestimation of the O3 concentration and 
a 97.7% (13.0 μg/m3) overestimation of the PM2.5 concentration. This 
result is related to Travis et al. (2016) study. Their study revealed that 
the CTM model’s surface ozone concentrations exhibited an over-
estimation, attributed to a combination of heightened vertical mixing 
and net ozone production within the model’s boundary layer. In the 
context of PM2.5 concentration, the GEOS-Chem model demonstrates a 
tendency to overstate levels of nitrate, elemental carbon (EC), and 
organic carbon (OC). This overestimation collectively contributes to an 
overall exaggeration in PM2.5 concentration estimates. (Lee et al., 2017).

In terms of seasonal variation, the reproducibility of the O3 con-
centration was generally good and the geographical characteristics were 
also well reproduced (Fig. 4a-right). However, in the nested-grid simu-
lation, the estimated concentration was close to the observed data only 
in Japan and the European Union, while there was a decrease in the MAE 
in all regions (Fig. 4b). The influence of the nested-grid simulation on 
the validity of the modeled concentrations was therefore considered to 
be limited.

The seasonal repeatability of PM2.5 was equivalent to that of O3. The 
MAEs of the estimated and observed concentrations were lowest in 
Canada, Singapore, and the European Union, with values of 2.7 μg/m3 

for monthly data and 0.8 μg/m3 for daily data. In contrast to the over-
estimation that occurred in the majority of locations, the difference 
between the modeled and observed concentration and the MAE were 
minor when the nested-grid simulation was applied. Despite the fact that 
nested grid could improve the result’s precision in comparison to non- 
nested grid, the overall performance of both models is poor. The 
models may not adequately represent the complexity of atmospheric 
processes that influence air quality, which is the leading cause of model 
uncertainty such as regional meteorological pattern.

3.3. p.m.2.5 exposure and mortality for future scenario

Fig. 6a compares premature deaths caused by PM2.5 exposure be-
tween nested-grid and global-grid simulations. In the baseline year 
(2015), both simulations predict similar global mortality rates of about 5 
million deaths, with only minor discrepancies. However, in future sce-
narios, the nested-grid simulations consistently estimate higher prema-
ture deaths compared to the global-grid simulations. For example, in 
2050, the nested-grid simulation forecasts around 4.5 million deaths 
under the baseline scenario, compared to about 4 million in the global 
grid—a difference of approximately 0.5 million deaths. This gap widens 
by 2100, even under the mitigation scenario where emissions reductions 
are implemented, indicating that nested-grid simulations continue to 
show higher mortality rates.

The purpose of including future scenario simulations was not just to 
confirm the existence of resolution-induced discrepancies in health and 
environmental impact estimates, but to illustrate how these discrep-
ancies may evolve over time and under different emission reduction 
scenarios. The results show that the differences between the nested and 
global simulations are due to the nested grid’s finer resolution, which 
more accurately captures local pollution sources and dispersion pat-
terns, particularly in densely populated and industrialized regions as 
mentioned in section 3.1. This is especially relevant in future scenarios 
where emission reductions are unevenly distributed across regions.

The nested-grid simulations predict significantly higher pollutant 
concentrations in regions like China and India because they provide a 
more detailed representation of local dynamics, including hotspots of 
urban and industrial emissions, which the coarser global grid averages 
out. Interestingly, even in mitigation scenarios, the nested grid shows 
lower estimates of deaths in some years compared to the global grid, 
suggesting that nested grids are more sensitive to spatially uneven 
emission reductions and can better capture localized improvements in 
air quality that the global grid might miss.

Fig. 6b further explores regional differences in predicted deaths be-
tween nested and global grid simulations through scatterplots. In both 

Table 2 
Changes in the MAE and R due to the nested-grid simulation of the modeled/observed O3 concentrations (ppbv).

Region Monthly Daily

Global grid Nested grid Global grid Nested grid

MAE R MAE R MAE R MAE R

United States 9.5 0.31 8.1 0.44 11.2 0.26 10.6 0.31
Japan 9.13 0.53 5.05 0.61 10.85 0.25 10.78 0.31
Canada 7.7 0.44 7.0 0.50 10.3 0.29 9.7 0.30
European Uniona 6.1 0.29 5.8 0.33 – – – –
China 31.45 0.39 30.82 0.56 30.03 0.42 32.71 0.41
Korea 8.12 0.68 5.05 0.73 – – – –

a Annual average.

Table 3 
Changes in the MAE and R due to the nested-grid simulation of the modeled/observed PM2.5 concentration (μg/m3).

Region Monthly Daily

Global grid Nested grid Global grid Nested grid

MAE R MAE R MAE R MAE R

United States 5.6 0.20 5.5 0.20 6.2 0.11 6.4 0.13
Japan 9.95 0.44 13.09 0.40 10.0 0.26 15.3 0.21
Canada 8.1 0.59 5.4 0.59 8.3 0.19 7.5 0.2
China 27.67 0.43 29.1 0.53 36.80 0.23 38.27 0.27
Thailand 12.9 0.55 13.2 0.54 15.1 0.36 17.2 0.38
Singapore 14.1 0.16 13.9 0.38 14.4 0.05 14.3 0.20
Korea 8.13 0.32 21.3 0.38 – – – –
European Uniona 12.2 0.37 9.7 0.38 – – – –
Brazila 15.2 0.44 19.3 0.46 – – – –

a Annual average.
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baseline and mitigation scenarios, regions with points above the diag-
onal line indicate that nested-grid simulations predict more deaths than 
global-grid simulations, emphasizing the discrepancy between the two 
approaches. This difference is particularly pronounced in rapidly 
developing regions such as China (CHN), India (IND), and Southeast 
Asia (XSA), where high population density and industrial activity lead to 
concentrated emissions. For instance, in India, the nested-grid simula-
tion shows significantly higher predicted deaths in 2050 and 2100 
compared to the global grid, underscoring the importance of capturing 
localized pollution dynamics that influence public health outcomes.

The regional analysis shows that these discrepancies are not uni-
formly distributed; they are amplified in areas with high emissions and 
dense populations. This means the nested grided resolution provides a 
more accurate picture of pollution exposure, which is crucial for plan-
ning effective public health interventions. Moreover, the increasing 
discrepancies in future mitigation scenarios suggest that the nested grids 
are more responsive to uneven reductions in emissions, highlighting 
areas where pollutant levels may remain high despite overall decreases 
in emissions. This underscores the need for high-resolution modeling in 
future impact assessments to ensure that mitigation strategies are 
appropriately targeted to areas that remain at risk.

3.4. Crop production losses due to O3 exposure for future scenario

Fig. 7a illustrates the relative yield loss percentages due to ozone 
exposure for the years 2015, 2050, and 2100 under both baseline and 
mitigation scenarios, comparing nested-grid and global-grid simula-
tions. In the base year of 2015, the global relative yield loss was 
approximately 7%, with nested-grid simulations showing slightly higher 
losses compared to global-grid simulations. The discrepancies between 
nested and global grids become more pronounced in future scenarios. By 
2050, the nested-grid simulations project a relative yield loss of around 
5% under the baseline scenario, while the global grid predicts a slightly 
lower loss of about 4.5%. This gap widens further by 2100, particularly 
under the mitigation scenario, where the nested grid continues to esti-
mate higher yield losses than the global grid, indicating that the nested 
grid captures localized ozone exposure more sensitively than global grid 
simulation.

The discrepancies between nested and global grid simulations can be 
attributed to the finer spatial resolution of the nested grid, which allows 
it to better capture local emission sources and ozone formation dy-
namics, particularly in high-emission regions such as the Middle East, 
India, and Southeast Asia. This detailed representation is crucial in areas 
where ozone concentrations are highly variable and can lead to localized 

Fig. 6. (a) Comparison of the number of worldwide premature deaths attributable to exposure to PM2.5 between the global (orange) and nested (green) grid 
simulations. (b) Changes in the number of deaths by region due to the application of the nested-grid simulation (the black diagonal represents the 1:1 line). BRA =
Brazil; CAN = Canada; CHN = China; CIS = Former Soviet Union; IND = India; JPN = Japan; TUR = Turkey; USA = United States of America; XAF = Sub-Saharan; 
XER = Europe (excluding the European Union); XE25 = European Union (EU25); XLM = Latin America; XME = Middle East; XNF = North Africa; XOC = Oceania; 
XSA = Rest of Asia; XSE = Southeast Asia. Each point represents a region, with the x-axis indicating deaths from the global grid and the y-axis from the nested grid. 
The size of the points reflects population-weighted PM2.5 concentration, highlighting regions where higher exposure contributes more significantly to mortality rates. 
(For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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spikes that impact crop yields significantly. In regions with high agri-
cultural productivity, such as the United States and the European Union, 
the nested grid predicts slightly higher yield losses (by 1–2%) due to its 
ability to capture localized ozone hotspots that the global grid averages 
out.

Fig. 7a shows a scatterplot comparing relative yield loss by region 
between nested and global grid simulations. Notably, the differences are 
most pronounced in the Middle East (XME) and neighboring regions like 
Turkey (TUR) and North Africa (XAF), where the nested grid predicts up 
to 7% higher losses compared to the global grid, especially in future 
scenarios. This discrepancy is likely due to the nested grid’s sensitive 
capability to resolve high local concentrations of ozone that are less 
visible in the coarser global grid simulations as shown in Fig. 4a.

4. Discussion

4.1. Trans-boundary conditions

In this study, we have implemented adjustments to the nested-grid 
methodology to enhance the efficiency of computationally demanding 
tasks, such as running high-resolution simulations over multiple regions 
and processing observational data for model evaluation (refer to Fig. 2). 
The nested-grid simulations conducted in the nested-Asia region, 
including SEA1, SEA2, CHN, and JPN, were evaluated to assess their 
effectiveness under this customized configuration.

Through a comparative analysis, we juxtaposed the validation results 
derived from these simulations with those obtained from the custom 
nested approach utilized in our research. Notably, our findings indicate 
that there are no significant disparities between the outcomes of both 
nested-Asia and custom nested simulations, particularly evident in the 
contexts of O3 concentrations in Japan and China, and PM2.5 levels 
across Japan, China, Korea, Thailand, and Singapore, as illustrated in 
Table A3 and Fig. A3 of the supplement material.

However, in Korea, we discovered that utilizing nested-Asia could 
yield a higher correlation between model outcomes and observational 
data compared to nested-custom (JPN), particularly regarding O3 con-
centrations. This finding aligns with the study by Colombi et al. (2023), 
which concluded that simulating ozone concentrations in Korea is 
challenging due to transboundary influences.

4.2. Impact assessment

We compare the agricultural impact assessment of our study with 
Van Dingenen et al. (2009). We found that while the relative crop yield 
loss trend was consistent when accounting for differences in target years 
and crop definitions, regional discrepancies were notable, particularly in 
the Middle East, where crop production losses have increased due to 
high emission loads since 2005. Specifically, nested-grid calculations 
showed a 1% difference in global average relative yield loss and a 7% 
difference in regional areas compared to Van Dingenen et al. (2009). 

Fig. 7. (a) Comparison of the worldwide crop production loss due to O3 exposure in the simulations with and without nested grids; (b) Changes in crop production 
loss by region due to the application of the nested-grid simulation (the black diagonal represents the 1:1 line). Each point represents a region, with the x-axis 
indicating deaths from the global grid and the y-axis from the nested grid. The size of the points reflects population-weighted O3 concentration.
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Although these differences are relatively minor globally, they could 
have significant implications for food supply and economic systems at 
regional scales.

Regarding health impacts, our model overestimated mortality 
related to PM2.5 exposure, with an overestimate of 5.2 million for nested 
and 5 million for non-nested simulations, compared to the WHO’s re-
ported 4.2 million deaths in 2015. This suggests that, within our specific 
model configuration including GEOS-Chem model physics and chemis-
try, meteorological data, and emissions, the global grid simulation aligns 
more closely with observed data. However, it is important to emphasize 
that these findings are contingent upon the specific parameters and 
conditions of our study, underlining the need for detailed model eval-
uations to ensure accuracy across varying scenarios.

Furthermore, our analysis indicates that nested-grid simulations, 
which operate at higher spatial resolutions, are more sensitive to 
pollutant concentrations and thus exert a stronger influence on impact 
assessments compared to global grid simulations. This increased sensi-
tivity, critical for capturing fine-scale atmospheric processes such as 
localized emissions and complex terrain effects, becomes particularly 
significant in regions with high emission densities or complex environ-
mental conditions. Conversely, the lower spatial resolution of global 
grid simulations may smooth out these variations, potentially leading to 
less precise assessments of pollutant concentrations and their impacts 
(Wang et al., 2011; Punger and West, 2013).

4.3. Limitation

The observed overestimations in modeled O3 and PM2.5 concentra-
tions compared to observed levels, across both global and nested-grid 
simulations, suggest that increasing spatial resolution does not neces-
sarily improve model accuracy. This consistent overestimation points to 
intrinsic limitations within the model’s performance, potentially stem-
ming from inaccuracies in the emission inventories, chemical mecha-
nisms, or boundary conditions used in the simulations. The findings 
underscore the limited impact of nested-grid simulations on enhancing 
the precision of modeled concentrations, highlighting the necessity for 
further refinement of model inputs and processes to improve reliability.

Moreover, the study reveals that while the global and regional im-
pacts on health effect calculations were less pronounced, the agricul-
tural impacts demonstrated significant regional variations. This suggests 
that agricultural impacts, in particular, may be subject to considerable 
changes in the future. It is crucial to incorporate model uncertainties 
when evaluating regional effects of air pollution on agriculture, as these 
uncertainties can significantly influence the study’s conclusions. Even 
though global assessments using low-resolution models maintained the 
reliability of outcomes, these models were less effective at accurately 
replicating daily data, as shown in Table 2, though they were competent 
at capturing broader temporal trends. This highlights the importance of 
selecting appropriate model resolutions tailored to the specific appli-
cation, particularly when assessing localized or short-term impacts.

Several limitations of this study must be acknowledged. Firstly, the 
results are dependent on the specific parameters used within the GEOS- 
Chem model. While GEOS-Chem’s high-resolution meteorological con-
ditions and terrain are precise within nested regions, it cannot simulate 
all atmospheric phenomena that may occur. Secondly, the simulations 
did not include interactions between air pollutants and meteorological 
conditions; GEOS-Chem uses meteorological data as input without 
allowing feedback from air pollutants. For example, aerosol processes 
that block solar radiation were not considered, which could affect at-
mospheric dynamics and pollutant levels. Thirdly, high-resolution nes-
ted-grid simulations use global grid concentrations as boundary 
conditions, introducing potential dependencies on transboundary 
pollution effects. This is a known limitation of the GEOS-Chem model, 
which relies on global simulations to provide boundary conditions for 
nested domains. If the global model inaccurately represents trans-
boundary pollution or fails to capture the variability and dynamics of 

pollutants near the boundaries, these errors can propagate into the 
nested simulations. As a result, the nested-grid simulations may inherit 
biases from the global model, which can diminish the expected im-
provements in accuracy from higher spatial resolution. This limitation 
underscores the need for careful evaluation and potential adjustments to 
boundary conditions in nested-grid configurations to mitigate the 
influence.

Additionally, the emission inventory used in this study, particularly 
when evaluating long-term impacts of land cover and land use changes, 
introduces additional uncertainties. The downscaling method from the 
AIM-Hub model scales emissions based on regional totals within the 
agricultural sector using the CEDS emission grid. This approach may not 
fully account for the complexities of land cover and land use changes 
over time, potentially overlooking localized variations and specific land 
use dynamics, which contributes to uncertainties in the emissions data.

5. Summary and conclusions

This study assessed the impacts of air pollution on agriculture and 
human health using global and nested-grid simulations of O3 and PM2.5 
concentrations with the GEOS-Chem model under multiple future 
emission scenarios. Our analysis revealed that while nested-grid simu-
lations enhanced spatial resolution, they did not significantly improve 
the overall accuracy of modeled pollutant concentrations compared to 
global grid simulations, as observed in the base year comparisons across 
different horizontal resolutions. However, nested-grid simulations pro-
vided better alignment with observed data on monthly and daily scales, 
particularly in regions like the United States and European Union, due to 
a more accurate representation of meteorological complexities affecting 
pollutant distributions.

Impact assessments showed that estimated yield loss and mortality 
rates were consistent with existing literature, with nested-grid simula-
tions predicting a global increase in mortality by approximately 10,000 
cases compared to non-nested simulations. While this difference fell 
within the margin of error, it underscores the potential impact of higher 
spatial resolution on local assessments. Regionally, significant variations 
were noted, especially in Asia, where mortality rates fluctuated by up to 
500,000 deaths, although these changes represented a minor fraction of 
the total population. For agricultural impacts, nested-grid simulations 
indicated a global yield loss reduction of around 7%, with specific re-
ductions in Asia and increases in the Middle East and high-production 
regions like the United States and European Union. Despite these 
regional shifts, the overall global yield loss remained stable due to the 
balancing effect of varied regional responses.

Our findings highlight that while nested-grid simulations offer 
enhanced sensitivity to pollutant concentrations, capturing fine-scale 
atmospheric processes crucial in high-emission or complex regions, 
they also exhibit consistent overestimations in O3 and PM2.5 concen-
trations. This suggests that increased spatial resolution alone is insuffi-
cient to improve model accuracy, emphasizing the need for refining 
emission inventories, chemical mechanisms, and boundary conditions in 
the simulations. The study also identified the inherent dependency of 
nested-grid simulations on global boundary conditions, which can 
propagate biases from global models into regional analyses.

The modest impact of CTM resolution on yield losses and mortality, 
with generally lower estimates in non-nested simulations, particularly 
under mitigation scenarios, underscores the importance of incorporating 
model uncertainties in evaluating mitigation strategies. The most pro-
nounced differences between nested and non-nested simulations 
occurred in the mitigation scenario, reinforcing the need to carefully 
consider model resolution choices in policy assessments.

These results are specific to the study’s configuration, including the 
GEOS-Chem model setup, selected meteorological data, and emission 
inventories. Therefore, the conclusions should not be generalized across 
all studies and scenarios without thorough evaluation of alternative 
model configurations and parameters. Future research should explore 
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diverse configurations and conduct detailed evaluations to better un-
derstand the broader implications of horizontal resolution choices in 
nested-grid simulations, particularly their impact on agricultural and 
health assessments across various regions and emission scenarios.

CRediT authorship contribution statement

Thanapat Jansakoo: Writing – original draft, Visualization, Vali-
dation, Methodology, Conceptualization. Ryouichi Watanabe: Writing 
– original draft, Visualization, Validation, Methodology, Conceptuali-
zation. Akio Uetani: Writing – original draft, Visualization, Validation, 
Methodology. Satoshi Sekizawa: Methodology, Formal analysis. Shi-
nichiro Fujimori: Writing – review & editing, Conceptualization. 
Tomoko Hasegawa: Writing – review & editing. Ken Oshiro: Writing – 
review & editing.

Code availability

GEOS-Chem (GCClassic) version 12.9.3 code is available from 
https://github.com/geoschem/geos-chem. The source code of the crop 
model (LPJmL) is available under the AGPLv3 license at https://github. 
com/PIK-LPJmL/LPJmL.

Declaration of generative AI and AI-assisted technologies in the 
writing process

During the preparation of this work the author(s) used ChatGPT in 
order to improve the clarity and coherence of writing and for grammar 
checking. No AI was employed for conceptual or substantive content 
generation, data analysis, or decision-making processes related to the 
research. After using this tool, the author(s) reviewed and edited the 
content as needed and take(s) full responsibility for the content of the 
publication.

Declaration of competing interest

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper.

Acknowledgments

This research was financially supported by the Environment 
Research and Technology Development Fund (JPMEERF20241001) of 
the Environmental Restoration and Conservation Agency of the Japa-
nese Ministry of Environment, Japan Science and Technology Agency 
(JST) as part of Adopting Sustainable Partnerships for Innovative 
Research Ecosystem (ASPIRE), Grant Number JPMJAP2331, and by the 
Sumitomo Electric Industries Group CSR Foundation. A portion of this 
research was conducted using a supercomputer at the Academic Center 
for Computing and Media Studies, Kyoto University.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.aeaoa.2024.100303.

Data availability

The scenario data, emission flux, and outcomes from the GEOS-Chem 
model are available for access via the following link: https://doi. 
org/10.7910/DVN/APZ0CG. 

References

Agrawal, M., 2005. Effects of air pollution on agriculture: an issue of national concern. 
Natl. Acad. Sci. Lett. 28 (3/4), 93–106.

Anenberg, S.C., Horowitz, L.W., Tong, D.Q., West, J.J., 2010. An estimate of the global 
burden of anthropogenic ozone and fine particulate matter on premature human 
mortality using atmospheric modeling. Environ. Health Perspect. 118 (9), 
1189–1195. https://doi.org/10.1289/ehp.0901220.

Apte, J.S., Marshall, J.D., Cohen, A.J., Brauer, M., 2015. Addressing global mortality 
from ambient PM2. 5. Environ. Sci. Technol. 49 (13), 8057–8066.

Ashmore, M., 1991. Air pollution and agriculture. Outlook Agric. 20 (3), 139–144.
Askariyeh, M.H., Khreis, H., Vallamsundar, S., 2020. Air pollution monitoring and 

modeling. In: Traffic-Related Air Pollution. Elsevier, pp. 111–135.
Bey, I., Jacob, D.J., Yantosca, R.M., Logan, J.A., Field, B.D., Fiore, A.M., Li, Q., Liu, H.Y., 

Mickley, L.J., Schultz, M.G., 2001. Global modeling of tropospheric chemistry with 
assimilated meteorology: model description and evaluation. J. Geophys. Res. Atmos. 
106 (D19), 23073–23095. https://doi.org/10.1029/2001JD000807.

Brunekreef, B., Holgate, S.T., 2002. Air pollution and health. Lancet 360 (9341), 
1233–1242.

Burnett, R.T., Pope III, C.A., Ezzati, M., Olives, C., Lim, S.S., Mehta, S., Shin, H.H., 
Singh, G., Hubbell, B., Brauer, M., 2014. An integrated risk function for estimating 
the global burden of disease attributable to ambient fine particulate matter exposure. 
Environ. Health Perspect. 122 (4), 397–403. https://doi.org/10.1289/ehp.1307049.

Chen, D., Wang, Y., McElroy, M.B., He, K., Yantosca, R.M., Le Sager, P., 2009. Regional 
CO pollution and export in China simulated by the high-resolution nested-grid 
GEOS-Chem model. Atmos. Chem. Phys. 9 (11), 3825–3839. https://doi.org/ 
10.5194/acp-9-3825-2009.

Chen, Q., Miao, R., Geng, G., Shrivastava, M., Dao, X., Xu, B., et al., 2024. Widespread 
2013-2020 decreases and reduction challenges of organic aerosol in China. Nat. 
Commun. 15 (1), 4465.

China National Environmental Monitoring Centre. (n.d.), Air quality monitoring data 
report, Retrieved April 18, 2022 from, https://quotsoft.net/air/.

Chuwah, C., van Noije, T., van Vuuren, D.P., Stehfest, E., Hazeleger, W., 2015. Global 
impacts of surface ozone changes on crop yields and land use. Atmos. Environ. 106, 
11–23. https://doi.org/10.1016/j.atmosenv.2015.01.062.
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