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PREFACE

The International Institute for Applied Systems Analysis
(IIASA) has long been involved in the study of problems with
conflicting objectives -- indeed, this research was initiated
by the first diregtor of the Institute, Howard Raiffa, whose
own particular interests lie in this area. Problems with con-
flicting objectives arise in fields as disparate as economics
and engineering, and are central to many applications of de-
cision analysis, planning theory, and conflict management.
Methods for handling these problems are therefore very important;
the development of gquantitative approaches in this area has been
the main aim of the IIASA study.

The early stages of this research were discussed at an
IIASA Workshop in 1975 and summarized in a book "Conflicting
Objectives in Decisions", edited by D.E. Bell, R.L. Keeney and
B. Raiffa, and published by Wiley in 1977. A Task Force Meeting
with the general title “"Multiobjective and Stochastic Optimi-
zation" was held at IIASA at the end of 1981 to review more
recent work in the field -- this volume contains the Proceedings
of the Task Force Meeting.



vi

These Proceedings report the work of scientists from many
different countries and describe a variety of approaches to one
basic problem. It is hoped that this book provides a guide to
the various schools of thought in multiobjective analysis and
will be useful to practitioners working in this field.



FOREWORD

During the week 30 November-% December 1981, the System and
Decision Sciences group at IIASA organized a Task Force Meeting
on Multiobjective and Stochastic Optimization. The participants
came from all over the world, but had one thing in common -~ an
active interest in multiobjective and stochastic optimization
methodology, algorithms and software.

The field of multiobjective analysis and optimization under
conditions of uncertainty is currently expanding very fast. For
this reason, it was decided to publish the Proceedings in a
lecture note format (without editing) so that a complete record
of the papers presented at the meeting would be available rel-
atively rapidly. In some cases, the papers were revised by their
authors following the meeting; however, many contributions have
not undergone revision and are reproduced here in their original
form.

The book is divided into four main sections, the first of
which contains five papers dealing with the theoretical aspects
of multiobjective and stochastic optimization. The seven papers
included in Section II are concerned with those aspects of multi-

objective analysis which have a direct relationship to decision

vii
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making (some papers in Sections III and IV are also linked to
decision making or decision support, although not so directly).
Section III contains four papers dealing with uncertainties and
multiobjective analysis. The first and last papers in this
section also present solution techniques which are illustrated
by means of examples. The final section contains papers which
concentrate on solution technigues and indicate how they can be
applied to practical problems; the software presented in this
section can be regarded as a step toward computerized decision
support systems. Naturally, some of the papers in other sections
also touch on applications of multiobjective and stochastic op-
timization: examples are drawn from a wide range of activities,
including regional planning, environmental control, wage negoti-
ation and energy planning.

The Editors wish to take this opportunity to thank all of
the contributors for participating in the Task Force Meeting and
for permitting IIASA to publish their work in these Proceedings.
They would also like to thank Gabi Adam for her help in arranging
the meeting, Helen Gasking for supervising the publication of
Proceedings, and Edith Gruber for her assistance in the organi-
Zation and coordination of the meeting.

Manfred Grauer
Andrzej Lewandowski
Andrzej Wierzbicki
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THEORETICAL ASPECTS OF MULTIOBJECTIVE AND
STOCHASTIC OPTIMIZATION






MULTIOBJECTIVE TRAJECTORY OPTIMIZATION AND
MODEL SEMIREGULARIZATION

A.P. Wierzbicki

International Institute for Applied Systems Analysis, Laxenburg, Austrig and
Technical University of Warsaw, Poland

1. MOTIVATION

Dynamic optimization problems are usually formulated in
terms of minimization (or maximization) of a given objective
functional, also called performance functional. Even if the
performance of a dynamic system is specified in terms of close-
ness to a given trajectory, a performance functional correspond-
ing to a distance from this trajectory is still being used.
However, not all practical problems can be usefully formulated
as optimization problems with given performance functionals.

Very often, particularly in economic applications, the pur-
pose of optimization is not to propose 'the optimal solution',
but rather to generate reasonable alternatives in response to
users' requirements while eliminating clearly inferior alter-
natives. It is not likely that a user would specify his require-
ments in form of a performance functional. More likely, he would
specify his aspirations in form of a reasonable or desirable
trajectory of the dynamic system being investigated. Since the
desirable trajectory reflects his judgment and experience, it
might not be attainable for a particular model of the dynamic
system being studied. However, if the desirable trajectory happens
to be attainable, the user can often specify also what trajectories
should be considered as naturally better than the desirable ones.



As an example, consider a dynamic economic model that speci-
fies, for various monetary and fiscal policies, the resulting
economic growth and inflation rates. An economist, while working
with this model, is perfectly able to specify reasonable growth
and inflation rates trajectories although these trajectocries may
not be attainable for the model. If they are attainable however,
he would not be satisfied by them, particularly if he knew that
he could obtain either higher growth rate or lower inflation rate
or both. Thus, we cannot use the classical device of minimiza-
tion of a performance functional corresponding to the distance
from the desired trajectory; this device works well only when
the desired trajectory is naturally better than the attainable
ones. Another classical device is the formulation of a social
welfare functional and its maximization; but the information
needed for formulating the social welfare functional is much
larger than the information contained in a desirable trajectory.
Moreover, a social welfare functional implies 'the optimal solu-
tion' without allowing for the possibility of checking various
alternatives by changing the desired trajectory.

Therefore, a concept of multiobjective trajectory optimiza-
tion based on reference trajectories has been recently introduced
(Wierzbicki 1979) and practically applied to some issues in eco-
nomic modeling (Kallio et al. 1980). This concept, while being
strongly related to some basic concepts in satisficing decision
making (Wierzbicki 1980), deserves a separate study. The purpose
of this paper is to present, in more detail, the theory, some
computational approaches and applicational aspects of multiobjec-
tive trajectory optimization.

2. BASIC THEORY IN A NORMED SPACE

All the theory in this section could be introduced in re-
ferring to a more detailed dynamic model, for example, the clas-
sical control model described by an ordinary differential state
equation and an output equation. However, the precise form of
a dynamic model does not matter, and the theory is also applic-
able for models described by difference-differential equations
(with delays), by partial differential eguations, integral equa-
tions, etc.



To obtain a possible compact presentation of basic ideas,
let us start with an abstract formulation in normed spaces. Let
u€EE, be a control trajectory, shortly called control; E, is a
Banach space, say, the space of essentially bounded functions
Lw([to;t1],Rm), or the space of square integrable functions
Lz([to,t1],Rm), etc. Additionally, control constraints u EVCEu
might be given. Let x eEx be a state trajectory, shortly state,
defined by a mapping X:Eu ~Eg. x = X(u). Conditions, under which
the mapping X corresponds to a model of a dynamic system and can
be expressed as a resolving operation for a stare equation are
given, for example, in Kalman et al. 1969, and will not be dis-
cussed here. A proper choice of a Banach space Ex might be the
Sobolev space of absolutely continuous functions with essentially
bounded derivatives W”([to:t1],Rn) or with square integrable
derivatives w2([t°;t1],Rn) --see, e.g., Wierzbicki, 1977b. However,
these properties are needed only for a more detailed development
of the form of the dynamic model, and, at this stage of abstraction,

Eu and Ex could be just any linear topological spaces.

More important are the assumptions concerning output tra-
Jectory, shortly output y'EEy, defined as a result of a mapping

Y:Ex xEu *Ey, Yy = Y{x,u). A properly chosen Banach space Ey
should have the same character as the space Eu; thus, EY =
Lm([to;t1],Rp) or Ey = LZ([to;t1],Rp). Since the notion of an

output is relative to the purpose of the model, we might consider

only those output variables that are relevant for the purpose of
multiobjective trajectory optimization, the number of those var-
iables being p. Thus, a notion of a partial preordering (partial
ordering of equivalence classes) is assumed to be given in the

output space Ey‘ Although more general assumptions are possible,

it is convenient to suppose that this partial preordering is
transitive and, therefore, can be defined by specifying a positive
cone D CEy; the cone D is assumed to be closed, convex and proper, i.e.

D # Ey. The partial preordering relation takes then the form

1) y1’YZEEy ’ Y1<Y2-Y2-Y1ED

with the corresponding equivalence relation



(2) Yi/Y, €E, . ¥y ~ ¥, ==Y, -y, €DN-D

Y

and the strong partial preordering relation

df

(3) Yi0¥, €E, Yy < ¥ ~y2—y1EB=D\ (DN-D)

y

as well as the strict partial preordering relation

(4) Y1/Y2€E Y1 << Yz ‘-YZ-Y1 €D

y ’
where D is the interior of the cone D. In some spaces, naturally
defined positive cones might have empty interiors; however, we
can define then the quasi-strict partial preordering through re-
placing B in (4) by Bq, the quasi-interior of D

(5) b9 = {yED:<y‘,y> >O,Vy‘€5'. af p*\ (p*~-0*))
where

* * * *
(6) D = {y eEy:<y ,y>20,¥y €D}

is the dual cone to D, E; being the dual space to Ey and <+, >
*

denoting the duality relation between Ey and Ey (the general form
*

of a linear continuous functional from Ey over Ey).

For example, if Ey = L2([t0;t1],Rp), then a positive cone
can be naturally defined by

(1) b= t2(le ey, 7P =
2 \ Py., i =
{yel ([tyity1,R):yT(£) 20, a.e. for te[to;t1],vl-1,...,p}

The equivalence classes (2) are then composed of functions that
are equal to each other almost everywhere on [to;t1], which coin-
cides with classical definitions of equivalence classes in Lz.

The strong pgrtial p;eordering (3) relates functions which have
components y%(t)45 y;(t).a.e. on [to;t1], ¥i=1,...,p, such that
the inequality y%(t) < y;(t) holds for at least one i and at least

on a subset of [to;t1] of nonzero measure. Since the cone (7) has



empty interior, there are no Yi:¥s EEY that are strictly related.
»>

However, D = D in this case (L2 is a Hilbert space and its dual
can be made identical with it). Moreover, D has a nonempty
quasi-interior:

(8) 9 = {yeLz([to;t.'),Rp):yi(t) >0 ae. fort€lt,;it,],¥i=1,...,p}

and the guasi-strict partial preordering relates functions with
components y:(t) < y;(t) a.e. on [to;t1], ¥i=1,...,p. For other
examples of positive cones see Wierzbicki and Kurcyusz, 1977.

The set of admissible controls V and the mappings X,Y define
together the set of attainable outputs

Y = v .

(9) v Y(X( ),V)CEy

Usually, we cannot describe the full set YV analytically
because the mappings X,Y are too complicated; however, it is
assumed that we can generate elements of this set, at least num-
erically, by solving the dynamic model for a given u €V. On the
other hand, suppose we are interested only in D-maximal elements
y €Y,

(10) Y, = {(§ey 1Y Ny +D) = o)

which are natural generalizations of Pareto-maximal outputs for
the case of trajectory optimization. If the cone B is nonempty,
it is sometimes convenient to consider also weak D-maximal

elements QG?:
(11) = (gey, ¥, N(g+D) = ¢}
v {y e v .Yvw(y D) = ¢

or quasi-weak D-mazimal zlements y €3¥¥? obtained as in (11) while
replacing 5 by d9. clearly, ?V<:?$q<:93 Cy,. Sometimes it is
also convenient to consider a smaller set ?5,C§v of De-maximal
elements of Yyt

~

(12) §5= {Qeyvzyvﬂ(y+ﬁe)= o}



where D_ is defined as a conical e-neighborhood of D:
= . 1 -5 = [
(13) D, (y'ezy :dist(y,D) <ellyil} i D, DE\(De D)

Since dist(y,D) is a continuous functional of y, the cone D
is an open cone, that is, an open set augmented with the point 0
or the set Deﬁ-De. Thus, 5_ is an open set, and D -maximality
[

is equivalent to weak D_-maximality.

For example, if D = L2((ty:t,],8F) as in (7), then, using
an argument via projections on cones in Hilbert spaces as in
Wierzbicki and Kurcyusz (1977) it can be shown that:

(14) b = (yEL3([tgre 1, RP) elly_i<ellyi byt (e) =minco, vt (e))

and D_ has an interior: at any point y €D we can center a ball

with radius § <e, contained in D_.

A classical method of generating D-maximal elements of ¥y,
is that of maximizing a (gquasi-) strictly positive linear func-

] *
tional vy ed T over Yy €Y,,:

A~ * L o‘q ~
(15) ¥ €Arg max <y ,¥Y> . y €D -— ye?v .
yey,,

However, it is very difficult to express the experience and
judgment of a user of the model in terms of a linear functional
{(called also weighting functional) y} eb*q: in the case of dyn-
amic trajectory optimization, it often becomes practically im-
possible. On the other hand, it is quite practical to express
the experience and judgment in terms of a desirable output tra-
jectory §fesy, which should not be constrained to ¥,, nor other-
wise, called reference trajectory (also aspiration level trajectory,

reference point).

Many authors -- see Wierzbicki (1979) for a review -- have
considered the use of the norm H§'-yn for generating D-maximal
elements of Y. The most general results were obtained by

Rolewicz (1975) for any Banach space Ey:



yeY
if ¥ is D-dominating Yy
= {7 ey - € = [ .y Cy-
(17) Yup {y EEY :y -y €Dfor all y €Y.} {yEEy ¥,Cy-D}

and if the following condition is satisfied:
(18) DN(y=D) CB(O,lyl)u{y} . ¥y €E,,

where B(0,p) denotes the open ball in the space Ey with radius o
and center at 0. If Ey is Hilbert, then the condition (18) is
satisfied iff

(19) pco

However, the conditions (18) or (139), limiting the choice of the
norm and the positive cone, are not very restrictive for appli-
cations; really restrictive is the requirement that Yy should be
D-dominating all attainable outputs. To overcome this limitation,
the notion of an achigvement scalarizing funetional has been in-
troduced -- see, e.g., Wierzbicki (1980). An achievement scalar-
izing functional is a nonlinear continuous functional s: ﬁy *R1,
with argument y -y, where y'EYV is an attainable output trajectory
and Y €E_ is an arbitrary (not constrained to ¥, nor to Y..)
desirable reference trajectory. An achievement scalarizing func-

tional should, moreover, satisfy two axiomatic requirements:

(i) it should he (quasi-) gtrictly order preserving
(20) Y, -v,€Db (or vy, -y, €dY) = sy, -9 < sty, -}
or, if possible, strongly order preserving

(21) yz—y1€5 - sy, -y) < s(yz-y)
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(ii) it should be crder representing

(22) 5o % (yeE, :sy-P) 20t =F+D

s(y-y) =0 for all y-yeD\blor y -yendY

or, at least, order apprczimating for some small € >0 ;

- £ . - — -
(23) y+DCSO = tyGE:y 1s(y -y) 20} = y+D€0§y +D_;i s(0) =0

where the cone DEo is not necessarily of the form (13) and is a
closed cone. However, in order to preserve similarity with Sa'
5:0 is defined by 3’0 df {y EEy:s(y -y) >0} =g + 390' Therefore,

D’eo is an open set, and D

=0
X
- 1 i €
DEo maximality. The set YV

stood in the above sense.

-maximality is egquivalent to weak

0. (Sey . T T -
{y €Y,: ¥ N(y +D_4) =9} is under

Thus, we can distinguish strict achievement scalarizing
functionals, which satisfy the requirements (20) and (22), and
strong achievement gcalarizing functionals, which satisfy the
reqguirements (21) and (23); the requirements (21) and (22) cannot
be satisfied together. It is known that, if s is strongly order
preserving, then, for any §€Ey’
(24) ¥y EArg x;g s(y -y) —?e?v

v
and if s is only (quasid strictly order preserving, then:

(25) y €Arg max s(y -y) = ye¥y (or yetyh
On the other hand, as shown in Wierzbicki (1980), if s is a strict

achievement scalarizing functional, then

(26) 969{,’ (or 9?9y = ¥ €Arg max s(y-y) , max s(y-y) = 0
yEYV yEYV
and, if s is a strong achievment scalarizing functional, then

(27) )?E?%o = ¥ €Arg max s({y-y) , max s(y-¢) =0
yEY, YEY,,
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The conditions (26), (27) constitute not only necessary
conditions for D-maximality even for nonconvex sets Yv (corre-
sponding to the separation of the sets Y, and ¢+ oryg+ 5;0
by the nonlinear functional s), but are also rather practical
means for checking whether a given desirable y is attainable
with surplus, attainable without surplus and D-maximal, or not
attainable. In fact, for a strong achievement scalarizing func-

tional s
(28) ¥ € (¥,-D o N\§50 = max s(y-¥) > 0
4 yey,
~ _~EQ _
erV CYV - Dy = max s(y=-y) =0
Y€y,

v & ¥, = Dgq = max s(y-y) <0
YET,,
where (Yv—Dso)\Qso is the set of all output trajectories Dso-
dominated by an attainable trajectory, Y, -D_, = {§6Ey:§=y-d,
y'GYV,d EDEO}. The proof of relations (28) follows directly from
the definition of BEO by S, = {)'eEy:s(y—§) >0} = q + 550' Sim-
ilar conclusions hold for strict achievement scalarizing func-

tionals.

Another important conclusion (see Wierzbicki 1980) from the
conditions (26), (27) is the controllability of modeling results
by the user: if, say, a strong achievement scalarizing functional
is applied, then the user can obtain anyDEO-maximal output tra-
jectory ¥ as a result of maximization of s(y -y) by suitably
changing the reference trajectory y, no matter what are other
detailed properties of the functionals. Therefore, detailed
properties of the functional s can be chosen in order to facili-
tate either computational optimization procedures, or the inter-
action between the user and the optimization model, or as a

compromise between these two goals.

Various forms of achievement scalarizing functionals have
been discussed in Wierzbicki (1980) in the case when Ey = Rp, to-
gether with some special forms when EY is a Hilbert space. Here
we consider in some more detail “he construction of achievement

scalarizing functionals in normed spaces.
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A general construction of a strict achievement scalarizing
functional in the case of D # ¢ can be obtained as follows.
Suppose a value functional v:D R1 is given (that is, any strictly
order preserving, nonnegative functional v defined for y €D --
similarly as in Debreu (1959)) and is equal zero for all y €p\b.
Then:

v(y-y), if y-y €D
(29) sy -y) =
-pdist(y-y,D), if y-Yy&D ; o > O

is a strict achievement scalarizing functional. It is clearly
order representing. If y-y €D, it is strictly order preserving.
If vy, -y, eb, y, Y €D and y, -y & D, then s(y, -y) - sly, -y) >0
by the definition (29). If Yo —y1 eb, Y,y -y €D and, thus,

y, =Y €D, then denote y, -y, = V€D and observe that

dist(y2-§,D) = min Hy1+§-§—du = min Hy1-y-3H = dlst(y1-y D-¥).
dep dep-y

On the other hand, since ?455 and D is a convex cone, hence

pcd -¥. Any interior point of D -¥ has a larger distance from

the exterior point vy, -y than dist(y1 -y,D-¥); hence dlst(yz-y D)<
dist(y, -y.,D) and s(y2 -y) = sly, -y) > 0 in all cases of Yy =Y, ED,
the functional (29) is strictly order preserving.

However, the functional (29) has several drawbacks. First,
even if it would be possible to extend it for cases when b= [
and DY # o, such an extension is not escantial: in applications,
weak or quasi-weak D-maximal elements of Yv are not interesting,
and much more important are Ds-maximal elements. Moreover, the
choice of a value functional with desired properties might be
difficult in infinite-dimensional spaces, since the simplest value
functional --a positive linear functional --cannot be continuously
modified to zero for y ~y €D\b. Therefore, we shall relax the
requirement of order representation to that of order approximation,

while trying to obtain in return strong order preservation.

* *
Choose any strongly positive linear functional y €D 9, of
®
unit norm, lly { = 1. Then:
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(30) s(y-y) = <y‘,y-§> - pdist{y-y,D) , o > 1

. . L . . 1
is a strong achievement scalarizing functional, with ¢ > — . 1In

fact, <y‘,y-§> is strongly order preserving, due to the dgfinition
B*q = {y‘ eE‘: <y‘,y> > 0 ¥y €D}. The functional -dist(y-y,D)

is order pregerving (neither strongly nor strictly), by an argu-
ment similar to the analysis of the functional (29). Bowever,

the sum of a strongly order preserving and an order preserving
functional is, clearly, strongly order preserving. Moreover,

by the definition of the norm in the dual space, <y‘,y-§> < lly=vl
if Nyt o= 1. If,‘additionally, yesy = {y esy:s(y-§) 10},1then
odist(y-y,D) < <y ,y-y> < lly-yl; hence Sy Cy +p_ for ¢ > 3 -
Clearly, y +D Cs, and s(0) = 0; thus the functional (30) is

order approximating.

The functional (30) has also some drawbacks in applications.
First, the choice of y‘ is arbitrary: however, it does not much
influence the applicability of the functional (30), particularly
if p >> 1, since Yy is very often chosen as not attainable. Thus,
any reasonable y‘ -- for example, corresponding to equal weights
for all components of output trajectories and all instants of
time --might be chosen; according to the controllability conclu-
sion, this does not restrict the possibility of influencing the
resulting De-maximal output trajectories y by changing the ref-
erence trajectories y. Second, the functional (30) is nondiffer-
entiable. Although recent development of nondifferentiable
optimization algorithms is remarkable, not all of these algorithms
are directly applicable for dynamic optimization. Therefore, it
might be useful to consider also achievement scalarizing func-

tionals that are differentiable.

Observe that achievement scalarizing functionals are con-
structed by using a strictly or strongly order preserving func-
tional of value functional type and supplementing it by a term
expressing a distance from y-y to the cone D. While the first
part can be chosen to be differentiable, it is the second part
that introduces nondifferentiability. To facilitate computation
and differentiation of functionals related to the distance,
suppose Ey is a Hilbert space. Then, due to the Moreau theorem
(1962; see Wierzbicki and Kurcyusz, 1977), the following holds:
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. — - -D‘ - D‘
(31) dist(y-y.D) = |l (y=y) =l (y=y)~ |l
-D* D* . . .
when () or (-) denotes the operation of projection on the
—_ ®
cone -D* cr D*. Moreover, H(y—y)D H2 is differentiable in y and

- *
its derivative is precisely -(y-y)D . Thus, if Ey is Hilbert,
a differentiable modification of (30) is as follows:

- * -— — *
(32) s(y-y) = <y ,y=-y> = %—o"(y-y)D II2 , p >0

This functional is strongly order preserving, by the same argu-
ment as in the analysis of (30), and its maximal points are D-
maximal for any p > 0. However, the functional (32) is not order
approximating and, if y = y is D.-maximal, then the maximal points
of (32) will generally not coincide with y for any o > 0. On

the other hand, if p is sufficiently large, the maximal points

of (32) usually approximate quite closely the maximal points of
(30), and the requirement of order approximation does not play

a decisive role. Thus, the functional (32) for sufficiently

large p might have useful applications.

If Ey is Hilbert, then there is also a technically differ-
entiable form of a strong achievement scalarizing functional,
satisfying both (21) and (23):

(33) s(y-y) = $ly=31% = % ol G-9)°"1% : o > 1, pcos

with € > p~?, see Wierzbicki (1977a). In (33), the role of a
value functional for y-y €D plays the (square) norm: hence the
condition D £D*, equivalent to the Rolewicz condition (18), is
necessary for the strong order preservation property. If y-¥&D,
the (square) norm is modified by the (square) distance term; if

o > 1, this modification is sufficiently strong to imply strong
order preservation. The property of order approximation results
immediately from the form of (33).

Consider, however, a functional similar to (33):

(34) s(y-y) = ly=yi - ol (g=p)P%1 ; o > 1, DCoO*
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It is also a strong achievement scalarizing functional. It is

clearly order approximating with ¢ > ¢~ '. HMoreover, due to the

Moreau theorem, s(y-y) = (az(y) +k:>‘(y))£2 - pb(y), where a(y) =
hiy-9)°%I, b(y) = H(y-?)—D*H. The operation of projection on
cones, (')D or (-)'D*, has the property (see Wierzbicki and

Kurcyusz, 1977) that H(y-§+§)'D'H < H(y-?)-D‘H for all Yy€D and

I (y=-7+9) 21 > 1 (y=9) Pl for all ¥ €D hence aiso for ¥ €D if D SD*.

Thus, if Y, =y, €D, then a(yz) > a(y,; and b(yz) 2 b(y,). Since
a(yz) = a(y1) and b(yz) = blyq) imply together Y, = ¥qo hence,
if Yy =Yy €D, we can have either a(yz) > a(y1) and b(yz) < b(y1)
or a(yz) > a(y1) and b(yz) < b(y1). Now, consider the function
v(a,b) = (a®“ +b")* - pob. This function is clearly strictly in-
creasing in respect to a. Since %% (a,b) = b(a2 +b2).Li -0 <0

for o » 1, the function v is strictly decreasing in respect to b.
Therefore, if y, -y, €D, then s(y, -y,) - s(y, -¥) > 0, and the
functional (34) is strongly order preserving.

On the other hand, after a suitable choice of (different)
values of o in (33) and (34), the level set Sy = {ytEEy :s(y-y >0
can be made identical for these two functionals, and this level
set has necessarily a corner point at y = y. Thus, the differ-
entliability of (33) has only technical character, and an essential
nondifferentiability in terms of corner points of level sets is
necessarily related to strong and strict achievement scalarizing
functionals. Therefore, for computational purposes, it is useful
to introduce another class of appreczimate scalarizing functionals.
The approximate scalarizing functionals are supposed to have strong
order preservation property (21), which implies that their max-
imal points are D-maximal. However, the requirement of order
approximation (23) is further related by substituting De’ the
conical e-neighborhood of D, by another form of an e~neighborhood:

(35) D_, = {y'eEy :dist(y,D) <evy(liyil)}
where y(+) 1s any given strictly increasing function. For example,
it is easy to check that (32) is an approximate scalarizing func-
tional, with y(lyll) = Hyﬂk. Approximate scalarizing functionals
are not strictly applicable for checking D-maximality of a given
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¥ via condition (27), nor attainability of a given y via condi-
tions (28), since a maximum point of an apprcximate scalarizing
functional might be different from a given D-maximal ¥ = .
However, the set DEY approximates the cone D sufficiently closely
for small £, and the difference between its maximal point and a
given D-maximal ¥ = y can be made very small. Thus, for practical
purposes, approximate scalarizing functionals have all the ad-

vantages of strong scalarizing functionals.

To illustrate further the distinction between strong and
approximate scalarizing functionals, consider still another
variant of such functionals. Suppose we have, originally, a
single-objective optimization problem with a performance func-

tional:

0 1

(36) v? = v%x(u),u) er

Suppose that, after maximizing this functionai and observing,
for example, that there are many controls u and states x that
result in nearly the same value of yo (a frequent case of prac-
tical nonuniqueness of solutions), we decided to supplement this
performance functional with other objectives, stated in terms of
a desirable shape of output trajectories:

(37) yT o= ¥YF(x(u),u) ez;

where E¥ is a normed space, with a positive cone pY. After de-
fining y = (yo,yr),Ey = R1 xE§ and D = Rl x 0% we bring the prob=-
lem back to the previous formulation, and any of the scalarizing
functionals defined above can be used. However, this specific
case suggests alsc a specific form of a strong scalarizing func-
tional:

(38) s(y-y) = v? -F°

- odist(y* -y,0") ; o >0

It is easy to check that this functional is order abproximating
with € > 1/0. Moreover, it is strongly order preserving in a
modified sense, with D = (Rl x DT\ ({0} x (DXN-DY)) replaced by
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D = (Rl\{O}) x (DT\ (DTN=-DT)) = ﬁl xBY. This modified sense of

strong partial preordering results in modified D-maximal points
that might be weakly Dr-maximal, in the second component yr, but
are always strongly maximal in the first component yo. In fact,
if Yy = Y4 ES: then yg > y? and yg - yﬁ e€B™. since the functional
-dist(yr -?r,Dr) is (neither strictly nor strongly) order pre-
serving, the first term in (38) guarantees that s(y2 -y) >s(y1 -y)

for y, - vy, €D.

Suppose E; is Hilbert and consider the following approximate

scalarizing functional

r*
r)D H2 ; >0

(39) s(y=7) = y2 - 7% - 5ol (7T -y
By a similar argument, this functional is strongly order pre-
serving with ; replacing D. It is not order approximating, only
y-order approximating with D‘Y defined as in (35) and y(liyll) =
hyll 2,

Observe that the functionals (38), (39) correspond to one
of the classical, widely used approaches to multiobjective opti-
mization. In this approach, we choose one of the objectives ==
say, y0 -- to be maximized and represent other objectives -- say, yr--
by parametrically changing constraints, yr - ?rGEDr. The func-
tionals (38), (39) represent, respectively, an exact and an ex-
terior guadratic penaity functional for such a formulation.
However, it is not widely known that, when using such penalty
functionals, one does not have to increase p to infinity or
otherwise iterate (e.g., introduce shifts) on penalty functionals.
Since these functionals are (modified) strongly order preserving,
each maximal point of them is (modified) D-maximal, no matter
what o >r9 has been chosen and what are the actual violations
y 'Yr)D of the constraints y® -y® €D¥, treated here as a type
of soft constraints. This feature of the scalarizing functionals
(38), (39) is particularly useful for dynamic optimization with
trajectory constraints (taking a form, for example, of state
constraints), since the iterations on penalty functions might
be particularly cumbersome in such a case. While using functions
(38), (39) for multiobjective trajectory optimization, it is
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sufficient to choose a reasonable value of p > 0 and to maximize
(38) or (3%) once in crder to obtain a {(modified) D-maximal al-
ternative solution corresponding to a desirable shape ;r of
output trajectory yr.

Via penalty functions, functionals (38), (39) --and, in fact,
all other achievement scalarizing functionals -- are related to
two other basic notions in mathematical optimization and modelling:
those of generalized Lagrangian functionals and of reqularizaticn

of solutions of ill-posed problems.

3. RELATIONS TO GENERALIZED LAGRANGIAN FUNCTIONALS
Consider the classical form of a mathematical programming
problem with generalized inegualities:

(40) minimize fo

(u) ; Uy = {u€E_ :g(u) €~DCE_}
uEUO 0 u g

where fO:Eu-*R', g:Eu *Eg, D is a positive cone 1n Eg. Suppose
Ex is a Banach space and Eg is a Hilbert space. Under various
forms of regqularity conditions --see, e.g., Kurcyusz (1974) —-
the necessary conditions for U being an optimal solution to this
problem can be expressed via the well-known normal Lagrangian

functional
(41) Lin,u) = £9u) + <n,gu)>

and take the known form

0

(42) Lu(n,u) = fu

(@ + g (@A =0

where g;(ﬁ) is the adjoint operator to gu(ﬁ), and

(43) g(u) €-D ; <A,g@)> =0 ; n ED*

where n EE; is a normal Lagrange multiplier related to the solu-
tion U. The triple condition (43) might be referred to as Kuhn~-

Tucher complementarity triple, widely known. However, it is not
widely known that complementarity triple (43) is, in fact,
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equivalent to a single nonlinear egquation for n (although this
result has been, in fact, used in R" by Rockafellar (1974), in
a Hilbert space by Wierzbicki and Xurcyusz (1977) and independ-
ently proven in rR? by Mangasarian (1976)).

To show this in the case when Eg is a Hilbert space, we use
the Moreau (1962) theorem: for any closed convex cone D CEg and any

pEEg
cones -D, D*, respectively, if and only if

- *
¢ Pq = (p) D and Py, = (p)D are the projections of p on the

(44) Py * Py =P, Py €-D, <PyiPy> = 0, P, €D*

Thus, denote g(u) + n = p; it is easy to check then that (43)

holds if and only if

(45) (g(a) +aP*

1]
3

or, equivalently, iff (g(Q) +7)"0 = g(i) (one of these equations

suffices and the other is redundant because of the definition

g(d) + n = p.)

This basic fact has various consequences. For example, the
sensitivity analysis of solutions of (40) might be based on ap-
propriate implicit function theorems instead of analyzing the
sensitivity of a system of inequalities, which is now the typical
approach to this question -- see, e.g., Robinson (1976). Another
important conclusion from eguation (45) is that there are modi-
fied Lagrangian functionals that should possess an unconstratned
saddle point in n,u at n,u. In fact, these are augmented
Lagrangian functionals as introduced by Hesteness (1969) for
problems with equality constraints in Rn, by Rockafellar (1974)
for problems with inequality constraints in rR", by Wierzbicki
and Kurcyusz (1977) for problems with inequality constraints in
a Hilbert space, and studied by many other authors. For problem
(40), the augmented Lagrangian functional takes the form

(46) Aln,u,0) = £900) + Mol (g(w) +§)°"nz -koll—g-llz L 5 >0

and the first-order necessary conditions (42), (43) == (45) take

the form
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(u7) faniaso) = €260 + gl (@) (og(@ +MP* = o
(48) A (Rdie) = 3 ((0,9(0) +mP* -t =0

Other necessary and sufficient conditions for optimality of a
in terms of saddle-points gf (46) are given in Wierzbicki and
Kurcyusz (1977).

Consider now the following specification of problem (40),

taking into account (36), (37)

(49) £0u) = -v%(x(u),uw) : g = ¥° - ¥¥(x(u) ,u) €-DF

where u might be additionally constrained explicitly by u €V.
Consider the augmented Lagrangian functional (46) with n = 0:

r‘
(50) A0, u.p) = -¥O(x(uw,u) + kol (¥ - ¥ (x(w ,un? 2% =
= -s(Y(X(u) ,u)-y) - ¥°
with s(y-y) defined as in (39). The order-preservation proper-

ties of the approximate scalarizing functional (39) can be now
interpreted as follows. Even if we fix n = 0 and admit viola-
tions of the constraint y- - ¥¥(X(u),u) €-D*, and even under
additional constraints u €V, any minimal point of the augmented
Lagrangian functional (50) is a D-maximal point of the set YV =
(x(v),v) = ¥9(X(V),v) x¥T(X(V),V) in the sense of the strong
partial preordering induced by the cone g = ﬁl x 5T . Moreover,

since:
(51) Am,mp)--q(ﬂxm)m)-y-% -§O-HN%ﬁ

and the above conclusion holds independently cf Y, hence it also
holds for any fixed n. Thus, the conclusion can be considered

as another generalization of Everett's theorem (196 ) and the
reference trajectory y is, in a sense, related to the generalized
Lagrange multiplier n.
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However, the last analogy should not be taken too mechanis-
tically. For example, the properties (28) of a strong scalar-

izing functional can be rewritten as

(52) min max s(Y(X{(a),u) -y) =0
YEY,, uev

and the min-max points (?,G) correspond to D-maximal points of
the set~YV = Y(X(V),V). On the other hand, (52) is not a saddle-
point property, since s(y-y) is not convex in y, and it is easy

to show examples such that max min s{Y(X(u),u)=y) <0. In order
uev Ye!v

to obtain saddle-point properties, convexifying terms in n would
have to be added to s(Y(X(u),u) -y), as it was done in (51).

4. MULTIOBJECTIVE TRAJECTORY OPTIMIZATION AS SEMIREGULARIZATION
OF MODEL SOLUTIONS

The monography of Tikkonov and Arsenin (1977) summarizes an
extensive research on one of the basic problems of mathematical
modeling -=- that of regularization of solutions of ill-posed
problems. Many results of this research relate to the useful-
ness of using distance functionals when solving problems with
non~unique solutions or gquasi-solutions (generalized solutions).
The nonuniqueness of solutions of a mathematical model implies
usually that the solutions would change discontinuously with
small changes of parameters of the model. For example, if a
dynamic linear programming model has practically nonunique solu-
tions, that is, if there is one optimal basic solution but many
other basic solutions result in almost the same value of the
objective function, then a small change of parameters of the
model results in large changes of the solution -- see Avenhaus
(1980). The regularization of solutions of such a type of models
consists then in choosing from experience a reference solution
and considering the solution of the model that is closest to the
reference solution in a chosen sense of distance; as proven by
Tikkanov and Arsenin, this results not only in the selection of
a solution, but also in continuous dependence of the selected
solution on parameters of the model.
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The reqularization method can be illustrated as follows.
Suppose a mathematical programming problem consists in minimizing
the functional

(53) 2w = -v%xu,w
for u €V. Suppose the solutions of this problem are (possibly

only practically) nonunique. Let a reference trajectory ;r be
given in a normed space E; of the outputs of the model, yr =

¥ (X (u),u). By a normal solution of the problem of minimizing
fo(u) for u €V we define such a solution of this problem that
minimizes, additionally, ||¥* =¥ (X(u),u)||. This normalization

is, clearly, relative to the ocutput space B;. However, it is
easy to see that if, say, fo(u) and V are convex, Y and X are
linear, and the unit ball in E; is strongly convex, then the
normal solution is unique relative to the output space -~ that 1is,
it determines uniquely the output trajectory yr. Moreover, this
output trajectory depends continuously on the reference trajec-
tory ;r. A stable computational method of determining the normal

solution approximately consists in minimizing the functional:
(54) 9(¥5u,0) = -¥%(x(w,u) + 4ol FF - YT (X (w),u) 2

for o0 +0. Again, under appropriate assumptions, it can be shown
that output trajectories corresponding to minimal points of (54)
converge to the output trajectory corresponding to the normal
solution as p + 0.

However, observe that (54) can be obtained from (50) if EX
is Hilbert and DY = (0}, Dr‘ = Ei. Thus, the multiobjective Y
trajectory optimization is stronély related to model regulariza-
tion. Actually, the former can be considered as a generalization
of the latter. In fact, define semi-normal solutions of the
problem of minimizing fo(u) for u €V as such that minimize, ad-
ditionally, dist(Yr(x(u),u),}'r +Dr), where DT is a positive cone
in the space of output trajectories ET. Now, even if f(u) and V
were convex and Y and X linear, the oKtput trajectory yr corre-
sponding to a semi-normal solution need not be unique -- since
there might be many points in a convex set that are equidistant
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to a convex cone. However, the semi-normal solutions have good
practical interpretation; the corresponding output trajectories
are either close to or better than the desired reference tra-
jectory ;r, depending on its attainability. Moreover, when
minimizing the functional (50), instead of (54), we obtain D-
maximal points of the set Y, = Y(X(V),v) = ¥C(X(V),v) «¥T (X(V), V)
for each o > 0. The same applies, clearly, to the functional (5&),
if we assume DY = {0}, which gives another interpretation of
regularization technigues. Thus, multiobjective trajectory
optimization is a type of model semiregularization technique:

for the selection of a solution of the model, a reference output
trajectory is used together with a notion of a partial preordering

of the output space.

5. COMPUTATIONAL ISSUES AND APPLICATIONS: A DIFFERENTIABLE
TIME-CONTINUOUS CASE

If an achievement scalarizing functional is differentiable,
then any method of dynamic optimization can be applied as a tool
for obtaining an attainable, D-maximal trajectory y in response
to a desirable trajectory y. An efficient class of dynamic
optimization techniques applicable in this case are gradient
trajectory techniques, or control space gradient techniques,
based on a reduction of the gradient of the minimized functional
to control space. A general method for such a gradient reduction,
independent on the particular type of the state equation, is de-
scribed, for example, in Wierzbicki (1977b). Here we present
only the simplest and well-known case of gradient reduction for

problems with ordinary differential state eguations.

As an example, consider the approximate scalarizing func-

tional (39) and suppose yo is described by

ft
(55) v = T xie) w0 e+ Flix(e )

Moreover, assume the mapping X be given by solutions of the state

equation

(56) x = X(u) == x(t) = F(x(e),ult), &) ; x(t5) = xoea"
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and the mapping Vel -=by the output equation
(57) yF = YF(X(u),u) = yF(t) = G¥(x(t),ult),t) erP

r_ 2 , p r . (2 . Py .
Take EY = [ ([to,t1],R ) and D L+([t°,~1],R ): then

rt
Ve xe) uieyTie), thdt + F (x(ty)) -F0

0

(58) s(Y(X(u),u)-y) =

‘t

where

(59) G2 (x(t) ,u(t)gT(t),t) = FO(x(t),u(t),¢)

- %p f (¥ (¢) -c‘i(x(t),u(t),t))f
i=1

and (?1)+ = max(0,¥*) for §165R1. By choosing DF = Li([to;t1],RP)

we assumed that all outputs improve as the corresponding values
yri(t) increase for (almost) all t:E[tO;;1]. Now, a reference
output trajectory y- (t) = (§r1(t),...,?rl(t),...,§rp(t)) for

t E[to;t1] is assumed to be given by the model user. In fact,

if p is not too large --say, 3 or 4 --the user can easily draw
the number p of curves representing output trajectories desired
by him. Moreover, experiments show that he is also able to
evaluate easily the corresponding responses of the optimization
model, 90 and §T(t) = (§r1(t),...,?ri(t),...,“rp(t)) for t.E[to:t1]
and, if he does not like them, to change the reference trajectory
in order to obtain new responses. Observe that the reference
value ;0 plays, in this case, a technical role and can be omitted.
Thus, an interactive multiobjective dynamic optimization proce-
dure can be organized, provided we could supply an efficient
technique of maximizing the functional (57) subject to the state
equation (56) and, possibly, other constraints. To simplify the
presentation, suppose other constraints are already expressed as

0

penalty terms in the functions F~ or F1.

Denote S{u) = s(Y(X(u),u) -y). Then S,(u), the gradient
of the functional (58) reduced to the control space, can be
computed in the following way. The Hamiltonian function for the
problem of maximizing (58) subject to (56) has the form
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(60) H(Y(£),x(£) . ule), 75 (t), ) = 6O(x(t),u(t),F5(8),¢)

+ Y(e)F(x(t),ult). . t)

where Y(t)F(x(t),u(t),t) is a short denotation for scalar product
in R™ and ¥(t) is the costate (the adjoint variable for the state).
To compute Su(u)(t) for t E[to;t1], given u(t) for t e[tn;t1],

we first determine x(t) = X(u)(t) by solving (56), written equi-
valently as

(61) %(£) = Hy(¥(£),x(t),ult),y (£),£) ;  x(ty) = x4

Then the costate Y (t) is determined for t G[to;t1] by solving,
in the reverse direction of time, the adjoint equation

(62) V() = —Hx(w(t),x(t),u(t),§r(t),t) ; W(t1) = Fl(x(t1))
and the reduced gradient in the control space is determined by
(63) S, (£) = H (¥(£) ,x(t),u(t), ¥ (), ¢)

Typical conjugate directions algorithms of nonlinear pro-
gramming can be adapted for making use of this reduced gradient.
However, Fortuna (1974) has shown that, for dynamic optimization,
conjugate directions perform much better if a modified reduced
gradient is being used:

{(64) §u(u) (t) =

=1 -r —r
Huu(W(t),x(t),u(t),y (t),t)Hu(W(t),x(t),u(t),y (), t)

This modification removes possible ili-conditioning of the al-
gebraic part of the Hessian operator Suu(u), leaving only possible
ill-conditioning of the compact part of this operator --and the
compact part has, in the limit, negligible influence on the con-
vergence of conjugate direction algorithms in a Hilbert space.
This abstract reasoning has been also confirmed by extensive
computational tests.
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Now, each continuous-time dynamic optimization problem,
when solved on a digital computer, is ultimately discretized
over time. While a discussion of results of recent world-wide
extensive research on approximations of time-continuous optimi-
zation problems is beyond the scope of the paper, it is worth-

while to note some comments on this issue.

A conscientious approach to discretization of a time~con-
tinuous problem should start with the question whether time-
continuity is really an essential aspect of the analyzed model.
In many cases, time-~continuity is assumed only for analytical
convenience, and the actual model can be better built, parameter-
fitted and validated in its time-discrete version. In such cases
of a priori discretization, it is certainly better to abandon
time-continuity at the very beginning and to develop the time-
discrete versions, say, of the equations (55) ... (64). Some
gualitative properties and conclusions from the time-continuous
analysis might be still applied to time-discrete models; for
example, the Fortuna modification of the reduced gradient, al-
though motivated strictly for the time-continuous case only,
gives good results also in the time-discrete case.

In rather special cases, time-continuity is essential.
These cases are really hard, and great care should be devoted
to the analysis of those qualitative properties of the optimiza-
tion problem that make time~-continuity essential (such as boundary-
layer effects, appearance of relaxed controls, etc.). These
qualitative properties should be taken into account when looking
for alternative formulations of the problem, for an appropriate
space of control functions, when choosing finite-dimensional bases
for a sequence of subspaces approximating the control space, when
determining what is the reduced gradient expressed in terms of
a finite-dimensional basis. A naive discretization of equations
(61) ... (64) can lead to serious errors, when, say, a naively
discretized gradient equation (63) produces numbers that are in
no correspondence to the gradient that would be consistent with

a chosen discretization of the control space.
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We close this section with a simple example, when the con-
tinuity of time is important only because it facilitates almost
fully the analytical solution. Although it does not illustrate
computational issues, the example illuminates some other important
aspects of applications of multiobjective trajectory optimization.

Consider a simple model of relations between inflation and
unemployment, as analyzed by Snower and Wierzbicki (1980) when
comparing various economic policies. The inflation rate, x(t),
is influenced by monetary policies, that influence also the un-
employment, u(t). An adaptive price expectation mechanism and
a linearized Phillips curve result in the following equation:

(65) x(t) = rd(b -u(t)) : x(0) = X,

where unemployment u(t) is taken as a dummy control variable,
b is a parameter of the linearized Phillips curve, rd is a
composite coefficient. The social welfare function related to
inflation and unemployment is assumed in the form:

(66) Cix(e)u(e)) = 1 - w2 &) - §ule)

where g is the weight attached to unemployment as compared_to
inflation. The intertemporal social welfare functional is as-
sumed in the form

(67) Wix,u) = | e F% gix(t),ult))dt

0

The problem of maximizing (67) subject to (65) can be easily
solved analytically to obtain:

(68) ale) = c%o (xq -2ye Tt
(69) 2(t) = (x -b—q)e-mot . ba
0~ 3
where
. a?
(70) G.o-!'i((" +U—d—) -1)
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However, if the initial inflation rate Xq is high, the

‘optimal’ unemployment u(t) that results from this model for small t might

be considered socially undesirable, too high. We could change
the model by adding simply a constraint u(t) < u. In this simple
case, the constraining value u must be greater than b; otherwise,
equation (65) would result in uncontrolled, increasing inflation.
However, in more complicated models, it might be difficult to
judge whether a control constraint is not too stringent. There-
fore, it is reasonable to treat u as a desirable bound for tra-
jectory rather than as a fixed constraint, and to formulate a
multiobjective trajectorv optimization problem: maximize the
social welfare functional while, at the same time, trying to keep

the unemplovment smaller than u.

Observe that, in this formulation, one of the outputs yr of
the model is just the input control u. However, such situations
are quite frequent, when some important control variables appear
directly as output variables in multiobjective trajectory opti-
mization. Moreover, the unemployment u(t) is here only a dummy
control variable; actually, the model should be controlled by a
monetary policy that, after a transformation that was not included
is the model for simplicity results in the unemployment u(t).

Suppose we apply the approximate achievement scalarizing
functional (39) for this multiobjective trajectory optimization
problem and choose the norm Muﬂ2 = Q: e Tt uz(t)dt for the control
space. Then:

©

(71) s(Y(x,u) - y) =J e Ttk (t) ,ult)) - ¥ (ult) - G)i)dt -y
0

0

Suppose u(t) > u for tE{0:t,), ult,) = u, u(t) < u for

tE(ti; + =»). Then (71) transforms to
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&

(72) s(Y(x,u)-y) = J eIt (g (x(t)) = Mpiu(t)-a)2)de +
0

-re ~
+ e . W(x(tl)) -y°

where

bd

x(ty) -
(l+a0)

W -1 2 -
(73) w(x(tl)) = T 1 §TI:E;T X (tl) 3

2
- (2+u0)a° gb

2(1+ay)

is the minimal value of (67) depending on the initial state.
The problem of minimizing (72) subject to (65) can be solved
almost fully analytically to obtain:
~-ra, t -ra.t.
( rd . 1 27 .
A '6:3 Ae + Be . +b, t€[0:t1)
(74) u(t) = J

- ~rag(e=t,}
t(u-b)e +b, tG[tl;+°)
. -ra.t -ra.t
; 1 2 9, b .
. | Ta, A, + ra, Be - 3(E-b) +7§, t€[0:¢,)
{(75) x(t) = 1
a - -rao(t-tl) bq , LE [, ;=)
] —-(u-be -+1§ 1
where
2 2
= a” & _ . - - E-S
(76) 3y 5((l+4q+p) 1); a, 5((l+4q+o) +1)

while the constants A,B and the time instant t, result from three
conditions: the continuity of u(t) (implied by continuity of
adjoint variable) and of x(t) at tl and the initial state xoxi(O).
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For example, the former two conditions determine A,B as functions

of tl:
ra.,t - ga,=(g+p)a
- e 171 @b 0 2,
(77) A A(tl) e B R— B _—02'01 H

raztl 3-b .quo-(q+p)al

B'B(tl)'e T

&17%;

while the latter condition results in the following equation for
ty that does not admit analytical solutions (must be solved

numerically)
5 =_ b
(78) rajA(ty) +rayBlc)) - (3-b) +33 = x,
Nevertheless, (74),... (78) admit on easy interpretation of the
influence of p and G on 4(t) and %(t). The single-criterium

solutions (68),(69) are compared with an example of solutions
(74),(75) in Fig.l.

()

x(t)

r »
X0
(T+‘°)(ﬁ -db)q + _bdﬂ

bq
________ —_—,—— . O
T 4 |
| | {
to 4 t to i t

Figure l. Examples of single~criterium 'optimal' solutions for
unemployment Q(t) and inflation X(t)--case (a)-- com-
pared with multicriteria D-maximal trajectories of
these variables responding to a judgementably set
reascnable level u of unemployment--case (b).
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Observe that, if p is sufficiently large, the multicriteria
D-maximal trajectory u has values u(t) only slightly greater
than u, and that the time t,,
slightly greater than the corresponding time to for single-

at which 4(ty)=u is also only

criterium case (the last observation follows from the fact that
f;(ﬁ(t)-b)dt.-éa(xo -%?) for both cases). Thus, when applying
multicriteria optimization, we can significantly reduce maximal
unemployment while spreading the effects of this reduction over
time. Clearly, in this simple example we could obtain similar
results just by using an explicit constraint u(t)j_ﬁ. However,
when using hard constraints, we must be careful not to specify
U < b; otherwise we would obtain x(t)+® as t-+». When maxi-
mizing (71)--which is equivalent to a soft constraint on u(t)--
we can assume u<b and still obtain well-defined results.

Observe also that one could interpret the achievement
scalarizing functional (71) as just another form of welfare
functional. This interpretation is correct; however, the
modified welfare functional depends explicitly on judgementally
set desirable bound u for unemployment, and in this aspect it
differs basically from traditional welfare functionals. More-
over, 1t possesses the strong order preservation property. Thus,
if § and % correspond to the maximum of this functional, then
we cannot decrease the inflation i(t) at some t without increasing
it at some other t or without decreasing the welfare functional

Ww(x,4d) .

6. COMPUTATIONAL ISSUES AND APPLICATIONS:

A TIME-DISCRETE DYNAMIC LINEAR PROGRAMMING CASE

Many problems-- especially in economics (see, e.g. Kallio,
Propoi, Seppdl& 1980)--are formulated in terms of time-discrete
dynamic programming models of the general form: maximize

0 K=1

(79) v (x,u) = fa, +dox,) +do
Y X,u) = kzo(ckuk+ x*x!) * 9x¥x

subject to state egquation constraints:
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(80) Xyepi = Ap¥Xy + By i X, - given
and to additional constraints

(81) (xk,uk) € Vi

where Vk is a convex polyhedral set (described by linear in-
equalities), a, €r®, c}: € g™ r Xy € Rn, d; € Rn*, Ak € rR"xRr?,
BkGRanm. The trajectories x and u are, in this case, finite-
dimensional, u'{“O""uk""uK-l} GRmK, X = (xo,...xk,...xK}

€ Rn(K+l) , but can choose various norms in these trajectory
spaces.

Various approaches have been devised to numerically solve
this problem while taking advantage of its special structure
(see, e.g. Rallio and Orchard-Hays 1980). For example, one of
the efficient approaches is to solve this problem as a large
scale static linear programming problem with the number of
variables (m+n)K (excluding Xq which is a given parameter) and
genarating an initial feasible basic solution by choosing ad-
missible u and solving state equation (80) for x.

It often happens that the solutions of this problem are
practically non-unique (many admissible solutions correspond to
almost maximal values of yo) and that we are interested, in fact,
not only in yo but also in some output trajectories
yT = {yg, .. .yi, .. .yi_l} € RPF of the model (80)

(82) yixci u, + Di kaRp

where cX €RrP x Rm, Di € rP x r™. Suppose all output trajectories

k
have to be maximized, thus the positive cone p® =Rpf, D -Ri xRp:(.

A particularly convenient form of achievement scalarizing
function for this class of problems has been developed by
Wierzbicki (1978) and practically applied and further modified
by Kallio, Lewandowski and Orchard-Hays (1980). The function

corresponds to the choice of a maximum norm in the space
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Ey =R' xE; and has the form

- - 1 -1 * -
(83) s(y=y) = omin(yo-yo, mip(yil-yil)) + yo (yo-yo) +

k,1i

ri ~-ri

rix*
+ 7yt vy ey )
K,k Tk 7k

or, if we introduce the surplus variable w = y-§ERpK+l,

j j=pK

w={w'},
j=0

(84) s(w) = pmin w) + y*w

where p >0 and y* is a strictly positive linear function of

*
unit norm in E;. Because we have chosen maximum norm in E_, E

b4 Yy
has the sum of absolute values norm, and y* is simply a vector
*
of positi\(e weighting coefficients summing up to one, v* ER(pK+l) ’
NP LI 3* W .
v ={y }j-o , Ly’ =1, y° >0. Now, min w- is strictly order
j=0 3
preserving while y'w is strongly order preserving, thus s(w) is

strongly order preserving. Moreover, if D=R§K+l, then
DCSO={w€RPK+l : s(w) >0} = DEOCDE' where D. has the form (13)
with € >%~, since s(w) >0 and ||y*|| = 1 imply together

pdist (w,D) = -pmin w? iy'w <|lwll . Thus, s(w) is order-approximating

and a strong acgievement scalarizing function.

The problem of maximizing s(w), however, can be written
eguivalently as another large scale linear programming problem,
by introducing 2(pK+l) or even only (pK+l) additional linear
constraints and pK+l or even only 1 additional variables to the

original problem. The modified problem is: maximize
(85) S(w,Vv] = y*w+ov
with vERl, subject to:

(86) v:wj, j =0,...pK
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k-1

(87 0.y a dox, - 3°
) v WL (epuy ¥ dyxy) + dgXg -y
k=0
. PK K-1
fw3 = wi = r r, _sr
(88) fw }jzl w (Ckuk+Dkxk yk}kso

and subject to (80),(8l). Clearly we can set (87),(88) into (86),
(85), thereby diminishing the number of additional constraints
to (pK+1l) and the number of additional variables to 1 (the
variable v). An efficient algorithm for solving such problems
has been developed by Orchard-Hays (see Rallio, Lewandowski,
Orchard-~-Hays 1980).

According to the general theory from section 2, the choice
of y* and p does not affect principally the user of the model,
who can obtain any desired D-maximal outputs of the model by
changing the reference trajectory output y. However, it might
affect the easiness of interaction between the user and the
model. This issue has been investigated in Kallio, Lewandowski

and Orchard-Hays (198C) where yj* = piﬁl and o > 20 resulted in
good responses of the model. The particular model investigated
was a Finnish forestry and forest industrial sector development
model with maximized outputs representing the trajectory of the
profit of the wood processing industries over time and the
trajectory of income of the forestry from selling the wood to
the industry over time (10 periods have been considered for each
trajectory, hence the total number of objectives was 20:; no
intertemporal objective was included). Further improvements of
the procedure have been also investigated, related to accumu-
lating information about user's preferences revealed by the
consecutive choice of reference trajectories y after a D-maximal
trajectory Y has been already proposed by the model. However,
the main conclusions were the pragmatical and operational use-
fullness of the procedure; an example of trajectories y and y
obtained in this model is shown in Fig.2.

It should be noted, finally, that achievement scalarizing
function (83) is quite similar to functions used in goal program-
ming techniques--see Charnes and Cooper (1961}, Dyer (1972),
Igmizio (1978), Kornbluth (1973). However, the use of function
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Figure 2. Forestry income trajectory (F) and forest industry
profit trajectory (I) obtained in a multiobjective
dynamic linear programming model: y -desired refer-
ence trajectories, ¥ - corresponding D-maximal model
outputs.

(83) is not related to some of the deficiencies known in appli-

cations of goal programming.

7. CONCLUSIONS

In many cases it 1s desirable and, as shown in this paper,
both theoretically and practically possible to use multi-criteria
trajectory optimization approaches to various dynamic system
models. The approach is based on reference trajectories, when
the user of the model specifies what are desirable output
reference trajectories of a model and indicates what outputs
would be even better than desirable ones, while the model res-
ponds with output trajectories that are not only attainable and
nondominated in the sense of partial ordering in the output
space as indicated by the user, but also correspond to the
specified reference trajectories. On one hand, this approach
is related to many interesting theoretical gquestions about the
properties of achievement scalarizing functionals in normal
spaces, their relations to augmented Lagrangian functionals, to
regularization of solutions of ill-posed models; these questions
have been investigated, to some extent, in the paper. On the
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other hand, this approach is also eminently pragmatical:; the
author hopes that the examples presented show the reasonability
and pragmatical values of using the seemingly abstract and
untractable notions of infinite-dimensional or high-dimensional
multicriteria trajectory optimization.
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NONCONVEX DUALITY PROPERTIES FOR
MULTIOBJECTIVE OPTIMIZATION PROBLEMS

F. di Guglielmo

Centre Universitaire d'Avignon, France

wWe discuss in the following some non convex duality properties for mul-
tiobjective optimization problems. By using a characterization of Pareto optima
by means cf generalized Tchebycheff norms due to BOWMAN (1976) we reduce the
multiobjective problem to a family of semi discrete minimax problems and we asso-
ciate with them their duals. We then give estimates of the corresponding duality
gaps in terms of the lack of Y-convexity of the objective functions. Finally we
give & general characterizatior of Pareto optime in the non convex case and we apply
it to the approximate determination of these optima by using some ideas due to
DUTTA-VIDYASAGAR (1977) and HUARD (19€7).

1/ Notations and definitions

Let X be a subset of E° and (f ) a finite set of real valued functions
defined on X. There does not generally exlsL any x* € X such that f](x) = Inf f.(x)
3
for all 3 € N, but there may exist weakly minimal points % € X such that xex

there does not exist any x € X satisfying
fj(x) < f;(;) for all 3 ¢ N\.
)

Such points are calied weak Paretc minima (or weakly efficient points).

It is well known that in the case of convex data the problem of determi-

ning the set of Pareto minime of the (fj>ﬁcN in the set X is equivalent to solving

the family of single objective optimization problems

Q) Inf z A, £.(x)
x€eX JeN 303
for all systems of non negative multipliers () ). and that one can associate

JjeN
with each Pareto minimum X € X a set of multlpllers A such that x is a solution of

(QT)'

39
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On‘'the other hand it has been shown by BOWMAN in the non convex case
that, under appropriate assumptions, each Pareto minimum of the (fj)jeN ir the
set X can be considered as a solution of a2 problem of wminimum distance :

(P) Inf ||F(x) ~ wl]
8 xeX g

where F(x) denotes the vector of ¥ with components (fj(x))jEN,HyHe = Max Bi Iy,

co i
denotes a generalized Tchebycheff norm with weights Bi > 0 and w is somé vector
of Rh such that F(x) > w for all x € X.

We shall study the relationship between problems (PB) and (QA) and we will see

that (Q,) is connected with the following dual problem of (P,)
) g

Sup Inf <nB [ F(x) - «] >
n3o xeX
<, =1

2/ The BOWMAN characterization of Pareto optime

Let us assume that the functions (fﬁ)jg are defined on a compact subset

X of E* and lower semi continuous. We assume morezver that there exists a point
we lN such that fj(x) > wy for all j € N and x € X. This means that all points
F(x) = (f.(x)).cN, X € X are contained in the interior of the non, negative orthant
of !N witg ori;in in w.

Thern we have the following result of BOWMAN (1876)

Theorem X € X is a weak Paretc minimum for the (fj)j in the set X if and only

€N

if there exists a parameter § > o such that
[1P(x) - wHe = Inf ||F(x) - w|'.B
xeX

It is to be noticed that problem (PB) can be written as a semi discrete

minimax problem of the form :

Mirn Max ¢.(x)
XEX JEN E

or explicitly :
Minimize 2
) subject tc :
zZ > ?j(x) for all j € N, x € X, Z €& ¥

with ¢ = kg [fj(.) - w,] forallj e N.
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3/ Some inequalities for semi discrete minimax problems.

Let us consider a family of real valued functions (‘fj)ch defined on

a set X and let us introduce the vector valued function ¢(x) = (?j(x))jeN. We

associate with ¢ the following quantities :

a = Inf Sup «.(x)
xeX jeN I

Bo= Sup, Inf <n,(x)>

nee xex
N_ N, ) . N
where M ={n € B | I n, = 1} denotes the unit simplex of ¥ .
1eN

We now define the lack of y-convexity of the functions (?])JEN
on the set X. We denote byﬂl(x) the set of all discrete probability measures on X
of the form m = flul 8(x* ) where I is a finite set of indices, the xl are points

i
of X and 8(x”) demotes the Dirac measure at the point x

If v is any mapping from %(X) intc X, then the lack of y-convexity of &

function f defined on the set X is given by

ey yF) = s [ £Cm) - £5m) ]
’ med¥ x)
where :
B = T oe, fxh.
ier *
We will say that f is y-convex in the set X if and only if pY x(f) 0. If X is
convex and if Y is defined by Y( T Q. é(x )) = T a; x1 then pY x(f) = 0 means

that f is convex in the usual se%gg in X. iel

Now we can prove the following :
Propositior 1 Let X be ar arbitrary subset of ¥ and (qj)jex a finite set of

functions bounded on X .I1f Y is any mapping from J(X) into X the

following estimate holds

(1) osa-Bos Sup P
JEN

We notice first that for arbitrary nCJ[N and x € X we have

n,o(x)> = L moM.(x) g (Sup ¥.(x)) I m. o= Sup .(x)
jex - jex jex 3 jeN  :
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and this implies :

(2) By © Sv.xpN Inf < n,0(x) > & Inf Sup qj(x) = a.
neM xeX xeX JEN

Let us denote by 3 the vector of RN with all components equal to one. We show that
Bo e To (o(x) + l}:)(’). Let us suppose that this is not true. Then from the

separation theorem there would exist €>0 and chtLN such that

Bo = <u,8° 3> & <p, ¢(x)> + <u,p> - € forall x € X, p € xi .

For fixed x € X this inequality implies that the linear form p+< u ,p> is bounded
from below on li anc hence that U 2o0. By taking p = o we deduce that

Bo & Inf  <u,d(x)> - CSSupN Inf <u,d(x)> -e€e=8 -¢€
xeX vede xeX

which yields a contradiction.
Hence B 1 To(d(X) + lf) and this implies that there exists coefficients

. i
o, 2 o and points x~ € X such that

(3) B, 2> I o {.(x) for all j € N.
ijer * 3
If we set m = iEI uié(xl) € Jb (X) then the definition of the lack of v-conve-

xity of ¢j implies that for all 7 € N we have :
E > ¢%m 2 @.(m) - b, (4.
° J ] Y,X '3

Since Ym € X these inequalities imply that

B+ Sup oy X(Q.) > Inf Sup ¢.(x) = a.
jen  YoR 3 xeX JeN -

It is possible to derive a sharper estimate for the difference u-Bo when

X = X1 x X2 Xeo. X XT and the functions . have the following form :
1 7

n . = = .

(%) W](x) 5 tglq;.t(xt)

-3

with &. _ defined on Xt for v = 1,2,...
Ja b

We shall use the Shapley-Folkman theorem which we first recall (see for instance

(*) We denote by Co(A) (resp.Co(A)) the convex (resp.closed convex) hull of the
set A.
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Theorem (Shapley-Folkman)

Consider a finite family (K )t 1,2, of subsets of E".

For every & € Co( E K ) there exlsts a subse; of at most m

indices s(£) € {1,2,... T} such that

(5) Ee Z K +Z co(K)

t@s(§) T ores(E)
We can now prove the following result

Proposition 2 Assume that the functionms q’j have the form (¥) where the
¢y, are bounded functions defined on X, for je N and
*
t = 1,2y... T, If for t = 1,2,... T Yt denotes an arbitrary

mapping fromP( X,) into X , then the following estimate holds :

1
(6) oga-f £ = Sup Sup »p @¢. ).
°© 7 T jerer jen  YeoXe Tt

For all § € N we have, as in the foregoing proposition :

B=Eu..(xi)+.=3 T a. (x)+ with p. 2 ©
© . iel 1?3 Py 57 ie] ‘r’ ‘f] t p p]
or equivalently :
;

- €
(1) Bo pj Co(tzl Ej .t)

-1l _ .
where E',t = {'I‘ qj,t (xt)}xtcxt C ® fort=1,2,... T, JE N.

By the Shapley-Folkman theorem there exists a set of indices containing at most

one subscript Tj such that

(8) B -p. € I E. _  + Co(E, )
S| tﬂ] J»t J:T,
This means that there exists x_ € X for t ¢ T and m_ EJL(XT )
; 3 3
with m. = .I. a.8(x> ) such that
T e AT
1 1 i 1
> - . -— = — -
B> I 59 ) vd Doag (o) s loRq (x) Tt(‘?’
T#T 33 3

p
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which implies :
I 1, 1 _1
(o) B > t#'rj T .fj,t(xt) tT ij.'rﬂ.(Y'rj m'rj) T O %, (Yj.'rj.)
] 3 b ]

By settin =Y. m we obtain for all j € N :
g X . Br,

J J J

t1 3

g+
o)

+3h

1 -
-'I- DYT'vx‘f,(‘fj)T-) > t=2 L{jat(xt) -q](’()
i3 J

and fipally :

g, *'% Sup  Sup (‘F' ¢} > Inf suwpg.(x) = a.
1<t<T 3eN Tr XT3 x€X JeN ° -

By taking q (.) = Bj [f (.) - w;] for all 3 € N we will now deduce from
Prop051tlons 1l and 2 dua;ty results for Problems(PB) and (Q;).

4/ Estimates for the duality gap.

We have first the following

Theorem 1 Let X be a compact subset of RN and (h)jeN a finite set of lower
semi continuous functions defined on X. Assume that X € X is a Pareto

minimum satisfying :

[|F(x) - “’Hs = Inf ||F(x) - w IiB
x€X

Ther. there exists T eV such that

(10) i) o<Ian}'(x)-w||B Inf I %.[f. (x)-w] € Swp B (£
xEX x€x  jen 3 3 jen O vX

(11) ii) I X.f.(x) € Inf £ X f.(x) + sup B.p. (f.)
;v 33 xex jex 3 J sen 3 VX0

where Tj = n.B..

"ne- 43

If X = XlXX X,., X XT ané fj(X) ==

2 (xt) then :

£,
1 Jst

(12) i')  ofInf]| F(x)—m||s-lnf z [f (x)-w, J % Sup £. p
xcX x€X SEN ].St<T jeN E Yt, t 2
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(13)  ii') I TLE(X) € Inf I TLE.(x) + % Sup  Sup B.p (£. ).

jen 73 xeX jen O 7 1cteT Jen 0 Yr,%p 3o

By the uppersemicontinuity of the map N —— ,I(xég <n,$(x)> and the compactness
of the unit simplex J?LN there exists N €M Y such that :

(1u) Sup Inf <n,e(x)> = Inf <q,0(x)>
K xeX xXeX
nek

Now we notice that

a = Inf Sup Y.(x) = Inf ||F(x) - w||8 = ||rx) - wHB
x€X jeN XEX

B = sup Inf <n,p(x) = Sup 1nf<mﬁ[ F(x)-w]>=1nf <ﬁ,8f§‘(x)-w‘]>
° net  xex nemy xex xeX B

from which it follows by Proposition 1 that

<-"—1,B[F(;)-w] ><Sup <n,8[1"(;)-w] >z | |F(X)-w] |6 = Inf||F(x)-w] |B
N

XEX
(15) neY®
=a <8 <+ Sup B, ¢ (£.) = Inf< 7,8 [F(x)-w}» Sup B.p. (f.)
° Jen Y.X 73 XEX jen 3 v-X 3

which in turn implies i) and ii) by setting % = ng .

A similar argument together with Proposition 2 can be used to prove i') and ii').

1f the functions (i‘j)j are y-convex, then pY x(fj) = o and we deduce from
»

EN
Theorem 1 the following :

Corclliarv 1 If the functions f. are y-convex and lower semi-continuous. then
Y 3 Y
for any Pareto minimum X which is a solution of (PB), there exists

X oe Rf such that

(16) 1) Inf |[F(x) - w|]g= Inf :on [0 W]
XEX x€X  jeN ¢ E v
(17) i) I R (X)) = Inf I3, £.(x).
JEN 303 XEX  JEN



46

From Proposition 1 and Corollary 1 it follows that the problems

(P,) Inf ||FG)=wl|
BY ex 8

(5g)  Swp Inf  <n,B[F(x)-uw]>
N xeX
NE, I]

can be considered as dual problems, the duality gap being bounded by :

1
Sup B. p_  (£f.) resp. = Sup Sup P (£, ).
jeN 3 YaX 73 T 1cteT  jeN Yoo Xp 3ot
When T tends to infinity while the lack of Yt—convexity oY X (fj t) remains
L

bounded by a fixed constant, then this duality gap tends to zero. The multi-
pliers 73. = Fj. Bj can be interpreted in the non convex case as approximate

Pareto multipliers associated with Xx.

We conclude by giving a generalized characterization of Pareto optima in the non

convex case.

5/ A generalized Characterization of Pareto optima

let us denote by P a closed convex cone of !N with non empty interior. We
will use the following notation :
u > v (resp. u 5 v) if an¢ only if u-v € P (resp. u-v € Int P).
P
We will assume that there exists w € iN such that F(x) ; w for any x € X ;
then by replacing F(x) by F(x)-w we can take w = o. Any X € X such that there does

not exist any x € X for which F(x);?(;) will be called a weak Pareto minimum for

the (£.). .. in the set X with resgeét te P.
3 JEN

We now consider a set of functions (we)sCB defined on RN and satisfying :
A.) for any b € Int P there exists B €B such that :

a £ b-Int?P implies ws(a) 2 we (b)

A,) for any a,b € P b-a € Int P implies \UB(a) < we(b)
for all B €B.



(18)

(13)
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We have now the following result which states that each Pareto minimum is a solution

of some optimization problem of the form :

Inf WB(F(X)) with B € B.
xeX

Theorem 2 Assume that the functions (WB)BCB satisfy assumption Al).

Then for any Pareto minimum x € X there exists R € B such that :

we(F(;)) = Inf wB (F(x)).
x€X
Conversely if the (wBEBCB satisfy assumptior AQ) and x € X is

arn optimal solution of Inf wB(F(x)) with B € B, then it is a
xeX

Pareto minimum of the (f,). ..
i’ieN

Since X € X is a Pareto minimum for the (fi)i there does not exist any x € X

€N

such that F(x) 5 F(x) ; this means that for any x € X :

F(x) ¢ F(x) - Int F.

According to Al) this implies that there exists B € B (depending on x) such that :

wB(F(x)) > wB(F(;)) for any x € X

or equivalently :

we(r&n = Inf Y, (F(x)).
xEX

Conversely let us assume that.xl € X is an optimal solution of (PB) and is not

a2 Pareto minimum. Then there exists x € X such that :
F(X) 3 F(x”) or equivalently F(x}) - F(X) € Int P.

Then according to Ay this implies that :
V(PR < g (F(x).
g g
But since xl is an optimal solution of (PS) we have :
l —
WS(F(x )) £ we(F(x))

which contradicts the preceding inequality.
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We now give an example of a family of functions which satisfy assymptions
Al) and A2).

Let us assume that there exists a finite set of non zero vectors (cj)jeJ which

span the positive polar cone of P :

(200 P = { p. € Y | <p ,p> 2 © YpeP} .

Then for any p' ¢ P' we have p’ = ,E_
jed
the intérior of P admits the following representation :

ajcj with aj > o for all j ¢ J. Moreover

(21) Int P={p e ® | <pfup> >0 Vpe P - {0} )

Denote by (qj)ij a set of real valued strictly increasing functions defined on R

such that qj(t) > o for all t > o and define :

(22) ws(y) = Max B. qj(<cj,y>)
jed

Ther. the (we) satisfy assumptionsAl) and A2).

g>o
i) Let b ¢ Int P, then for any j €J <oj,b> > o0 and we can take :

_ 1
(23) Bj = W

If a £ b - Int P, then there exists p* e P - {0} such that <p':b—a> )
or equivalently by taking p* = I a.0, witha, » o forall j e J :
jed 3
(24) I a. <o.,b> & I a. <0.,a>
jeg 3 3 jeq 3 3
This shows that there exists a subscript jo € J such that

<0. ,b> ¢ <ojo,a>

q. (<0, ,b>) g q. (<0, ,8>)
c ]O q.]O ]O

This in turn implies that

(25) Y (a) = Max R.q.(<0.,a>) 2 1 = Max B.q.(<0.,b>) = y_(b)
8 59 3 3 jeg 13 ) B
Consider now a,b € P with b-a € Int P. Then we have for all j € J

<°i’b> > <oj,a> which implies :
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qj(<cj,b>) > q.(<0,,8>)
from which it follows that

V,(b) = Max B, q.(<0.,b>) > Max B.q. (<c.,8>) = y(a)
g J 3 ] 8

jed N ¢ jed

for ail B € B.

6/ Algorithms for the approximate determinatior of Pareto optima irn the non

convex case

We will now apply tc problem (FB) some ideas due to DUTTA VIDYASAGAR (1877)
and HUARD (1967) to obtain algorithms for the approximate determination of Paretc

optima. We will consider the following problem :

Find a Pareto optimum of the functions (f,). .. on the set /
(P) i"ieN

X= {xetT| g(x) g o ¥k e K}

. T . . .
where [ denotes & closed subset of ¥ and (gk)ch denotes a family of lower semi
continuous boundecd functions defined on ¥ . We assume that the positive polar cone

of P is spannecd by the vectors (o*)jeJ and we will set
J

(x) = B, <« oj,r(x)>

3
By applying Theorem 2 with the function wB defined by :

ws(y) = Max 6. <0.,y> for y € g
jed J J

we see that any solution of (P) can be obtainec by solving the problem :

( Minimize z

subject tc :

(pP'" ) z 2 u? (x) for any jeJ
gk(x) < o for any k e K
[ x€EL, ze R

for some vector R € XJ , B>o.
We associate with problem (P‘E) the following function

-

(x) - 2z}

2 \
+ I [ gk(x)]* , where y_ = Max(c,y)
keK

+

(26) Ps(x,:) = I [ u
Jed

o
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anc we will assume that the problem Inf PB(x.z) has a solution for any z (which is
. . . _XE. N .
for instance the case if the functions %fi)ieN and (gk)kCK are continuous and if
im PB(x,z) = +® for any z or if E is compact).
Bl |+ 4
We will also assume that there exists a solution x ¢ X of problem (P'B) and that

the corresponding optimal value is given by :

- . 8
¢B(x) Inf Max uj (x).

xeX jed

We will consider the following algorithm :

1) Choose z, < ¢B (%)

2) Determine x € E minimizing x -+ Fg(x,z ) on E.
. v 1 /2 v

3) Definez ., =z + (T PB(xv’ zv) where m = |J].

4) Augment v by 1 and return to 2.

We have the following convergence result

Theorem 3 The sequence z converges to & limit z and is bounded from above
= v
by ¢gx). 1f the functiomns (fi)icN and (gk)ch are lower semi conti-
nuous, then any cluster point x* of the sequence (xv) is an optimal

solution of (P',).

B

Let us assume that z, € ¢B(;). Since X satisfies £y (X) & o for any

k € K we have :

Pe (xv’z\)) < PB(I,Z\)) = I [u?(;) - Z\Ji £mw [%(;) - z\f

jed
and hence :
_ 1 ~ 1/2 -
(27) 2,0 % 2, ¢ [E Pe("v"v)] <o ().
Since by assumption z, £ ¢8 (x) this implies that 2, is a non decreasing
bounded sequence. Therefore it converges to & limit z"and we have :
. . 2
lim P (X ,2 ) =zm 1lim (z -z )" = o
v oo g 7Vvv vl v
or equivalently :
(2¢) lim I [u? (x ) - zVJ: = o
vee jeJ  ° v
\ s r 2
(29) iim I Lgk(xv)1+ =0

Ve keK
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We will set g(x) = I [gk(x)]f , by assumption g is lower semi continuous.
Denote by x* a clust§¥ point of the sequence (xv), then for any given e>c there
exists v, large enough such that v'> v, implies
(30) o & g0OF) < glx ) 35
On the other hand for giver 6> there exists v, 2V, such that V' > v.

< -
v‘) < g and therefore o g g(x*) ¢ ¢ with ¢> o arbitrary.
satisfies the constraints of (PB). It remains to verify that x v

implies o & g(x

Therefore x*

is an optimal solution of this problem.
We notice first that

(31) 6,03 = Max WOty min mMax ui(x) = 4,0,

B jeq J x€X ied -

1f we assume that ¢B(i‘) > ¢e(§), then there exists j, € J such that

u? (x% > ¢e(;) . We will show that this leads to a contradiction with relation

© -—

(28). Indeed if n = uf (x% - ¢E(x) we have by (27) and by the lower semi conti-
Jo

nuity of u. for V' large enough

(<]

3J
(32) uf
sl

- 4 E - ~ B *y v PRLA .
o(x\),) Z, >, ujo(xv,) ¢8(x) ;,ujo(x ) ¢B(x) 53

which contradicts (28). Hence ¢S(x*) = ¢B(;).

We will now show how the "Method of Centres" introduced by HUARD can be used
tc compute Pareto optima. We assume that the functions (fi)icN and (gk)ch are
continuous, that the set E is closed and that the subset X = {x €E] gk(x)So ¥keK}
is bounded. Under these assumptions problem (P‘e) has a solution (x,z) with
Z = Max u? (x) an¢ one can formulate the following :

jeg ¢

Algorithm 11

1) Choose x, €X, 2z, 2> Max us(xo) and €. » z,.

jed
2) Determine X,,; @and z . such that
(ﬂv) Wv(xv+l, ZV*I) = Max wv(x,z)
(x,z)ELQ

where :

vtz = Egm 2 M=o T g ()
€0 - KE K

B

U s {x,2) e Ex R[4 32 y ol () ¥ el
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3) Define 1\)-1»1 = Cv - rv(-fv - zwl) where r, is a given sequence of positive

numbers satisfying o < e < r, < 1.

4) Augment \' by one and return to 2).

We have the following convergence result for algorithm Il

iegN

Theorem 3 Assume that[ is a closed convex set, that the functions (fi).
are locally lipschitzear , that the (gk)kck are convex and conti-

nuous and that there exists x ¢ E such that gk(;) < o for all

keK. Then if the set X = { x ¢ E [ gk(x) £ o ¥ kegk} is compact,
the sequence (zv) converges for v~ to the optimal value z of (PB)
and any cluster point x* of the sequence (xv) is a Pareto optimum

of the (fi)icN in X.

As X is compact and the functions u;? are continuous, the set U\) is compact in

n+1l

K and therefore the problem ('n\)) has a solution (x ) which satisfies all

w17%y+1
constraints of (PB)' Hence we have

=
(33) -8\)>,zwl >z .

Since by construction the sequence ev is decreasing, it converges to a limit

4 3z which implies that 1lim (& - ¢ ) = o and we have finally
\Y vl
Ve -
lim sz 1lim z, = 4. We bave now to prove that €= 2z .
Vo Yt

We will introduce the following perturbation function of problem (PS)

(34) a(p) = Min { Max (u?(x)i»p.) | x e E, g (x) +p & o vV ke K}
jed J J
. J k
where p € B x ¥ .
Ther: one can show (see Lemma 1 below) that for any ¢ > o there exists h > o such

that
(35) a(h) & alo) + €.

Let us assume that z << then since alo) = z there exists h > o such that

a(h) ¢ a(o)*e;z=;+‘c;z < £
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and this implies the existence of x ¢ E and z ¢ R such that

[z <4
(38) 7 - u?(x) > hj >0 Vied
ng (%) & -k <o ¥keK o«

But as -€¢ lv for any v, this implies that the point (%,2) er for any v
anc therefore

—

)= Max oy (x,2) sy (%,2) 5 (€-2) 1 <Z-u§<§»n g, (3)) >0
keK

(37) wv (xv*q,z
(x,Z)eL7VV v jed ° ke

which yields a contradiction, since by construction ¢v(x ) tends to zerc

’z’ -
_ vtl’ vl
for V*+*. Hence we have {= Z.

. . . P »

Let us now consider a subsequence (xv. ) of (xv) converging to a limit x € E,

by construction we have (x\),,zv,) €U, and it results from the continuity of the
Y

functions uE and - that
J

*

- B
<= 2 S(x%
(38) z %%5 uj(x )
gK(x) <o Vike K.

Since z is the optimum of (PE) we have
Z = Max u?(xt)
jed ’
which proves that the optimum is attained at x* and, by Theorem 2, x* is &
Pareto optimum of the (f.). ir the set X.
iieN

IT remains tc prove :

Lemma 1 Under the assumptions of Theorem 3 for any ¢ > o there exists

h > o such that
(35) alh) < alo) + ¢

From the definition of a(o) for given g> o there exists x ¢ [ such that

{ Max u? (x) < alo) + £
(39) | jes
%Jx) £ © Y kgkK N
If we set p = - Max & (; ) o> c, then by the convexity of g, we have for any

kek



8 €[o,1]
A\ - v
(o) g (6x +[1-6k) & 6g (x) + (1-8)g (%) s -6p V ke K.

The vector y = 6% + (1-8)x € E satisfies the comstraints of the perturbed problem
a(8p1) and is such that ||y-x|| = 8||% - x|| . Since the u? are locally lipschit-

2ean and y belongs to a bounded set we have for 6 small enough :

al6p B « Max (uS(y) + 6p) ¢ Max (B + L ||x-y[| + 80)
jed jed  J
< alo) + 3 + 18]]X - x|| + 6p < alo) + €.

[ IR o o)

(41)
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RECENT RESULTS IN THE THEORY OF
MULTIOBJECTIVE OPTIMIZATION

K.-H. Elster and R. Nehse

Sektion Mathematik, Rechentechnik und 6konomische Kybernetik,
Technische Hochschule Ilmenau, GDR

INTRODUCTION

In this paper, we consider the general vector optimization
problem

f(x) - min ,
(VOP)

x €6: = {26R"|g(x) < 0} ,

m The Euclidean spaces RP and R™ are

where f:R" -+ rP, g:Rn + R
partially ordered in the usual sense, i.e., the order cones are
RE’ and Rm, respectively. We want to characterize the so-called

Pareto-optimal points xOEG of this problem, which are defined by
£ + P - £x%)1n P = {03; RP: = -RP
Clearly, from the mathematical point of view it is easier
to describe weakly efficient solutions xOGG of the vector opti-
mization problem (VOP), which are defined by
k=3
(£(6) + &, - £(x%)] N int RP = ¢
However, from the practical point of view it is more con-
venient to restrict the set of Pareto-optimal points. For in-
stance, we can consider proper efficient solutions xoeG, for which

T£(c) + BP, £(x°))nRP = {0}

is satisfied; here T(V,vo) denotes the tangent cone of V = £ (G) + RE
at v0 = f(xo).

Clearly, more general cases may alsc be considered: for in-
stance, problems in locally convex Hausdorf vector spaces. 1In

55



56

this case closed convex cones are used instead of RE and RT,
respectively (see Craven (1980), Jahn (1980), and Minami (1981)).

OPTIMALITY AND DUALITY

In this section we shall give some theoretical results about
optimality via duality theorems for certain vector optimization
problems.

Definition
A vector optimization problem
d(z) + max ,
(DVOP)

zeD; bcrR%, a:r9 + RP

is dual to (vOP) if and only if
d(z) - £(x)ERON{0) ¥ x€G, ¥ ze D

This means that the weak duality relation
d(z) » f(x) ¥ x€G, ¥2€D

is fulfilled for the two problems (VOP) and (DVOP).

Let us denote the set of all Pareto-optimal solutions of (VOP)
by arg min £(G) and the set of all Pareto-optimal solutions of
(DVOP) by arg max d(D). Then we have.

Proposition 1. Let (VOP) and (DVOP) be dual problems.
QEG and ZOGD such that f(xo) = d(zo),

then xoe arg min f£(G) and zoe arg max d(D).

(a) If there are x

(b) I1f there is x’€G such that f(x°)ed (D), then
xoe arg min £ (G).

(c) If there is quD such that d(zo)ef(G), then
zqearg max d(D).

It is clear that each of these assertions is a criterion for op-
timality.
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The main problem is therefore to construct convenient duals
for a given problem. Some examples are given by Bitran (1978),
Elster and Nehse (1979%a,b, 1980), Gros (1978, 1980), Isermann
(1978), Nehse (1978, 1981), and Sch¥nfeld (1970).

Let the following problem be associated with (VOP) for
A€ int RE:

L(V,y) =+ max, (DOP, )
(V,y)EG;:= {(U,x)ERExm x R“QXTVXL(U,x) =0} ,

where VxL(U,x) denotes the Jacobian of

L(U,x): = £(x) + U g(x), UERP*™  xeg"

with respect to x. We can prove the following theorem (see Nehse,
1981) .

Theorem 1
Let fi (i=1,2,...,p) and gj (3=1,2,...,m) be
convex and differentiable.

(a) For each i € int RE the vector optimization
problems (VOP) and (DOPX) are dual problems.

(b) If a regularity condition® is satisfied for
(VOP) at xcéG and if xo is a proper efficient
solution of (VOP), then there are U%Ekgxm,
AE int RE such that (0°,x")e arg max L(Gi)*

and f(xo) = L(Uo,xo).

-
'As a regularity condition we may use

0

™ (G,x0) = K*(G,x0)

where

{ze Rn\zTng(xo) <0, j=1,2,...,m

x(G,x°):

. . . . 0
is the so-called linearization cone of G at x ; T*

the polar cones of T and K, respectively.

and k* denote
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OPTIMALITY CONDITIONS AND METHODS

Here we restrict ourselves to optimality conditions which
are also useful methodologically. Most of them we formulate as
versions of Kuhn-Tucker conditions using convenient surrogate
problems for (VOP).

One way to obtain Pareto-optimal solution to (VOP) is to
solve the following problem:

fk(x) -~ min , (Pk(uk))
xGGﬁGk(Uk),

uke Bk'

where

T

CVER (u1,u2,...,uk_1,uk+1,...,up) ,

G fu): = {x€R[£,(x) Suy, i=1,...,p5 1#Kk) ,

Ec: = {u,€ Bl 6 (o) # 0}

Theorem 2
A unique solution of (Pk(uk)), for any 1 € k £ p,

is a Pareto-optimal solution of (VOP). Conversely,
any Pareto-optimal solution of (VOP) solves (Pk(uk))
€EE

for some u K and for ail k = 1,2,...,p.

k
Using this theorem (Chankong and Haimes, 1978) and the classical
theory of nonlinear programming, it is possible to construct in-
teractive methods for solving (VOP).

wWe shall now give a theorem that is useful in solving general
vector optimization problems, i.e., without convexity and con-
tinuity assumptions (see Ester and Schwartz, forthcoming).

Let (VOP) be given as

f(x) » min
xX€G,
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where Gg;Rn is any nonempty subset of R” such that f£(G) is closed
and f(x) 2 1 for all x€ G and any 1€ RF.

Let
fs,r(x’h) = sh + '§1 rifi(x) - min (EP)
l:
XeEG N Ga,b,g f
where
G ={€Rn'bp(f()- h-k,) =
a,b.g x i 121 31X S5 i) = a ;
fi(x) - gih - ki >0 , i=1,2, Pl
and

s >0, a>0, b>0, r, >0, 95 >0, ki € R, 1=1,2,...,p

Then we have

Theorem &
(a) 1If (xo, ho) is a solution of (EP) for any para-
meters s,b,ri,gl,ki, i=1,2,...,p, then

qu arg min f(G).

(b) If x0 arg min f(G) and € > 0, then there are

convenient parameters s = b = g; = 1,
ao > 0, r, = 0, ki = fi(xo), such that for a
solution (x° (2%, n%(a0)) of (EP)

£, 00@%) - £ ax% <, 1= 12,000

This means that xoe G is Pareto-optimal if and only if f(xo) may
be approximated 'sufficiently exactly' by f(x), x€G Ga b,g’ for

convenient parameters.
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We can adopt an approach developed by Ben-lIsrael et al. (1981)
to derive an optimality condition which can be used to check the
optimality of a feasible solution of (VOP).

Let £, (1=1,2,...,p) and gj (3j=1,2,...,m be convex func-
tions and let, for any h:R" - R,

(xo) = {de‘Rn|3a0>0:h(x0+ad)<h(x0) VaE(O,a.o)} ,

A

c; (x°) = {aeR"| 3 ay> 0:h(x’ +ad) eh(x®) waE(0,00))

F(G,xo) = {der(“| 3a0>0:x0+ud G VuE(O,cO)] ’

where
C;(xo) is the cone of directions of descent of h at xo,
C;(xo) is the cone of directions of constancy of h at xo,

F(G,xo) is the cone of feasible directions of G at xo.

Firstly, we use the trivial fact that xOE G is Pareto-optimal for

(VOP) if and only if xo is a solution of
P

I f;(x) »min ,
i=1

fo(x)

XEGO = Gﬁc(xo) '

where
ctx®) = (xer™f 0 $£,.% . 1= 1,2,...,p)

Hence, we obtain immedjiately

Theorem 4

Let fi(i =1,2,...,9) and gj(j = 1,2,...,m) be
convex functions. xoe G is Pareto-optimal for
(vorP) if and only if

cf OinFeyxg =8 .
‘0

From Dubovickij and Miljutin, this eguation is
egquivalent to

< 0, .« *
[(Cfo(x )) "N~ F (GOIXO)T\{O} 0
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If J(xo) denotes the index set of the active constraints gj at

xo then we obtain explicitly

F(Go,xo) = ( no.cs (xo))m( ncy (xo))

jEJ(xO) gj 1=1 "i
Using
0 , . s 0
I(x) = {1,2,...,pluip+3i|3edx )t ,
we oObtain
0 < 0 = 0
F(Gn,x ) = V (c 0 JAxT)NCo (xT))
0 I'gI(xO) I(x¥IN\I I

where the right-hand side represents the reunion of intersections
of the cones associated with i€ I(xo)\I‘ and i€ I', respectively.
Therefore, taking Go = G for simplicity, we obtain:

0

X  is Pareto-optimal for (VOP) if and only

if for each subset I'€ {1,2,...,p} = I we have
< 0, ~ ~= 0, _

CI\II(X)IlCI'(X) "¢

In the dual case this becomes:
For each subset I'Cl there exist

v e (¢, ONnY ., derr = I,
i

yl ¥ 0 for at least one ie€I"”

such that

ye - el o
ier”
In the differentiable case we have:
For each subset I'CI there exist

A, 20 , iegIm
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A, £ 0 for at least one i€ I"

such that

\ 0 = 0, ,»
Aivf‘(x ) € (CI.(x ))

ie1r” i

Theoretically, to check the optimality of x° we must solve
2card 1 such systems, where the difficulty lies in the represen-
tation of the cone (C;.(xol)*; however, in some casfs (for ex-
ample, if f£,, i €1, is faithfully convex) we have C™ as a sub-
space and, therefore, (€¥)" is also a subspace.
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LEXICOGRAPHIC GOAL PROGRAMMING: THE LINEAR CASE

H. Isermann

Universitdt Bielefeld, FRG

1, INTRODUCTION

Among the various approaches to multicriteria problems which have
been suggested, goal programming has proven to be widely adopted.
In goal programming (cf., e.g. Charnes-Cooper [ 11, Ijiri [5 ],
Ignizio [4], Lee {9], Spronk [12], instead of attempting to optimize the
objective criteria directly, the deviations between goals and
levels of achievement within the given set of system constraints are to
be minimized. Thus the objective becomes the minimization of these
deviations, based on the importance assigned to them. Goal program-—
ming models may be regarded as special compromise models for a
satisficing decision maker (Isermann (6], [7]).

In many applications (cf. e.g. Lee [ 9], Lin [10], Nijkamp-Spronk
[ 11 ]) preemptive priority based goal programming models are em-
ployed in order to reflect a compromise concept where a priority
structure with respect to the achievement of the considered goal
levels has to be taken into account. On the basis of this concept
the achievement of those goals at any one priority level is
immeasurably preferred to the achievement of the goals at any
lower priority level.

In Section 2 we shall demonstrate that each preemptive priority based
linear goal program can be equivalently represented by a lexico-
graphic linear goal program and solved by lexicographic simplex
method. The proposed lexicographic simplex method differs from

65
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the ordinary simplex method with regard to the pivot column selection
rule and differs from the solution methods (cf. Ignizio [ 4], pp.

31 - 71; Lee {9 ]}, pp. 93 - 125) which have been proposed in order to
solve preemptive priority based linear goal programs.

To a preemptive priority based linear goal program a multidimensional
"dual problem” has been formulated (cf. Ignizio [ 4], pp. 98 - 114),
which, however, does not exhibit the duality relations which are
commonly associated to a dual pair of mathematical programs. In
Section 3 we shall introduce a proper dual problem and establish the
duality relations which provide the theoretical basis for the pro-
posed solution method, any post optimality analysis in preemptive
priority based linear goal programming and related information
gathering procedures in interactive goal programming.

Before going further, for convenience, let us introduce the follow-
ing notation. Let IR denote the set of the real numbers and Ro the set
of the nonnegative real numbers. With regard to lexicographic vector
and matrix inegualities the following convention will be applied:

For a, b EZRM the striect lezicographic inequality a > b holds, if and
only if, asb and ai>bi holds for i = min {1,...,M | a, * bm} and the
weak lexicographic inequality a > b holds, if and only if, a > b or

a = b. For any two (MxN)-matrices C = (c1,...,cN) D = (61""'dN)'

€ > D holds, if and only if, c@>d, for all n=1,...,N. Accordingly,
C > D holds, if and only if, = Ed dn for all n = 1,...,N. The trans-

pose of a vector or a matrix will be denoted by an upper index T.

2. THE LExicoGRAPHIC LINEAR GOAL PROGRAM

In goal programming, instead of attempting to optimize the objective
criteria directly, the deviations between agocals and levels of achieve-
ment dictated by the set of system constraints are to be minimized.
Thus the objective becomes the minimizatiorn of these deviations,
based on the preferences assigned to them by the decision maker. In
goal programming an ordinal as well as a cardinal assessment of
preferences may be utilized: All relevant deviations between goals
ané levels of achievement are grouped according to their respective
priority levels. The minimization of those deviations at anyone
priority level is immeasurably preferred to the minimization of the
deviations at any lower priority level. The priority levels will be
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denoted by the index k = 1,...,K, with k = 1 representing the
highest priority level and k = K representing the lowest priority
level. To each priority level k a linear dispreference function 2,
is associated. If deviations expressed in different measures have
been assigned to the same priority level k the decision maker has

to assign weights by which the different deviations can be expressed
in terms of a common unit of measure. Applying the non-Archimedean

preemptive priority weights Pk >> P (k = 1,...,K-1), originally

k+1
proposed by Charnes-Cooper ([ 1] pp. 756 - 757) the preemptive
priority based linear goal programming model is the linear program

(cf. e.g. Ijiri [ 5 ] pp. 49)

K . -
min ¢ = ¥ P2y (y , v (1)
k=1
s.t. cx-Iy +1y =g (2) (PPGP)
Ax = b (3)
X, ¥y .y 30 (4)

Here C = (c1,...,cN) is the Jx N matrix of the criteria coefficients,
X eng the vector of the instrumental variables, I is a JxJ identity
matrix, gERJ is the goal vector, A = (a1,...,a.N) is the M x N tech-
nological matrix and bERN‘ is the vector of availabilities, y+€ Rg
and y’EZRg measure respectively the positive deviations and negative
deviations from the stated goal vector g.

However, the linear programming approach may cause considerable
difficulties. In the context of a specific application the guestion
arises, which numerical values are to be attached to the preemptive
priority weights Pk (k = 1,...,K) in order to take care that low
priority goals are considered only after higher priority goals are
achieved as desired. There exists no foolproof method which trans-
lates the preemptive priority weights a priori into real-valued
weights which can then be used within a linear programminc format.
These difficulties lead to the development of a solution procedure
(cf. Ignizio [ 4] pp. 42 -~ 60; Lee [ 9] pp. 93 -125, Kornbluth [ 8],
pp. 199 - 203) which is designed to successiveiy minimize the linear
dispreference functions 2y (y+, v ) (k= 1,...,K).

As the appropriatepriority structure can be immediately represented

by a vector-valued objective function which is to be minimized in
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a lexicographic order, we can dispose of a solution method which
eimultaneouely considers all J scalar-valued objective functions
if necessary: a lexicographic simplex method. Recall that each 2y
(y+, y ) (k =1,...,K) is assumed to be a linear function.

Let

+ -
Z.I (y r Y )
z(y+, y-) = . = D+ y+ + D Yy

-+ -
zx(y y Y )
where D' = (d:,...,dg) and D = (d;,...,dz) are KxJ matrices. Then
to (PPGP) we can relate the following linear lexicographic goal

program

lexmin z = D y+~+ D~y (5)
s.t. (2) = (4) (LGP)

which can be solved by a lexicographic simplex method.

The lexicographic simplex method differs from the ordinary simplex
method with regarq to the check for optimality and the selection
rule for the pivot column: Let (9+, $”, %) be a basic feasible
solution for (LGP). If all Kx1 vectors of the reduced cost coefficients
in the respective multiple objective simplex tableau are
lexicographically smaller than or egual to the zero vector then
(9+, 97, %) is optimal for (LGP). Otherwise an entering basic
variable has to be selected according to the following selection
rule: From among all Kx1 vectors of the reduced cost coefficients
which are lexicographically greater than the zero vector select
the lexicographically maximal vector. The corresponding nonbasic
variable becomes the new entering basic variable.

In order to illustrate the lexicographic simplex method we consider
the lexicographic linear goal program

+ - -
2y ty, 3y,

L 3 = + + V_
exmin. 2 yz Y3
Yg
s.t. 3 X, + 6 X, - y: + y; = 12
+ -
1 - Y, * Yy = 3
+ -
1% 2% Yy * ¥ = 30
.t 2x, - Yy, +y, =1C

®
J

®
L)

<
-

l<
PSS
@
- !
I<
S|
nv
o
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The corresponding initial simplex tableau in canonical form (cf.

Dantzig [ 2 }, p. 195 ) is given in Table 1. For clarity, the
zero elements of the tableau have been omitted.
+ + + +

X4 *2 ¥4 Y2 Y3 Y4
' 3 6 -1 12
Y 1 -1 5
y; 5 2 -1 30
y; 2 2 -1 10
z, 6 6 -3 -3 27
z, 5 2 -1 -1 30
23 2 2 -1 10

Table 1: Initial Multiple Objective Simplex Tableau

=0 2 12,5,30,100T vyt < o,

(27,30,10)T is not optimal as by raising Xy Or X,
(]

The initial basic feasible solution y
x(1) = O with 2(1)
to some positive level each component of z can be reduced. I1If we
consider the reduced cost coefficients of the objective associated

with priority level one x, as well as x., are aandidates for becoming

1 2
the new basic variable. The algorithms proposed to solve the pre-
emptive priority based goal program would perform an arbitrary

selection (cf. e.g. Ignizio [4], p. 47; lee [9], p. 105) whereas the lexico~
graphic simplex method selects X, as the new entering basic variable: By
applying the pivot column selection rule we obtain

(6,5,2) = lexmax {(6,5,2)7, (6,2,2)T3.

The new tableau, with x

; and y: interchanged, s as civen in Table 2.
-+

+ + + -

X2 Y4 Y2 Y3 Yq Y4
X, 2 -1/3 /a| 4
Y; -2 /3 =1 -t/a| 1
vy | =€ £/ -1 -8/5|10
vy | -2 2/5 -1 =2/5 2
z, -6 -1 -3 -2 | 3
z, -8 5/5 -1 -1 -2/5]10
2, -2 3/, -1 -2/5| 2

Table 2: Optimal Multiple Objective Simplex Tableau
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(2) +(2) (2)

The basic feasible solution y = (0,1,10,2)7, y =0, x =
(4,007 with 2% = (3,10,2)7 is optimal for (LGP), as all vectors

of the reduced cost coefficients are lexicographically smaller than
or equal to the zero vector and thus satisfy the sufficient opti-
mality condition. The negative vectors of the reduced cost coefficients
are called trade-off vectore as they specify the rate of exchange
among the considered objective functions, if the respective nonbasic
variable is raised to a positive level. The trade-off vector
associated to y: reads 5: - (1,—5/;,-2/,)T and thus indicates that
z, will be increased by 1 unit, 2, and 24 will be decreased by 8/,
units and 3/, wnits, respectively, if y: is raised from O to 1.

In other words: The trade-off vector associated to y: indicates that
a change in the priority assignment of the objective functions,

such that to 2, instead of 2, the highest priority is assigned, the
current basic feasible solution is no more optimal. A more intensive
discussion of this point and related topics will be presented in

the next section.

3, DuaLiTy aND ITs ReLEVANCE ForR THE MuLTIPLE EoaAL Decision Maker

In this section we shall analyse some relations between the lexico-
graphic linear program and its dual. The dual of (LGP) is also a
lexicographic linear program which is based on the same given in-
formation, ‘the matrices D+,.D~, % and C and the vectors g and b.

To (LGP), which we shall term the primal, we associate the dual

lexmaz w = U g + V b (5)

5-t. UC+ VA <o (7)
-U <D’ (8) (DLGP)
U <D (9)

In (DLGP) U is a KxJ matrix of variables and V is a KxM matrix

of variables. In restriction (7) 0O 4s a KxN zero matrix. Note

that in (DLGP) all constraints represent weak lexicographic in-
egualities. In order to illustrate the set-up of the dual we con-
sider the linear goal program we solved in Section 2. The respective
dual problem reads
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lexmaxz w = 12 u, + 5 u, + 30 u; + 10 uy

s.t. 3w, 4+ u, + 5 u; + 2 u, <0
6 u, + 2 ug + 2 u, <o
2
- u, <(2)
[+]
-y, <(3)
Y <(2)

c
N
c
(]
TA A
~—/

o
A
+00
~

v
o

and has the optimal solution &, = (=1,-%/3,-2/2)7, 4, = (3,0,007,
8, = (0,1,0F, 8, = (0,0,1] with @ = (3,10,2)7 = z‘?).

Let S and T denote the feasible set of (LGP) and (DLGP), respectively.
In the context of goal programming we can assume without loss of

generality that in (LGP) each 2, (k = 1,...,K) is bounded from below
in S.
LEMMA 1. Consider problem (LGP) with each zy (k = 1,...,K) being

bounded from below in S « @. Then (LGP) has an optimal solutiorn.

Proof. In order to prove this assertion, let (x(p), y+(p), y-(p”
denote the p~th basic feasible solution for thelinear system (2) - (4).
Suppose the set of basic feasible solutions for the system (2) - (4)
has cardinality r. Consider (%,9',§ ) with

(1) +(12y-(1))'.

z(i,yf?-) = lexmin { z(x Y r) +(r2y'(r))}-

.es z(x( 'Y

As z is a linear vector
function and each 2, (k. = 1,...,K) is bounded from below in $
there exists no (X,y ,¥ ) € S such that z(X,9°,¥ ) < z(%,% .,9”) holds.
Hence (i,9+,§-) is optimal for (LGP).

An immediate implication of the proof of Lemma 1 is
LEMMA 2.

At least one basic feasible solution for (LGP) is optimal.

The duality relation between (LGP) and (DLGP) wiil be
characterized by the following statements:
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LEMMA 3. z(x,y+,y-) k—w (U,V) for all (x,y+,y-) € 8§ and (U,V) € T.

Proof. let (U,V) € T and (x,y+,y') € S. Because of the nonnegative
restriction (4) we obtain the system

UCx + VAx < O
- U y+ ; ot y+
U y- < D~ y-
and thus z(x,y .,y ) = D' yt + Dy >Ug+VDb=w (UV).

LEMMA 4. Let (%, 97, 97) € s and (U,%) € T with 2(%,97.97) = w(D, ).
Then (i,9+,9-) 1§ optimal for (LGP) and (U,V) i& optimal for (DLGP).

Proof. 1In order to prove this assertion assume, to the contrary,

that (U,V) is not optimal. Then there exists a (U,V) € T with w(T,¥) >
w(l,V) = (z(i,?+,9-), which implies a contradiction to Lemma 3.

A similar argument may be applied to (R,9+,9-).

THEOREM 1. Let (%.97,97) be an optimal solution for (LGP). Then
there ezists an optimal solution (U,V) for (DLGP) and z2(%,97,97) =
w(D,V).

Proof. According to Lemma 2 at least one basic feasible solution for
(LGP) is optimal. Let (%,9”,§ ) be an optimal basic solution for (LGP).
Denote by B and B~ | the associated (J+M)x(J+M) basic matrix and its
inverse, respectively, and by R the respective nonbasic matrix of

the linear system

G2 -0

where we assume without loss of generality rank (&) = M. Then the
optimal basic solution (%,9%,9”) is given by

*B Xg

+ = -1 ¢g + -
o5 B (b) and | 93 0.
75 IR

+ -
Let (OB'DB'DB) be the K x (J+M) matrix of the criteria coefficients

corresponding to B and (OR,D;,D;) be the K x (N+J-M) matrix of the
criteria coefficients corresponding to R and (0,V) := (oB,D;,D;) B-1.
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Now we express 2z as a function of the nonbasic variables of
+ A=
(219 NARE

x ) X XR
(©o,07,07) yH= (o )| v¥}+ (o.,0l,00) ¥
oo § B’ B’ 8’| ¥B R'Pr'PR YR

2 ey

. B XR
- + - -1 9\ _ - + + - +
(0g:Dg:Dg) |B (b) BT 'R[yp |[+(Og/DrsDR) | YR
Yr YR

XR

a & g L +

= (U,V) (b) + EOR.DR,DR) (0,V) R] Ya

YR

The optimality of (&,§7,9) implies
(OR'D 'DR) > (U,V) R, (10)

as otherwise by rising a nonbasic variable to some positive level a
lexicographic lower value for z could be determined. However,

(Ggr B,D ) = (U,V)B and (10) imply that (o, V) satisfies the dual
constraints (7) - (9). Moreover, we obtain z(x,? ,9 ) = (U V)(ﬂ =
w(U,¥). Hence (U,V) is optimal for (DLGP) according to Lemma 4.

In general, the optimal solution for (DLGP) cannot immediately be
read from the final multiple objective simplex tableau. The dual
sclution which is presented in the final tableau is the solution
for the dual to the lexicographic linear program which is found in
the initial tableau in canonical form. In our earlier example of
Section 2 the objective of the lexicographic linear program which
is represented in the initial tableau of Table 1 is

27 - 6 X, - 6 x, ¢+ 3 y1 + 3 y2
lexmin 30 - 5 x, - 2x + y+ + y
1 2 3
10 - 2 x, - 2 x + v
1 2 “4

and the corresponding dual objective is

+ 10 u

4

27
lexmax (30) + 12 v, o+ 5 u, + 30 uy

10

The optimal solution for this dual problem is found in Table 2:

ﬁ1 = (-2,-5/;,-2/;)T, ﬁz = ﬁ3 = ﬁ4 = O, while the optimal solution

for the respective (DLGP) has to be determined by means of (0,9)=
+ - -1

(OB, DB'DB) B .
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Ignizio ([ 4 ], pp. 98 -~ 113) formulates a multidimensional "dual”
of a preemptive priorityv based linear goal program which he charac-
terizes on p. 99 as follows: "Rather, the dual of a linear goal
program is a traditional linear programming problem except that it
has multiple right-hand side values." In order to illustrate his
formulation of the multidimensional "dual" we shall present an
example due to Ignizio([ 4] pp. 99 - 101). Applying our notation,
the primal problem reads

e
lexmin 2z = +
Y, * 0.5 Y,
t + -y +y, = 10
s.t. X, Xy ¥, . Y, _
x.. - y2 + y2 = 10
+ + = -
XqeXgr¥qr¥pi¥ ¥ : °

and has the optimal solution %, = 10, 22 = 9: = 9; = 9; = 9; =0
with 2= (O,O)T. To this primal problem Ignizio associates the
following vector problem with ViU, ., EIRZ:

marx VvV = - 10 u, - 10 u
s Q)
s.t. - u1 - u2 < o

- u, < 0
=
)
U s (1
1
uy & (o.s)

The optimal solution for this problem is G, = (1,007 ana G, =0
with ¢ = (-10 ,O)T. Thus & * ¢. Moreover, the primal and "dual"
problem are not based on the same sBet of information, the operator
max does not express that v has to be maximized in a lexicographic
order and the dual constraints, in general, do not hold as ordinary
vector inequalities but as weak lexicographic inequalities.

While goal programming offers a great deal of flexibility in solving
management problems its need for rather detailed a priori information
on the decision maker's preferences implies a number of difficulties
agsociated with its use. Goel programming reguires the decision

maker toO specify goal levels, to partition the over- :and under-
achievement of goals into preemptive priority classes and to assign
weights to the goal deviations within these classes. This fact calls
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for information at the decision maker's disposal which allows him
to reflect upon his a priori preference statements. In this context
the duality theory provides a considerable potential in order to
support the multiple goal decision maker in his decision prooess.

Let (%,97,9) ané (0,9) be optimal solutions for (LGP) and (DLGP).
Each coefficient ﬁkj of U indicates how much the current value of

the k-th scalar-valued objective function changes when the Jj-th

goal level gj is augmented by one unit provided that the current
basis B remains feasible. Accordingly, the coefficients okm of Vv

de termine the change in the current value of 2y when the availability
of the m-th resource is increased by one unit and the current basis B
remains feasible. The sketched sensitivity analysis with respect to
gj(j = 1,...,J) and b (m=1,...,M can readily be extended to a
parametric sensitivity analysis, as the provosed solution method
immediately applies to parametric lexicographic goal programming.
Note that if the value of at least one basic variable becomes nega-
tive a dual adapted simplex iteration has to be performed in order

to regain primal feasibility while maintaining dual feasibility. Such
an iteration is performed in the following way: First we select the
pivot row (with the maximal violation of primal feasibility) in the
current multiple objective simplex tableau. The pivot element has

to be selected from the set of those coefficients in the pivot row
which are negative. I1f all coefficientsin the pivot row are non-
negative, there exists no feasible solution. In each column where

we have identified a negative coefficient in the pivot row we

divide the respective vector of the reduced cost coefficients (which
is lexicographically smaller than or equal to the zero vector) by the
negative coefficient in the pivot row. Each of the obtained vectors
is lexicographically greater than or equal to the zero vector. From
the set of these vectors we select the lexicographically minimal one.
The respective column becomes the pivot column and the associated
nonbasic variakle becomes the entering basic variable of the new
basic solution which is dual feasible. If primel feasibility is not
yet established the algorithm is continued with a further dual
adapted iteration step.

The influence of changes in the weights of the deviational variables
which are the coefficients of the matirces D+ and D~ can also be
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studied by means of the dual. The current basic solution remains
optimal as long as the dual solution remains feasible, i.e. as long
as the corresponding weak lexicographic inequality (10) holds. Note
that when the variable(s) the weights of which are subject to a
change are basic, the values of U anéd ¥ also change. If the dual
feasibility is violated the iteration steps of the presented
lexicogravhic solution method are applied to reestablish dual
feasibility. A parametric change of weights can be readily analysed
by means of a parametric version of our algorithm which represents
nothing else other than a lexicographic generalization of the corres-
ponding parametric linear programming routine.

A modification of coefficients in the matrices A and C induces a
change of coeffcients in the multivle objective simplex tableau. As
long as coefficients associated to nonbasic variables are subject

to change, the dual feasibility may be violated and readily re-
established by the lexicograpvhic simplex method. However, if we
modify coefficients which are associated to basic variables this
involves a simultaneous consideration of primal and dual feasibility.

The addition of a new goal or a new decision variable involves an
augmentation as well as a modification of coefficients of the
current multinle objective simplex tableau which is actually
performed in the same way as in linear programming if we take

the multiplicity of objective functions into consideration. A
thorough discussion of this point is e.g. found ir Dinkelbach

([l 3 }Jpp. 83 - 87 ). In the new multiple objective simplex tableau
dual feasibility has to be checked and, if necessary, reestablished
by means of the lexicographic simplex method.

Even though the decision maker will exercise considerable care in
developing the priority structure, there still may be uncertainty
regarding the assignment of priority levels in a manner that
actually represemts the preferences of the decision maker. Again,
the effects of reordering these priorities can be investigated by
means of the duality theory developed. If the decision maker wants
to investigate a reordering of priority levels, this induces a
rearranging of the objective functions in the multiple objective
simplex tableau according to the new priority structure, and a
check for dual feasibility: If all vectors of the reduced cost
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coefficients are lexicographically smaller than or equal to the

zero vector, the change in the priority assignment has no effect

on the ontimality property of the current basic solution. Otherwise,
the effect of the changes in priority assignment can be investigated
by re-establishing dual feasibility by means of the lexicographic
simplex method.
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RECENT RESULTS IN STOCHASTIC PROGRAMMING WITH
MULTIPLE OBJECTIVE FUNCTIONS

I.M. Stancu-Minasian

Economic Cybernetics Department, Academy of Economic Studies,
Bucharest, Romania

1. Introduction

In the classical problems of mathematical programming the coef-
ficients are assumed to be exactly known. However this assumption is
seldom  satisfied in practice because these coefficients are either
subject to errors of measurement or .they vary with market conditions.

Many problems of mathematical programming related to several
optimum criteria have a stochastic character because some or all of
the data contained in such problems are random variables.

The problem under consideration is encountered in several contexts.
For instance, H.S.Leu /25/ considers the newsboy problem and three
objective functions: a) maximizing the expected profit, b) maximizing
expected utility, c) maximizing the probability of achieving @ bud-
geted profit (for more examples see also and /40/). For appiications
of probabilistic goal programming see /2/ and /21/.

We consider the following problem of stochastic linear programming
with multiple objective functions:

(V) Tk(w)-max {Zk(x,w)-c‘k(u)x} ksl ,...,r

x € X (w)
(2) X(U)-{XIA(U)x gb(w), x 0] , w L
where A(w)-(ai.(hO), Vgigm, 1&8j¢n, bl)=(b; (), 14I¢m and
c {Wimle (@), 1{kgr, 1§1¢n are matrices whose elements are
real-valued random variabies defined on & probability space{fl,K,P} H
Ly is a Borel set in RS with se=mn+m+rn, K is the G-glgebra of all
Borel subsets of {L,P is g probability measure and x is an n-dimen-

sional column vector.

79
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We consider that J (w)m=o , if X(w)=§ (§ is the empty set). !If
Pl-o° <Y (W)cw)= 1, then ¥ (w)is a random variable. In this case
we say that the stochastic linear program (1)-(2) has an optimal
value. In Ref. /B/ necessary and sufficient conditions are provided
for the existence of the optimal value of an stochastic linear pro-
gram.

Because the optimal values T&(uﬂ(k-l....,r) are random variables,
they can not be known in advance. However, we wish to find the pro-
bability distribution function and (or) some moments (say the expec~
tation and variance) of the random vector

Y@ (T (@), 7@,y (@)
subject to an arriori probability distribution of the state of nature
i.e.»the,tric|e{Ahu).b(w),(c‘aa)....,cr(u)ﬁ.

In this paper we oaxtline the recent results and developments of
multiple criteria stochastic programming. A comprehensive biblio-
graphy is oiven.

Although the domain of stochastic programming and that of mathe-
matical programming with multiple objective functions are fruitful
nowadays {(for edification see the research bibliographies /32/, /35/),
however the field of stochastic programming with multiple objective
functions was partly neglected in the European and American literature.

The methods discussed in the present paper are generalizations of
the methods used for solving the deterministic programming problems.
Due to this fact, in the following section, we shall first recall some
ways of solving deterministic mathematical programming problems with

several objective functions.

2. Points of view in Solvinc the Deterministic Mathematical

Programming Problem with Several Objective Functions

Let us consider the following mathematical proaramming problem
with several objective functions,.

(3) max {Zk(x)-ch } kel,...,r
x € X n
where X={x1i x €R", Ax¢b, x3 0}, A,b,c, , x are matrices of size

mxn, mx 1, 1 xn, n x 1, respectively.
This problem has not a sole solution, various authors ascribe
different meanings to the vector x € R" which should be '"as a good
as possible' from the viewpoint of all the objective functions Zk(x).
The main approaches to define the vector x®* are the following:

J . . . .
. x™* optimizes a synthesis-function of the r efficiency functions
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h(Z)-h(Zl.....Zr)
The function h may be defined in various manners /k0/:

&) h(z,,....2)= min (max) { 2, (x)}
il ,...,r

b) h(Z,,2,)=2,(x)/2,(x) .
r 79

¢) h(ZI,...,Zr)-Zl Qif_li(x)]P «.y0, Fl>o etc.
im

2% x® is the vector minimizing function

h(x)-h(‘{/l(x-xl),...,Yr(x-xr))

where Xj optimizes function Zj and QG(x-Xj) is a8 function of distance
between x and X,.

3% x* is a2 feasible solution which is obteined by a seeking method
according to certain criteria. Such methods are the POP Method
(Progressive Orientation Procedure ) /4/ and the STEM Method /5/.

¥ x* is an optimal solution obtained by ordering criteria. We
solve r problems, each time restricting the field X by turning into
constraints the optimal solutions obtained by solving 2 certain pro-
blem with a single function.

5% x* is the vector belonging to a set of efficient points{also
called nondominated solutions or Pareto-optimal solutions)that is
defined like this: x*€ X is efficient if and only |f there exist no
x'€ X such that Zh(x‘)( Zh(x') for hel,...,r and h_ exist so that
Zho(x’ ) ¢ Zha(x‘) (sssuming that all the functions are maximand
functions).

3. Stochastic Chebyshev Problem

In /38/ Stancu-Minasian considered the following multiple criteria
stochastic programming problem.
. ] -
(4) min {Zk(x.w) - ck(w)x} kel,...,r,
x€X
(5) x ={xlAx¢b, x3 0}

where the elements of the vectors c,  are stochastic variables with
known (joint) probability distribution.
Taking into account 1°-2) this problem can be reduced to one with
a single objective function &8s follows: instead of r obje;tive func-
tions Zk(x,u»we consider a single objective function
P(x,w) = max {Z,(x,w) = ¢, (Wx}
T¢kgr

and minimize it.
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In this manner, we obtain the so-called Chebyshev problem
(6) Y(w) = min max {Zk(x,“’)-c:((‘-’)x}
xeX 1 gkgr
in /38/ is determined the probability distribution function of
J(w), when the cost coefficients of Zk(x,u) are linear functions of
the same random variable t{(w), that is they are under the form
: ?
Zk(x,u))-(ck+t60)dk) x
where c _ and dk are n-dimensional vectors and t(w) is a random variable

having & distribution function T(z) continuous and strictly increasing.

4, Stochastic Fractional Programming Problem

In the particular case of two objective functions we can draw up
a function of the type 1°-b which leads us to a stochastic fractional
programming problem

Z, (x,w)
(7) Y(w) = optimum
xe X Zz(x.“ﬁ

(8) X ={x{Ax=b, x» 0}

It is considered that Zl and Z, are linear functions of the same

2
random variable t(w) having a distribution function T(z) continuous
and strictly increasing i.e.,

Z,(x,@) =(c'+tlw)c))x,
Zz(x.-‘-') -(d *t(w)d'])x

For the probiem (7)-(8) we make the following assumptions:

2a) The set X |Is nonempty and bounded,

b) The denominator of the objective function preserves the same
signh (let us assume it to be positive) on X, consequently
P{wl(d +ti)dx> 0} = 1,

c) All basic solutions are nondegenerate.

In /37/, Stancu-Minasian gives a representation of the probability
distribution of the optimal valueA'T(&J by means of the characteristic
values of the corresponding parametric programs.

In the remainder of this section, we shall recall other two pro-
blems for stochastic fractional programming probiem /33/, /36/.

a) The minimum risk solution with level k, i.e. the optimal solu-
tion of the program:

(9) max P{wic—‘(ﬁi < k)
x € X d'x
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where cl{w) has a normal non-degenerated distribution, with mean value
€ and covariance matrix V.

Theorem (Stancu-Minasian /33/, /36/) The minimum risk problem (9)

is equivalent to the following non-linear programming probiem

' -y
k.d" x=c ' x
max

x€ X (x'vx)

b) Kataoka“s problem of the maximum level, i.e.
!

(10) hax{klP{wLw)x\(k} -% ,x € x}
d' x

Theorem (Stancu-Minasian /33/, /36/) Kataoka“s problem of the

maximum level (10) is equivalent to the following non-linear programm-
ing problem
T'x =q(x'v x)”2

(1) max
x €X d'x
where ¢-l(d)--q and qﬂ.) is Laplace"s function .
It should be noted that in some conditions the problem (11) has
a finite optimal solution and that the objective functions is expli-

citely quasi-concave.

5. Stochastic Goal Programming

The goal programming probiem 1s that of finding

min d{(x,x) subject to gi(x,I) » 0 i = 1,...,n
x

where x is a given goal vector, d is a distance between x and x, and
g; are given functions.
Because d{(x,x)= ||x-X|] we shall further use instead of the
distance between x and x, the norm of the difference of vectors x
and x, as a measure of approach between x and X. The best known is norm
. n ; 1/ .
Lp or the Holder norm“x”p -(2: lxillp) P, py ! . In particular
iml
cases the following norms are obtained:
n n
; . 2,1/2 s s . .
fIx 1, = 2: [ %515 (1% ] p=( g:‘ x5 (Euclidian distance);
im =
= i
(1 || g0 m?‘{“i~}
The aim of this section is to analyse four variants of goal-
programming in the stochastic case in order to obtain some determinis-

tic mathematical programming problems.
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1. B. Lontini /12/ considered that in relation between the ob-

jectives F=(F ..,Fr) end variable x€ X={ x | Ax=b,x> 0} there exists

1
2 vector "'(“l""’"r) of random variables i.e.

x +u =c!x+u k=1,...,r

" Lol AT STl R

If u is @ normalily distributed random vector, with mean vector 0

(12) F(x)wme 1t

and covarliance matrix V, then for each x € X F'(Fl""’Fr) is a random

vector , with means (cﬁx....,c:x) and covariance matrix V; thus we
have
- - ~1/2 =-Q/2
f(yl',,.,yr)-(ZIL) r/2 |V| / QQ/

Here Q is a quadratic form defined as
(13) o= (F-tx)’ v (F-tx) (c=le; )

Let F-(F],....Fr) be the levels to bi attained by the objectives.
Due to the random vector u, we have not F=Cx, In this conditions we
choose Y™ a region in R' such that F-(FI""’Er) € Y*" and the pro-
blem consists in choosing of xe X for which F(x) defined by (12)
has the highest probability of falling in a
We obtain the following model /12/
(14) mex P(F{x)eY™)
x € X
Usually, due to the normality assumption of wu, Y® is taken an
ellipsoid in Rr, centered at F, of the form:
Y'={ y=(yyoeeeny ) | Q=(y-F)’ vi(y-F) ¢ 2}
tf V is nonsingular, then Q defined by (13) has a X*distribution
with r degree of freedom. According to th's fact, v* can be interpreted
as a confidence region for F(x) at level= ,i.e., If for x° we have
EF (x®)mCx®=F (where E denotes expected value) then P(F(x)€& Y®)w o
The model (14) is equivalent /12/ with the following quadratic

programming model

min R{x) = (F-Cx)lv-‘(F-Cx)
x € X
E, e=c’'vT'c, pm-C'VT

Theorem (B.Contini /12/). The optimal solution of the problem (14)

1 1

With notations k=F'V’ F we have R{x)mke#x/Bx+2p’x
is obtained by solving the following guadratic proocramming problem

min (k+x’'Bx+2p’x)
x € X

Genera! algorithms tc solve such problems are available (see, for

example, /41/).
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2. We assume that in the relation F=Cx the elements of C are ran-
dom variables. Then for each x€ X there will be more or less devia-
tions of Cx from F(we denote them d¥(x) and d:(x))and a convenient
criterion is minimization of expected value of the norm IF-cxll.

The following model is obtained /10,

{(15) min E{ ||F-Cx || )
x & X P
For p=! the mode! (15) becomes

r
min E( SO (d:(x)+dk(x))

x€ X k=1
subject to
- - _' --
Fk(X)+dk(x) dk(x) Fr k=l,...,r
Ax = b

x, d:, a2 ¢
For p=2 the model (15) becomes

r
(16) min £ ( = JF.-C.x |2)
x€ X jm1 !

where Ci'(cil""'cin)

In order to find the deterministic equivalent of problem (16) we
assume that the elements of ( are independent random variables with

means c.. and variances G@.. i.e.,
i i 2

c.. = Ec.. , G, =0%(c. )
ij (] i) iJ

Iimmediately, it follows thatnfor random variable
Zi-Fi-cix-Fi- > e, .x.

j= [
we have n n
= = - 2 2 2 2
E2.=Z =F, - T..x" and (. = G, .x"
i i i E;l ij Zi E}l ij J
Hence
. 2 L2 L 2 L 2 2
EC X |F-Cox |5)=E( D 27)= 30 E(2()= 3 (37 +C, ) =
=l =) jw j=1 i
r _ n r n ro_ no_
- J (F- Y = x.)2 - 3 Gz.xz.xz. - J(F.- Y c..x.)z +
w1 bojer M iml 3= T ey g
n r
pull| C )%
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Theorem (Chobot M. /10/) The optima) solution of the problem (16)
ls derlved by solving thefollowing quadratic programming problem
r n n
min [Z: (F- 3 T..x02+ % (£ .. zx?]
i ij7] : : ij Jj
x € X . =1 j=1 j=1
jw]
3. Now, we consider the problem from pct.l) in another variant,.
We assume that the eilements of C are random variables. It is choosen

the domain Y™

v* -{(y],...,yr)ier £ ¢y, ¢y ;-1,....r}

and two boundsql-(q”),qz-(q“) i=l,...,r for the probability
that F(x)€ Y™ ; the problem consists in finding how much we can
“diminich" Y™ such that the probability that F(x)€ Y¥ to be placed
between the two bounds,

The obtained problem takes the form

min"[z- f,”
subject to
P{Cix)?-f”}}q” iwl,...,r
PLCx2F+ 6, I &, (S IR

TR PTIRA

This problem is equivalent /10/ with the following problem
min |Ig,= &,

subject to

n n
- ¢ - -1, 2 2,172 i}
F, ili jgl €% ¢ B O °in)(jg,i Gij xj) i=1, ) 7
- - - o2 2 ,1/2
Fo+ E‘Zi- j‘{_‘ cijxj>’ ¢ (“Zi)( J.Z_‘]Cij X ) i=l,...,r

4, In what follows we assume that the elements of the vector 3
are independent random variables with known distribution Fi(.)

(i=},...,r). We can consider the problem /6/:

min Jigll
subject to
(7 P{c,xy F- &, ]2%, i=l,...,r
P{CxCF+ €, }2,, il ..,

where £x(€ ..., € ), R = (X ), ®,=(X ), i=l,...,r
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For any i and 0¢ 8¢ 1, let

Fr'(e) = inf{ :F. ()3 8) L P (e) - sup{v:F, ()¢}

and the vectors F-‘(“,)-(F;] 1“13)L ?-](4'”2)'(?;](1‘Q21)l3'|.-~

where e is the vector of ones.
with this notations, the deterministic equivalent of the above
problem is
min |lg |l
(17') subject to
(%] Cox+ €. 2 F.

i AY

o) Cix-i.(?; (e-=,.) fel,...,r

€, 0

Substracting (*%)from (%), it results
4 1y ooel An
(oo s) £y g{F = F e-x )} g®

If £ 3 0 then the constraint Ei2,0 is redundant. We hsve £°2 0 if

x> e-% z(i.e., =4 ‘4'q2i> 1 jel,..,,m) This condition is always

satisfied because « and X_. are normally close to ) . From (»+w)

it results £= £ (QL'O) whiz;, when substituted in (%) and (%w)
results

dgax 8¢S
where 69-1/2{F-|(°(l)+AF-l(e-°'2)}

Theorem /6/. 1f ql> e—*~2 ang if Fi are independent random
variables , then the probliem (17') is equivalent to the following
deterministic problem

minimizell{‘-t'sll subject to -JsAx-é‘sé‘ and.é),D

6. Group Decision Making in Stochastic Programming

We recall again the problem (4)-(5) end consider a weighted sum

of the r objective functions.

r r n n r
= I: X 7 - Z:R Z: ¢, ) x, = Z: ( 2:,q ¢, . {w))x, =
k1 Kk K je1 K Ijar ke kK] J
n
- X cj(-,u)xj.cl(q,w)x, q.(ql,,,,_qr)

jo
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The weights dk(knl,...,r) reflect the importance attributed by the
decision maker to the objective functions. USUQlIy, the weights are
normed by the conditions Dsﬁkgl, kel,...,r, 3 ., " 1.

k=]

Thus, we obtain the following problem
r r
min{ S % z (x,we I & c’(w)x]
xex{knl kk kel KK
From & practical point of view, we can not add the objective func-

tions because they are incomensurabie. However, functions Zk(x,w) can

be turned into utility functions in von Neuman-Norgenstern’s sense
/28/. Thus, each function Zk(x,uﬁ wil) undergo a transformation of the
form

r
Zk(x,w)-"kzk(x,w)* Fk
where Xk-infimum Z (xpg0), Yk- supremum Zk(x,O)
x€X ,we fu x€ X,well
and x, and Fk are solutions of:
o« ka + Pk = )
“ W fem 0
The r objective functions Z;(x,ua) are summed up and we maximize
the synthesis function
r
t
max{ 2% (x,w) = Z,‘\klk(x,w)}
x€ X k= |
Another aspect of the problems is the follows . In a group decision
the weightsﬁ»k are random varisbles because the members of the group
will assiagn several weights to objective functions. Without loss of
generality, we assume that c!k are random variables and ¢, are deter-
ministic. {f the group is small enough, each member may effectively

advance his preferences and then X represents the expected values of

the weights assigned by each membet. If the group is 'very large, as in
the case of determining @ welfare function, it is not possible to take
into account the corresponding weight vectors reflectino the pre-
ferences of all members of the group. Thus,« . €e&n be considered as
random variables.

r
Let be cl{x) = E;'q KE and F_ (.) the probability distribution
function of the random vector < .

B.Bereanu /7/ considered two problems:
2) Findino a vector x, before consulting the group members, which
maximizes the probability that the value of the function shall exceed

2 certain level u, i.e.:
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(18) max P{u;lc'(k)x b u}
x € X

The optimal vector represents minimum risk solution for multipie
criteria problem.

b) Finding the probability distribution function of the random
veriable Y(w) defined by
(19) J(w) = max c'ix)x

x € X
subject to F.(.) and the probabilities of various basic feasible solu-
tions of X to be optimal.

Definitions. (E.Bereanu /7/) If the minimum risk solution in (18)
does not depend of Fef.) we call it distribution free minimum risk solu-
tion (df.m.r.s) of the multicriteria problem. |If it does not depend on
u either, it is called free minimum risk solution (fom.r.s).

A stable optimal basis (optimal with probability 1) independent
of the Fel(.) is called distribution-free optimal basis. |t provides a
distribution-free optima! solution (d.f.o.s).

Theorem (Bereanu /7/) Let C be a nonempty convex set in R“,92 be
the set of all probability measures or R™ auch that
(PG-(IE ) =  (P(c)=1) and C(C) be the set of corresponding random
vectors. The following statements are equivalent with respect to (C):
(i) x e X is a f.m.r.s of max P{c&!c'(ﬁ)x 2 u}

x € X

(ii) x"e X is a d.f.o0.s. of 7(hﬂ-max ¢/ (a)x
x € X

Alsc, we can use the simulatjon-method to establish the weights «k/ll/.

It can be imagined that «, are generated by a random vector of the

k
Drichiet type having the probability density.
P+ 049 ) Ya~1 V-4 v -0
- |
Sl 1 ) {_‘ i T S ST SUUPREL S R
(9]).. .r(9r*1)
r ¢ }
= H . &
if (=, e S af s x gy o 1gign DELIEY
and
o« = (
g(ul,..., r) toif ! ],...,«xr)qtsr
We assume that we known the modes M(Ri) (i=1,...,r) (given by tne
user).

It can be shown that
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01 QV'I.
, e M( ) =
01-' ""’hv“ r "1’ e Jl\v‘\

With help of Di it generates the Gamma variables éi having the same

M(& ” -

parameter A=1,

1 f éi(i-l,...,m+l) are independent random variables of the Gamma
type with parameters 1 and respectively 9i(i-l,...,m+l) then, the
vector‘-(“‘,...,qr) with the components
: o
® . ol R - r

1 yooo .
él+"’+5r+l é]+...+5

is @ random vector with & Dirichlet distribution. This vector is taken

r+l

as the weights vector for solving the multiple criteria problem.

7. The Protrade Method

For solvlng_ the stochastic programming problem with multiple
objective functions, L,Goicoechea, L.Duckstein and R.Bultfin /20/
proposed a method, labeled Protrade, which can be considered to be the
analogue in the stochastic case of the POP and STEM Methods /&/,/5/.

It is an interactive method, the decision maker having the
possibility to conduct the process of choosing efficient solutions by
modification initial conditions of the problem, function of partial
results obtained. Thus, this method alternates the phase of computa-
tion with the phase of decision, the decision maker trading level of
achievement for each objective function directly against probability
of achieving that level. For other interactive methods used in multiple
criteria stochastic proaramming, see /19/ and /20/. Let us consider the
followinog problem

max{ Z(x) = (Z;(x),...,Z;(x))}
subject to
x€D ={ x| x€R", 0,(x) g0, x>0, i=l,...,r}

where
1] n P
z - J}:_‘ €% 2, (x)=E{Z}(x)), cij~H[E(ci_i)’ Var(cij):'

and the functions gi(x) are differentiable and convex. The Protrade
Method consists in the following steps:

Step 1. For each funetion Z;(k-l,...,r) determine the values
extreme on Do' i.e.

2, . 7 (xi*)- max 2 (x)

k k
max x € Do
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and let L&'(Z‘(xl'),...,l (x"%))

Step 2. Define an initial surrogate objective function
r
F(x) = Gk(x)
ke
where
(2,-2 o00)
G (x) =

Zk max-zk min

Step 3. Maximize F (x), x&D,and with the optimal solution x!

generate an initial, non-inferior goal vector G]-(G](Xl).,,,.Gr(X‘))

Step 4, Estimate a2 multi-attribute utility function u(G) reflecting
the deciston maker”s preferences (for instance, the multiplicative form
"
1 24 T+k = .
/157, /247 1+kU(G) 3:2 []+kki“i(si)] , k and k' are parameters)and

define a new surrogate objective function
r

NONEES N N

jm
r [. & LHG)
Gi(x1) L. o 6. .

S

where w, = )

1
and r stands the step size requirecd.to yielda newgoal vector in the
direction of a desired increment & U(G).

Step 5. Maximize S](x), x€& D and with the optimal solution X2
generate vectors

6= (6, (xF) .6 (xP)) ang U= (z,(xP),.. .2 (x%))

r 2 r
Then, the vector V‘ which expresses trade-off between goal value
and its probability of achievement, is generated
2, 2 (y2
6, (X% g, (XT) ... G (XT)
V‘ =
- S - K
1 | 1 2 1 r
with \-Q.i choosen such that

P(Zitx) 3 2, (xF))2 -,

Step €. Now, the decision maker asswer tc the following question:
““Are all the ZI(XZ) values satisfactory?'" |f Yes, U2 represents a
desirec solution. Otherwise, go to the next step.

Step 7. Choose the function Zk(x) with the least satisfactory
pair( Gk(ij and find e € R - [ﬁ,l]such that

k
-
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[ _qo
P(Zk(x) b’ ek)2 } K
Step E. Redefine the solution space as follows
1 ©
D= {xlxe€d , P(Z (x)3 €)) 1-= }
Step 9. Define the new surrogate objective function

r
Sz(x) - 7 wiGi(x)
7

and call to Step 5 for maximize Sz(x) on D‘ etc. Finally, a satis-

factory vector V2 is achieved
e e e e
Vz _( ! 2 r >
-af - x* -
1 1 PR ) r

8. Probabilities of Optima in Multi-Objective Linear Programmes

Let us now restrict ourselves to find the efficient solutions for
the deterministic problem.
max {Z(X)-(Zl(x)-cax,..., Zr(x)-c;x)}
x € X
where X = {x e R" | Axmb; x) 0}

As it is known /23/, x is an efficient point of the linear vector
maximijzation problem P:max Cx subject to x€X (C is a r x n matrix)
if and only if there is some}X)> 0 inrthe set
r . . .
/\-{l-(l],...,lr)iR :()(li <, X )\i-l} such that x is an optimal

je
solution of the associated linear problem whose objective function is
2 weighted combination of the r objective functions of the vector

maximization problem Py : max A Cx
x€& X

The parameter space /A can be decomposed into a finite number of
polyhedrea /\(xi)(which correspond to different nondominated extreme
points of the feasible set of P) and open half-spaces ﬁﬁ' These
polyhedra are connected by their boundary hyperplanes. The polyhedral
set /\(xi) consists of all such that x, is an optimal solutiol of Pl)
and the problem P) has no finite optimal solution for all A€ /\1.

In connection with the structure of the space A of A-values,
in /29/, S.5.S5engupta, M.L.Podrebarac and T.D.H.Fernando put the
following question ""Given a basic feasible solution, what is the
probability that it is also optimal? Or, equivalently, civen that a
solution is basic optimal, what is the probability that it may be

associated witn an assigned region in the space A?"
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0f course, the notion of 'probability' is the one of geometric
probability, i.e., in terms of relative lenghts, volumes etc.

Because A is a subset of n~dimensional Euclidian space RT we can
define a G-ring F of Lebesque- measurable subset of A. Let N ,F,m(.)}
be a measure space, where m{-) is the Lebesque measure.

We construct another measure )«(.)-m(.)/m(/\) which give rise to
a8 new measure space{A.F,/A(.)} . This new measure space Can serve as
a probability space because the measure/u(.) is totally finite and
MA) =T,

Theorem (/29/) Let/\G be an arbitrarily assigned Lebesque measurable
subset of A, ancd let xg be an arbitrary basic feasible solution of

Py - Then the followinc exist, namely,

a) F’('iB is optimal)
b) P(xB is optimal {X\€ /\G
c) P(k(/\GIxB is optimal)

)

9, Multiple Minimum Pisk Solution in Stochastic Programming

in several papers /31/, /33/, /34/, /32/, /L0/ Stancu~Minasian
considered a more general case of the minimum risk problem, i.e. the
case when the probabilities that the values of r objective functions
exceecd some levels of performance are maximized

max P{ulc‘] ) x3u,}
x €& X

max Pl{wic/lw)x3zu
x € X { r r}

with X defined as in (8).

For solving such problem, Stancu-Minasian proposes a method which
consists in the sequential solvinc of some minimum risk problem
(containing also quadratic constraints). Reiateed to this method, the
concept of the multipie minimum risk solution is introduced and a
relaxation-type method for its obtaining is given.

We can introduce .other models in a similar manner to that
suggested in Ref./21/, /22/. Thus, a possible objective is to
maximize the joint probability /22/

Pleix2 ujoeenyel)x 3 u,}

or to maximize

r
, .
W, P w
I vple@ 30
where wj are weigchts associated with each objective function.
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THE MANAGER’S DILEMMA: GOOD DECISIONS NEED
NOT LEAD TO GOOD OUTCOMES

D.E. Bell

Harvard University, Boston, Massachusetts, USA

1. Introduction

The purpose of decision analysis is to aid the cognitive processes
of a decision maker by creating an evaluation system that depends on a
small number of rules. For decision making under uncertainty von Neumann
and Morgenstern |[3] suggested a number of rules that many people now
believe should naturally be part of any person's decision making process.
These rules imply that & decision maker need only specify a utility function
incorporating tradeoffs between measures of outcome performance, and then
select the alternative which maximizes the probability weighted expected
value of that function.

The widespread acceptance of this model has led analysts to try and
aid managers in this fashion. The manager will acknowledge, let us say,
that his objective is to make money for the company. The analyst then
asks questions of the form "Would vou rather make $1 million profit for
sure or take a 50-50 gamble between $0 and $3 million profit?". At this
point the manager asks such questions as "What is the context? How did
this choice arise? What can I do about the uncertainty?” and so on.
The analvst explains patientlvy that the answers to these questions are of no
consequence since all we are trying to do is establish the utility function.
The manager knows these questions are of critical importance and the

analvsis is doomed from this point.

99
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A traditional analysis of the management delegation problem is as
follows. The organization, or higher level manager, has & utility function
u(x) for the profits X of the sector run by the mansger. The manager

perceives an economic benefit e(x) accruing to himself (through promotions

or direct bonuses) for achieving a2 level x and has & utility function
v(e) for those benefits. Thus the manager selects on the basis of v(e),
whereas the organization would wish him to use u(x). The question is,
does there exist an incentive system i(x) such that v(e(x) + i(x)) = u(x),
where we assume i(x) is negligible compared to x. If so, the manager
should then make decisions exactly in accordance with company wishes.

But this is not the whole story. It would be the whole stary if a
manager's job were, each day, to select one of & number of alternatives
presented to him, each explicitly described by a probability distribution
of outcomes. However it is a manager's job to seek out and identify
alternatives, also to estimate the probability distribution of outcomes
for each alternative, and only then to evaluate them for desirabiliry.

The manager recognizes that he is being evaluated not only for his ability
to reflect company objectives in his selections but also in his ability
to create alternatives and forecast their prospects accurately.

To simplify the situation, suppose that an alternative always results
in $0 or $1 and that a good manager has a probability p of picking a good
alternative. Suppose that a bad manager can do this only with probability
q (less than p). Suppose further that & newly hired manager is equally
likely to be good or bad. If the manager's first decision proves to be
bad, higher management will revise downwards its estimate of the likelihood
of that manager being good from one-half to (1-p)/Ki-p) + (1-q)}]. Thus a
good manager who, by definition, is making good decisions may be condemned

by bad outcomes.
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It is natural, therefore, for a manager's behavior to be distorted by
the knowledge that however loyal and accurate is his decision making

process, his own interests may be better served by a different process,

precisely because he will be judged by the quality of outcomes not by
the quality of his decisions.

2. Examples of the Importance of Context

In order to show the need of the manager to know the context of a
decision, it 15 useful to illustrate some contexts.

Illustration 1 You work for Company A, a regional toy manufacturer
that earns 80%Z if its income during December. Due to long production

and advertizing lead times your strategy for pricing and advertizing must
be set well in advance, in fact in February. Your principal competitor
is a national tov manufacturer, Company B. Their pricing is fairly
standard and constant from year to year, but their advertizing strategy
varies wildly. Some years they launch a major advertizing compaign,

some vears they advertize hardly at all. They do each about half the
time and there is no way of prdeicting what they will do this year.

Company A has also kept its pricing strategy constant as too with
its advertizing, which is quite modest. Company B is too big to care
what strategy A follows, but A has seen no reason to change it.

You, however, have thought of two ideas for increasing profits. The
first is to lower prices. You calculate that should B fail to advertize,
customers seeking toys will see that A's are cheaper and buy them. This
will lead to a net gain of S6 million in profit. However, if B does
advertize, customers will be looking for B's products and A will only get
its usual customers, but they will pay less so that in this case profits

will be reduced by $4 million. However since each case is equally likely

there is a net expected gain of $1 million. The guestion is do you reaily
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want to take a2 decision which has a 50X chance of losing the company
S4 million? The decision invelves a considerable amount of personal risk.
The second idea is for A to advertize more itself. This strategy you

calculate, will bring in & net gain of $1 million, no matter what B does.

This is splendid; you achieve the gain of $1 million with no risk to
yourself.

But is this decision in the company's best interests? Supﬁose that,
in a normal year, if B advertizes, because of general increased interest

in toys A makes $10 million more profit than it would otherwise. See Table

1,
Table 1
B advertizes B does not advertize
(.50) (.50)
Status Quo $ 15 million $ 5 million
Lower Prices $ 11 million $ 11 million
Advertize $ 16 millior $ 6 million

We can see from Table 1 that lowering prices reduces the profit uncertainty
for company A. If top management were making the decision they would
clearly want to lower prices. Because of the incremental evaluation system,
a2 lower level manager would select the advertizing strategy.

Illustration 2 You invest Company A's pension fun@s in bonds, stocks

and other vehicles such as mortgages and direct real estate. You believe
that now is the time to be solidly in bonds but your counterparts at the

at the rival companies B and C do not think so. Even after incorporating
the fact that thev think stocks will be superior, you remsin convinced

that bonds are the way to go. 1Iable 2 summarizes your feelings on this.
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Table 2
Stocks go up Stocks do not go up
(.50) (.50)
Return on Stocks 20% 0%
Return on Bonds 12% 12%

What do you do? If stocks fail to go up you will be something of a hero
in your own company and looked upon as lucky elsewhere. If stocks go up
not only will you be dismissed for incompetence at A, companies B and C
will notr hire you either. Going with the consensus opinion 'is much the
safer strategy.
Illustration 3 As a geologist you are assigned to decide which of two
well sites to purchase. Well site A has a 50% chance of providing oil
wrth S5 million. Site B has a 25% chance of providing oil worth $10 million.
The site you reject will be developed by your rivals.

Subcase 1 Sites A and B are adjacent. If well A is dry, then

so too will B be dry.
Subcase 2 Sites A and B are hundreds of miles apart and have no

bearing on each other.

Table 3
Subcase 1 Subcase 2
A E A B
.50 0 0 .375
.25 5 5 .375
.25 5 10 5 10 .125
- {47 - (¢} 10 .125
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Table 3 shows that in Subcase 1 you have a 25X chance of being ahead
$5 million by choosing A over B. You also have a 25X chance of being behind
by $5 million by choosing A over B. Choosing B over A gives the same
analysis. Since you are indifferent you select A on the grounds of risk
aversion for the company. Now look at Subcase 2. The choice between A
and B comes down to deciding whether a 25% chance of being $5 million ahead
with A is worth a 12 1/2% chance of being behind $10 million. Perhaps this
is a good tradeoff. Perhaps it is not. The point is merely that the
analysis is different in the two subcases.

3. Performance Evaluation

The three illustrations show different ways in which managers may be
evaluated:

a) lncremental Comparison 1f the company started the period in

it is calculated in what state x!

state x and finished it in state x 1

l’
the company would have been had you not made the decision you did. This

difference X - xi is a measure of your performance. You perceive

v(xl - xf ) to be the impact to you of this evaluation. The function v may
be concave if you are worried about dismissal, convex if your job is secure

but vou are looking for promotion opportunities or s-shaped if you are

required to achieve some goal of comtribution (suzcess if X, - xf > g*,

failure if x, - xl' < g*),

b) Comparison with the Competition 1f your division began the

period in state Xq and ended in state % and if during the same period your

competitor (which might be internal or external tc your company) went from

Yo to Y then your performance is measured by (xl - xo) - (yl - yo) or

-1
possibly by x) = vy Once again your perception of this evaluation is
v(xl - yl).

This form of evaluation is quite widespread. Many companies judge
their own performance by comparison with similar companies in their own
business sector. A company with multiple divisions will investigate the

management capabilities of the division performing, relatively, least well.
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c) Comparison with Options not taken If it is your job to choose

between two lucrative projects A and B you will get no credit just because
the project you select does well. Instead your performance will be
evaluated by how well your chosen project does (x) relative to the ome
vou rejected (which results in y). Once again we have a measure x - ¥
and an implication v(x - y). »

This is the manner of decision evaluation used in the theory of
decision regret [l] used to explain apparently paradoxical behavior in
lottery style questions [2].

4, Implications for Management Decision Theorv

The generic payoff function for a manager is thus v(X - ¥) where ¥
is a direct measure of the manager's contribution and V is the level achieved
by the benchmark. If the utility function of the company is u(x) it is
clear that the manager will not make dezisions consistent with it if he is
using v(x - y). Moreover, no incentive system 1(x) will correct this
problem. Indeed even if an incentive system I1(x,y) were developed to
meet this need. one would have to be sure that the particular choice of y
(among those covered in Section 3) does not vary from problem to problem.

To take a specific example, let us take v to be concave and vy to be
the performance of a second division of the company.

Observation 1 The manager prefers projects X which are positively

correlated with ¥ over projects which are negatively correlated.

Proof Elv(x - )] = (X - ) v'(0) + 1/”"‘0”%2 + cy2 - 2ccxcy + (% - 9)2]
where X and § are average returns and oxz, 02 represent variances. The
y

constant ¢ is the correlation coefficient between X and ¥. Note that if
v'"'(0) < 0 then ¢ > 0 is preferred to ¢ < O.
The problem is that if u is the utility function of the company
we have
et e s = . 2. 2 .2
E[u(x + ¥)] = (X + ¥)u'(0) + 1/2 u (0)[0x + Oy + 2ccxcv + (x+ 7]

If u"(0) < O the comparv prefers ¢ < 0 to ¢ > O.
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For the next example let ¥ be the project not taken.
Observation 2 The manager may pay a premium for situations in which y
remains unresolved if not taken.

1f y is not taken, evaluation of the manager can take place only
relative to an estimate of how y would have been resolved. Suppose the
estimate is V. For example in choosing between two RSD projects, it will
never be known how the one not taken would have turned out. But the
quality of the decision will be judged relative to the average performance
of such projects.

We have

Elv@E - )] = G - Hv'(0) + 172 v (0 (el + G- »D)

which is greater than E[v(X - y)] if v"(O)[cyo ZCGX) < 0. 1f
v'"(0) < 0 this requires oy 3'2cox.
5. Conclusions

It is a fiction that & company bas objectives that can be neatly
summarized in a single attribute utility function. Just as the manager
has complicated incentives and pressures so too has the organization.
Therefore in its desire to aid organizations and their managers in making

better decisions, management science must learn to recognize these pressures

and to allow for them in an analysis. This may require a thorough
understanding of the manager's enviromment and perspective in order to

provide a useful decision support system.
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ON THE APPLICABILITY OF THE NASH SOLUTION
AND THE ZEUTHEN THEOREM TO WAGE
BARGAINING PROCESSES

G. Fandel

Fernuniversitit Hagen, FRG

Wage bargaining are decision processes among two parties with different
utility functions. For treating them game and bargaining theoretical
solution procedures (Fandel 1979%a; Fandel 1979b) may be used. It is
analysed how far the cooperative Nash-solution (Nash 1953) and the
bargaining theorem of Zeuthen (Zeuthen 1930) are suitable to describe
the decision behaviour of labour and management in the metal-processing
industry of the Federal Dlepublic of Germany during the wage bargaining
processes between 1961 and 1979.

2. Wage bargaining in the metal-processing industry
2.1 Preliminary remarks

The subject of the analysis will be the wage disputes between "Gesamt-
metall" as organization representing the employers and "IG Metall"
(Metalworkers Union) as the employees' representation in the Federal
Republic of Germany in 1961/62 to 1979. The years 1964, 1967 and
1972/73, however,had later to be excluded from the study, since in
these years agreements were either reached unusually guickly on account
of political or economic events or were simply taken over from other
areas; in these cases there were not any signs of bargaining

processes.

The metal-processing industry seems to lend itself particularly

well to investigations of this kind since first of all, within the

DGB (German Trade Union Federation) IG Metall represents by far

the majority of the employees organized in this confederation

and secondly, it shows a stronger tendency towards the strateqy of

cash wage than other trade unions (Zerche 1979, p. 25 and p. 117 ff.).
The latter is often justified by the argument that the highest possible
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naminal wage increase strengthens the power position of the union
leaders more efficiently than any other strategies. Therefore,
additional claims will not be taken into account because of their
secondary role and the difficulties to gquantify them adeguately
within the wace movements. In this context the difference between
the greatly centralized bargaining strateqgy of the employers and
the unionists' will to negotiate regionally has to be allowed

for in a suitable way; for this reason we have chosen as bargaining
processes the wage negotiations in the pilot areas which in the
year concerned were regarded as trend-setting for the total wage
movement within the branch of industry under review, and whose
agreement proposals have been approved of by the members of Gesamt-
metall and the representatives of 1G Metall.

Table 1 specifies the initial claims of IG Metall w,, the initial
offers made by Gesamtmetall W the actual contracts w: as well as
the naive solutions ;t for the years t from 1961/62 to 1879
expressed in percentages of the last basic wage. At this, the
notion of the naive solution bases on a general rule of the
economic practice saying that, usually, the later agreement with
respect to the wage increase rate lies halfway between the union's
initial claim and the employers' initial offer, that is to say
approximately corresponds to the arithmetic mean of these two
quantities.

2.2 Application of the cooperative Nash=-solution

The close relation between the naive solution and the actual agreement
calls for an inguir; c£ the cuestion to what extent the agreement
points of the wane negotiations are inter-retable in the sense of

the cooperative Nash-solution, since in case of linearlyv transferable
utility this game-theoretic concept devides the barcaining cake
available between two parties into two equal shares. For an

analytic reconstruction of this possibility of interpretation let

us assume in the followinc that the cake to be devided between IG Metall
and Gesamtmetall is each time defined by the difference of the

changes of the wage sums resulting from the initial claim of the

union and the initial offer made by the employers, thus reads

(1) Kt=(wt-v_vt)-Lt
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Table 1: Survey of the wage negotiations 1961/62 to 1979

Year Initial claim | Initial offer| Actual Naive

of IG Metall | made by Ge- | comtract | solution
t Gt v, w: Gt-:Ezgg
1961/62 10,0 1,5 6,0 5,75
1963 8,0 3,0 5,67 5,5
1965/66 9,0 2,4 6,63 5,7
1968 7,0 4,0 5,5 5,5
1969 12,0 5,0 8,7 8,5
1970 | 15,0 7,0 11,0 11,0
1971 \ 11,0 4,5 7,0 7,75
1974 i 18,0 | 8,5 12,25 13,25
1975 ; 1,0 6,0 6,8 8,5
1976 1 8,0 4,0 5,4 6,0
1977 j 9,5 4,75 6,9 7,125
1978 8,0 3,0 5,4 5,5
1979 6,0 3,0 4,3 4,5

and is consequently fixed, Lt denoting the wage sum before the wage
dispute in the year t, and workers and employers possessing linearly
homogeneous utility functions with respect to the shares which they
eventually obtain of this bargaining cake. If IG Metall and Gesamt-
metall are assigned the indices n=1 and n=2 respectively, the
utility functions remaining constant over the years with respect

to the shares can be written as follows

w_=w w. -
-t

= = t
12 T and (3) Us, b-; -
t =t t -t

the quantities a and b indicating the constant marginal utility.
It is easy to see that the utility of 1IG Metall (Gesamtmetall) grows
(declines) linearly with the rising wage increase rate W which the

(2) u t respectively,

two parties have to agree upon in year t and for which ytSwtsﬁt

holds in general. For w =5+ IG Metall reaches the highest utility,

t
that of Gesamtmetall becoming equal to 2ero; correspondingly the
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ratio is inverse for w_=w_. Moreover, let w be presupposed. The

t -t t =t
cooperative Nash-solution (Nash 1953) is characterized by the fact

that the two negotiating parties involved in the case considered here

>w

agree upon a wage increase rate w: or, which is egquivalent, upon
shares of the bargaining cake by which the product of their utility
increases with respect to a disagreement vector G-(G1, Gz) is
maximized. To simplify matters the disagreement vector can be
fixed by the zero utility levels of the negotiation parties. The
following assumption which is fairly plausible is to justify this
understanding: The bargaining cake corresponds to that part of the
return of production for which in future they will have to work in
common and the distribution of which to the factors work and
capital must be agreed upon within the framework of the wage
disputes; if one of the parties claims the total share this will
be met by strike and lockout measures respectively by the other
party; in such a case the burden for the fighting fund on the
union's part on the one side 1is opposite to the capital
expenditure for the plant facilities on the employers' part on

the other.

Assuming a disagreement vector G=(G1,ﬁz)=(0,0) in this sense, and
considering (2) and (3) the cooperative Nash=-solution can be
determined as follows

W, oW W, ~w

= - - = . = —t---—t . t t
max ut--(u1t 0)(u2t 0) LEPRL P a-G - b =
t -t t -t
(4)
a-b _ _
= (_—‘r (wt-\jt) (wt-wt)lc(wt—gt) (wt—wt) .
wt-!t)

This expression is exclusively dependent on the wage increase rate
W, as variable which has to be determined optimally by both parties
in the form of an agreement. As necessary condition for determining

such an optimal wz one obtains from (4)

dut - -
(5) ———-c[-(wt-gt)f(wt-wt)]=c(-2wt+wt+!t)=0

dwt

and from this, because of c#0,

)
(6) wPa-t =t

PV
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Congeguently, assuming the utility functions (2) and (3) to apply,
and taking the assumptions concerning the bargaining object of the
two parties and their disagreement vector as a basis, the cooperative
Nash-solution wi tallies with the naive solution ;t' and its
explanatory value with respect to the actual agreements reached

w:, as may be seen from Table 1, can be estimated accordingly.

In this connection the cooperative Nash-solution has been derived
from the initial claim ;t of the union and the initial offer w,  made
by the employers; no statement, however, has thus been made about

how these two initial values were obtained. As far as this is
concerned it may be enough to say that both employers and employees
probably take the data of the past or the future economic trend as

a basis; due to its limited methodical performance the Nash concept
does certainly not allow these data to be elucidated and verified.
Similarly, the deviations of the actual contracts w: from the
analytically derived values wz cannot be explained on the basis of
the Nash approach. Since these deviations are not too important,

as a rule, they could be ascribed to the differences which are
usually to be found between the rationally postulated and the
empirically observable decision behaviour. Assuming constant marginal
utilities for both parties, however, seems to be unproblematic in
view of the fact that wage movements are generally of special economic
importance, and IG Metall as well as Gesamtmetall represent a very

high number of persons interested.

For the wage negotiations of 1969 the above~mentioned analytic
solution according to Nash is graphically represented in Figure 1.
Here the coordinate axes are denoted by the utility arguments
(w,-w, ) and (Qt-w ) or {-(wt-ﬁt)? from the expression in (4), so
that the utility values LR and U, of both parties increase
positively with the direction of the coordinates. Between the

points A and B line L marks all contracts w, for which gt=55wts12=§t

holds.

While any points above L are not feasible since for them the union's
claims are always higher than the offers made by the employers,

which means that no agreements can be reached there, the points below
L represent a waste of the cake to be divided. From the condition
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(—(wt- wt)]~ Yo W= 12 w.= 5
o—
we 8,7; wt— 8,5
t = 1969

u = clw - w.)(w - w)

0= (0,0)

Figure 1: Nash solution w:

and actual agreement reached w: for
the wage negotiations in 1969-

of optimality w:-yt-at-wg according to (5) follows the Nash -
solution w:=8,5 with 8,5-5=12-8,5=3,5 which in Figure 1 is near
point C; the actual contract signed w:-8,7, however, corresponds
to point D on L. As can be seen from (5) and (6) w: is independent
of parameter ¢ in (4) due to the invariance of the cooperative
Nash-golution as to linear utility transformations; this parameter
only represents a level constant with respect to the product of
the utility increase which has to be maximized in common by both

contrahents in comparison with the disagreement vector.

2.3 Verification of the wage bargaining processes with the aid of
the theorem by Zeuthen

The bargaining theorem by Zeuthen (1930), which serves for
rationalizing the concession behaviour of decision makers in
conflicting decision situations (Fandel 1979, p. 105 f£.), is
identical with the axioms of the cooperative Nash-~solution, so that
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both concepts are eguivalent with respect to determining an optimal
agreement solution between the bargaining partners. But in
comparison with the cooperative Nash-solution the bargaining theorem
by Zeuthen represents & much more efficient instrument for
verifying the behaviour-theoretic consistency of the decisions

made by the bargaining partners. While according to Nash the
optimal soclution is determined statically, the bargaining theocrem
by Zeuthen, in order to reach this aim, requires a dynamic process
consisting in proposals and counterproposals which consider the
concessions made by the parties; in this way the optimal solution
is interactively approximated step by step and eventually reached.

In order to be able to properly check the rationality of the
concessions made by IG Metall and Gesamtmetall during the pay

talks of 1961/62 to 1979 according to Zeuthen while strictly
maintaining the utility functions introduced in (2) to (4) the
respective claims and offers which were submitted by the bargaining
partners until the agreement was reached, have been compiled in
Table 2 for these different wage disputes in terms of bargaining
rounds (Krelle 1976, p. 617 ££f.). The claims and offers are

given in wage increase rates and according to (4) can immediately

be oconverted into the utility values that are necessary for applying
the theorem of Zeuthen; to simplify matters the constant ¢ can be
neglected here, i.e. set equal to one. Simultaneocusly Table 2

shows that the wage negotiations are always to begin with an initisl
claim by the unions in the first round, the following claims are
always to be made irn the respective 0dd rounds, and the offers by
Gesamtmetall are to be made only in the respective even rounds.
Moreover, as far as those cases are concerned in which between two
different claims and/or offers made by the one side there was no
reaction by the other side, it has been presupposed that the other
side has maintained its last claim and/or its last offer in the
intermediate round. In 1963 the last two rounds and in 1965/66 the last
four rounds are not taken into account in the following considerations,
since in these two years agreements could have been reached earlier,
but the negotiations were continued for the time being due to the
fact that additional claims were dropped and finally a higher wage
increase rate was agreed upon. Accordingly, it should be noted in
1968 that the wage claim of the union increases again in round 9,

consequently no concession is made.
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Let Rt={rtlrt=1,2,...,it} denote the set of round indices in
year t, where rt indicates the number o©f bargaining rounds in
this year required for a (possible) agreement. Let wz(rt)
characterize the proposal made by partner n, né€{1,2) in the

round r _€R_ of year t; in this connection it should be pointed

t
out that accordinc to the arrangement described in the last
paragraph index n=1 (IG Metall) can appear only in the case of

odd and index n=2 (Gesamtmetall) only in the case of even round

indices. Moreover, let ﬁ tlr eR } be the set of round indices
of year t in ascending order, for whlch one of the bargaining
1,A

partners makes a concession, thus w (r )<wt(r -2) holds for the
i At 2) holds for Gesamtmetall huthr Eﬁ
(9 -Z)ER . Then let the mapping o: ﬁ ~{1, 2}be defined by the fact

that it lndlcates for each concession round r Eﬁ that bargaining

union, and w (r

partner o\rt)ef1 2} who made the concession in thlS round. The new
suggestion wt(rt , n€{1,2) of that bargaining partner which results
from this concession leads - according to (4) - to the product

of the utility increase
n,A -

n,A n
=c|w - W -
t(rt) ¢ t(rt) L

(7) u
Moreover, in order that this concession may be rational according
to the theorem by Zeuthen

.n A_ . Ve ! LY A.. A-
(8) ht( (rt 1); n,n'e{1,2}, n¥n’; (rt 2), (rt ‘I)ERt

must hold (Fandel 1979, p. 106).

If the fact whether such a concession was rational or not is then
. . A A .
mapped by the binary attribute function W(rt) with

. A nA _ n' A _
1, if o(rt)=n and ut(rt 2)sut (rt 1)
(9) %(rt)=
©C otherwise

then the result of the analysis can be illustrated in a simple

form by Table 3. Here index i indicates the concession steps of

the years 1961/62 to 1979. In order to be able to partly reconstruct
the evaluation of the results of Table 3, by way of explanation

the derivation of the results for the year t=1969 is demonstrated
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Table 4: Derivation of the results in Table 3 for the year t=1969

T ‘ I ) ‘ |

i T, | wl(rt) wi(rt) Qt | c(Qt) ! uz(rt) ‘ W(Qt) J 11
» 1|1 - - 0 . -
2 s - - 0 . -
13 11 30001 3 6 1 20,
| 4 5 - - Lo - -]
i 5 1 10 s 1 : 10 0 215
I 6 7 6 2 .10 1 22
! 7 8,7 7 1 t 12,21 1 23;
KN 87 | 8 | 2 12,2 1 2

in Table 4, using the symbols introduced. The common utility
values u:(r‘) resulting from the proposals and counterproposals
of the partﬁers can be marked as points on line L in Figure 1;
for the sake of clarity, however, this has not been done in this

case.

As can be seen from Table 3 47 out of 57 considered concession
steps by the bargaining partners in the years 1961/62 to 1979
are rational according to Zeuthen; thus for the promortional value
3 of the Zeuthen steps

47

A
(10) f(¥y=1)= & =0,82

holds.

If one starts from the assumntion that % is a random variable of
guantitative binary quality and the concession steps of the

years 1961/62 to 1979 represent a sample of the size m=57 from

an infinite dichotomic parent entirety consisting of the set of

all concession steps made between the bargaining partners IG Metall
and Gesamtmetall in the Federal Republic of Germany and for whose
elements only the property ¥=1 or ¥=C is interesting, thenr the number
of Zeuther steps in such a sample of the size m is binomially
distributed with the parameters m and f, where f mayv designate the

percentage of Zeuthen steps of the infinite parent entirety. If on
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this basis the 2ero hypothesis is tested, that is to say the
percentage of Zeuthen steps in the parent entirety is at the
most 70 %, i.e,

(11) Ho:foO-O,7O

and if the sample proportion ?-0,82 is chosen as suitable test
variable which, due to m-fo(1—f°)=57'0,7-0,3=11,97>9 can be
assumed to be approximately normally distributed, then the zero
hypothesis is rejected with an error rrobability «=0,05 since the
test variable ? exceeds the upper limit o of the zero hypothesis
(Wetzel 1973, p. 195 ff.), i.e.

(12) ?=o,az>o,81=c°.

Thus by inverse conclusion it may be stated with 95 percent
certainty that the percentage of Zeuthen steps in the parent
entirety is higher than 70 %, Moreover, if on account of the
sample one determines the confidence interval for the parameter £
on the level of significance of a=0,1,where because of
m-?(1-?)=57-O,82-O,18-8,41<9 an approximation of the binomial
distribution by the normal distribution is not possible, but

the F distribution must be used, then one obtains the interval

(13) fe€lo0,72; 0,90],

that is to say, with 90 percent certainty the percentage of the
Zeuthen steps in the parent entirety is between 72 and S0 percent.
The latter two statements which have been derived statistically

on the basis of the empirical analysis suggest that the theorem

by Zeuthen, together with the utility functions (2) and (3) assumed
when applying the cooperative Nash-solution in the last section,

is by all means acceptable as a methodical basis for substantiating the
wage bargaining processes in the metal-processing industry under
decision-theoretic aspects. Thus simultaneously the explanatory
value of the cooperative NRash-solution and the naive solution is
persistently backed.
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ABSTRACT:

In decisior making under uncertainty, the best alternative may be
obtained by maximizing the expected utility. To do this, many researchers
have been paying much attention to the identification of utility functioms.
In practical situations, however, there are many cases where it is 4iffi-
cult to identify utility functions, for example, in group decisions, etc.
Noting that probability distributione of altermatives play an important
role in expected utilities as well as utility functions, the information
on probability distributions give us a key for ranking altermatives, when
only partial knowledge of utility functions is availgble. The notion of
stochastic dominance is originated just from this idea. In this paper,
stochastic dominance over & single attribute will first be surveyed and
then it will be extended to cases with multiple attribures. Finally, the
potential effectiveness of stochastic dominance will be discussed along

with some examples.

21
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1. INTRODUCTION

Let € denote the set of alternatives and let X be an attribute to
meagsure possible outcomes caused by altermatives. x denotes a specific
level of X and is supposed to be x 20. We shall consider X scalar )
for & while. Let F(x) and G(x) be cumulative distributions correspond-
ing to alternatives A and B, respectively. Throughout this paper, we

follow the well-known axiom of maximizing the expected utility, that is,
Ag B <=> E(u,F) ¢ E(u,G)
where

E(u,F) = fwu(x)dl?(x).
0

Under the above axiom, the selection of the best alternative among &
may be reduced to & kind of mathematical programming problems, when the
full knowledge about the utility function is available. However, there
are several controversial points in the practical assessment of utiliry
functions such as violation of independence conditions, ambiguity due to
subjective judgment by lotteries and difficulties of interpersonal compar-
ison of utilities in group decisions, etc. Without identifying complete
forms of utility functions, therefore, we try to rank alternatives based
upon the information on probability distributions. The notiom of stochastic

dominance is introduced just to this aim.

Definition 1.1 Let u', u" and u"' denote the first, the second

and the third derivatives of the utility function u, respectively. Then
the classes of utility functions Zﬁj && and is are defined as follows:
W U = ] u@ et w@ 0, Yxe(o,®).

(1D gy = W@ | um) e, um %, v <0, Yxe[0,2)].

(iidi) U, = {u(x) | u(x) £C3, u(x) euz, W (x) >0, Yxe[0,%)]}.
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As is readily recognized, ﬂa is the class of utilitv functions for

which the decision maker's preference is strictly increasing over outcomes.
Furthermore, 112 is the class of utility functions which are of iﬁ» and
rigk averse. Finally, it is easily seen that decreasing risk aversion

utility functions belong to the class ua.
Definition 1.2 For i=1, 2 and 3,

Fo> ¢ iff E(u,F) > E(u,G), Vud(i.

We refer to >l as the first~degree stochastic dominance, or FSD; to >

as the second-degree stochastic dominance, or SSD; to >3 as the third-

2

degree stochastic dominance, or TSD.

These dominance relations induce some kinds of partial orderings over
risky prospects. Therefore, although stochastic dominance may not be in
general expected to lead to the best alternative by itself, it mav be

helpful to narrow down the alternative set.

Definition_1.3 Let (P be the set of all right-continuous distribution

functions with F(0)=0. TFor each Fe¢ f, we define F® as follows:
Fl(x) i F(x)

Fn+l(x) s I; Fn(y)dy, Vx e [0,®).

The right continuity of F and G of @ 1implies that 7 4 62
wvhen F#¥G. Therefore, F=(G follows whenever FleG" for some nl2.

Theorem 1.1 (Fishburn, 1975)

(1) F> 6 iff G6(x) > F(x Yxe[0,®),

(i) F>, 6 i G0 > Fm Yre[0,®),

(i1i) F >, 6 iff u. 2 u. and ) > P Yxe [0,®),

where L. denotes the mean value of F given by

F

uF ] f‘; xdF(x).
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Remark 1.1 As is well known, EV-dominance, for which altermatives with
larger mean value and smaller variance are preferred, can not be necissar-
ily adequate for decision problems, if we take the preference of the decision
maker into account (Keeney and Raiffa, 1976). By Taylor expansion around

the mean value U

F we have

u"(u}.) , (ug) 3
u(x) = U(u}.) +u' (u}.)(x -u}.) + 7 -u}.) + —3!—(x - u.F)

Therefore, the expected utility is given by

u"(llF) 2 u"l (llF) 3
2zt % Y73 °®

(1.1) E(u,F) = u(uF) + H e

where the relation E(x-—uy,rﬁ =(0 wasused and 02 and m3 denote the
second moment E((x-uF)Z,F) and the third moment E((x -uF)B,F), respectively.
In general, there is no relationship between EV-dominance and stochastic
dominance. However, the relation (1.1) implies that if more than second
order derivatives of u vanish, for example, if u 41is of s quadratic form,
then EV-dominance (EVD) induces second-degree stochastic dominance (SSD),

namely, EVDc SSD. Moreover, if more than second order moments vanish, we

have immediately from (1.1) EVD cTSD. Since for any two binary relatioms
R, and R, with R, cR, we have Ext[SIRl]DEXt[S|R2]. stochastic domi-
nance is more relevant for narrowing down the alternative set than EV-dom-

inance . Here Ext[SIR] denotes the extremal solution set of S with

respect to the ordering R.

2. MULTIVARIATE STOCHASTIC DOMINANCE

The authors have discussed stochastic dominance for decision problems
with multiple attributes in their previous paper (Nakayama and others, 1981).
Repeating the result, two approaches to multivariate stochastic dominance

are possible:
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The one is based on a direct consideratjion of the decision maker's

attitude toward risk in multiattribute cases. Let X-Xl xX, for simpli-

2

city. 1f for amy x and Y, with x <y1 and x <y2, a deci-

1" 20 Ny 1 2
sion maker prefers the risky alternative which gives an even chance for
(xl,yz) and (yl,xz) to the one which gives an even chance for (xl,xz)

and (yl.yz). then his preference is said to be multivariate risk averse

(Richard, 1975). Then stochastic dominance for multivariate risk aversion

> .
MRA is defined by

Foup, 6 1ff Eu,F) > E@,0 Vucumu‘,

where ﬂm denotes the set of all multivariate risk averse utility func-

tions. Under the termimology, we have the following:

Theorem 2.1 Let F(xl,xz) and G(xl,xz) be two probability distribu-

tion functions absolutely continuous on Ri - {(xl,xz) € R2| %20, x,2 0}

with }‘l(xl), Fz(xz) and Gl(xl), Gz(xz) as marginals. Suppose that
utility functions under consideration u(xl,xz) are smooth enough and
xlzl.m u(xl,xz) exists for each i=1,2. Then if the decision maker's

{0

preference 1s increasing over outcomes,

2
F >MRA G iff F(xl,xz) < G(xl,xz) for all (xl,xz) 3 R+ .

(proof) See Levy and Paroush (1974) and Nakayams and others (1981).

As 8 special case, if the utility function u(xl,xz) is of an additive

form u(xl.xz) -vlul(xl) +u2u2(x2), for example, if the attributes Xl and

Xz are probability independent, then

Y
F e G ({ff rl(x1> < Gl("1) x, € [0,=)

and  F,(x,) < G,(x,) Y x, € [0,%).

In the above approach to multiveriate stochastic dominance, we have

a drawback that it is not so easy to check the condition of multivariate
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risk aversion in cases with more than two attributes. ©Now turn to the
other approach to multivariate stochastic dominance via value functioms.
Since it is often difficult for decision makers to answer their
preferences over lotteries, several researchers have been recently trying
to use value functions more actively. As is well known, messurable value
functions, which are assessed by the information on the intensity of pre-
ference without using any lotteries, are originally valid for decision
making under certainty. However, by making use of them as inputs to utiliry
functions, several merits appear in risky situations (Bell,1981; Bodily,
1980; Keeney and Raiffa, 1976). When we have only partial knowledge about
a8 multiattribute value function v(xl,...,xn) and a utility function over
the value u(v), stochastic dominance is introduced in & similar way to

univariate stochastic dominance.

Definition 2.1 Letting v(0,...,0)=0 and u(0)=0,

u = - t M n -
3 {u=u(v)| u'>0, av/axi>0, (xl,...,xn)eR+ and i=l,...n}

2[* s - " " 2 2 \4 n
3 {u=u(v) | ueﬂl, u" <0, 9 v/axi<0, (xl....,xn)cR+.
i=1,...,n}.

As is well known, the condition of Bzvlaxi <0 weans decreasing
marginal value. Therefore, when the value v 1is increasing over outcomes
and its marginal value of each artribute is decreasing, then risk aversion
utility function over v forms the class 05.

Although the followings will be conceruned with X-Xl "Xz for simpli-
city, the results can be easily extended to more general cases with X-=Xl
x X xn N

Definition 2.2 Cumulative distributions over X=X, XX, are given by

2

F(v) = Problv(x,,x,)) sv] = j: inl(vz(v,xl)lxl)dfl
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where vz(v,xl) is the solution of xz to v(xl.xz) =v. Then the expected

utility is written by

2 Vo e
E(u(x),%,), Flxy,x)) = [ofg uwlax)d Flxp,x)) =[5 u(wdF).

Definition 2.3
F(xl,xz) > G(xl,xz) iff E(u(xl,xz),F(xl,Xz))

v
> E(u(x),%,),6(x;,2,)), v ¥,

Note here that F(xl,xz) >i* G(xl,xz) is equivalent to F(v) i G(v).
Then multivariate stochastic dominence via value functions can be summarized

as follows:

Theorer 2.2 (Huang and others, 1978; Tekeguchiand Aksshi, 1981)
1f

(a) Gl(xl) > Fl(xl) for ell xl e [0,=)
2
() Bcz|l(x2|xl)/3xl < 0 for all (xl,xz) € R.

2
jx) for all (xl,xz) € R,

() Gz|1(x2|xl) > F2|1(x2 1

then

F(xl,xz) >l* G(xl,xz).

As to the second degree dominance, if

(a') Gl(xl) > Pl(xl) for all x, ¢ [0,=),

1

. 2
(b*) anll(x2|‘1)’a*1 <0 for all (x,,x,) € R,

(c") Ixz G

X2 2
o S211 (t[xl)dt > IO Pzil(t[xl)dt for all (x),x,) ¢R,

F(x),%,) >,, 6(x,%,).

It is not so easy in general to check the conditions of Theorem 2.2

for joint distributions in multiattribute cases. For normal distributions,
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which appear commonly in practical problems, we can invoke to the following

2 2
equivalent conditions. Now we expand the domain X from R+ to R".
Theorew 2.3 Let u, 0, p denote respectively the mean value, the

standard deviation and the corelation coefficient. If the distributions

2

F and G assessed by the bivariate normal distributions N(ur , uF . OF ,
1 2 1

2 2 2
p > o}.) and N(uG s U ccz, oGZ, oG), respectively, then we have

2 1 2

(1) the FSD conditions (a), (b) and (c¢c) of Theorem 2.2 are equivalent to

(2.1) c. =0_., O, =0. , W

zU » P ™ P zorand
2 106 T

op (Mn ~u. ) + oo (M. =ng ) 20,
F R, Y, FF, M6, “rl
(i1) the SSD conditions (a'), (b') and (c¢') of Theorem 2.2 are equivalent to

(2.2) 0 F.80c» Wp 2Yg . Pp=0;20, and
<

1 1 2 2 1

o, (0. U, =6 u. ) +p0_0. (M. =1 ) 2 0.
F,76,°F, F,76, F'F, G, G, rl

(proof) The marginal distribution function and the conditional distri-

bution function of bivariate normal distribution G are respectively given

by
r(xl-ucl)/ccl 1 1 .2
2. - —_— - =
(2.3) Gl(xl) | e exp( 2t Ydt
and
2-Mc(x1)
S —
‘ /l—oé %
2 1 1l 2
(2.4a) Gzll(lexl) - — exp(- 5 t7)dt
-l
where

(2.4b) MG(xl) =y \ + p.0_ (x -uG /o
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Fl(xl) and F2|1(x2|xl) are similarly given. It follows immediately

from (2.4) that

2
i Y
3,1, (xpix)) .. °c (x) - K (x1))

{-
ax —_——— == 2. 2
1 /éﬂ(l-pé) 2(l-pG)cGz

Hence, both conditioms (b) and (b') of Theorem 2.2 are equivalent to

(2.5) Pe 0.

By the relatiom (2.3), we have
(=M L
| 1.2
(2.6) Gl(!l) - Fl(xl) = E exp (-—2't )dt
(x, =L
1 Fl)/orl

In the right hand side of (2.6), the integrand is non-negative and both
upper and lower bound of the interval of the integration are linear with

respect to X,, and therefore both conditioms (a) and (a') of Theorem 2.2

1

are equivalent te

xl - UGl xl - U}.l
2.7) 5 - S 2 0 for all x| €R,
G F
1 1
that is,
(2.8) G, =0. , o 2k
LY %

From the relatiom (2.4a), we have

xz-lic(xl)

{
‘ /{—pz %
; 1 1l 2
- = — -t dt .
(2.9) Gzll(lexl) I-‘zll(x2|xl) P exp (-5 t7)
xz-M.F(xl)

/l-cé c?2
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The integrand of (2.9) is a non-negative and even function. Furthermore,
both upper and lower bound of the interval of the integration are linear

with respect to x Therefore, the conditions (c¢) and (c¢') of Theorem 2.2

2

are respectively equivalent to the following relations:

Y 1-0(2; [+

62 F F2
(2.10)
M?(xl) b3 MG(xl) for all 3 €R
and
FoT e, 2 oy
2 2
(2.11)

/1 cG o Mr(x )Yl oF nc(x1 for all x, ¢R

Moreover, from (2.4b), the relatioms (2.10) and (2.11) are respectively

equivalent to

( /1-_0 ./1.—
|

(2.10") - O, O, = g 0_ C
\ 66, F, F°F, G
Ve o, (Mp =h. ) +p.Cp 0 U, -
F PO~ Op U 20
L6 “rz , 6°F,%, e, T Pr% °rMF,
and
7
Vii- >v/l-c o]
F
2
2
' - -
(2.11Y) /& fc Pr% V1 €r g%
1 1
/1-

2 2
p. Cp Up = /&—p O k. ) + 0. 0. (V1-p_ o.Uu. /O
G G2 Fz F F2 Gz F2 62 F G Gl Gl

2
-./1-0 gk /0.) 2 0.
G FFFy
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Hence, the relation (2.1) is obviously derived from the relations (2.5),

(2.8) and (2.20'). Similarly, the relation (2.2) follows from the relations

(2.5), (2.8) and (2.11'). This completes the proof. ]
Remark 2.1 In particular, if the attributes X; and X2 are uncorelated,

that is, py- oG- 0, then the relations (2.1) and (2.2) are reduced respec-
tively to the followings;

(4) [PSD} o, =c., Op =C. , SHp » Mp 2Ha s
FU%6 O, "%, Br f¥er MRy fYe

and

(414) [SSD]) ©p =0., O §0., Uy 2U. , Mg On 2U. Co .
T L R R e ST I I T

In other words, the condition (i) implies that when the decisiom maker's
preference is strictly increasing over outcomes, alternatives with larger
wean values are more preferable in the set of altermatives with an equal
standard deviation. The condition (ii) means that when the decision maker's
preference is strictly increasing over outcomes and risk averse,

(a) 1if the ratio of the standard deviatioms o /cF is nearly equal to 1,

2 2

alternatives with their standard deviations smaller and their mean values

larger are more preferable,

(b) 1if the ratio OG /cF is considerablylarger than 1, altermatives with
2

their standard deviations smaller are more preferable even if their mean

values are more or less smaller.

3. [EXAMPLES

The following example shows how effectively the set of alternatives
can be narrowed down by stochastic dominance.
First, we selected 121 stocks from those traded on the Japanese Stock

Exchange. Our aim is to find the optimal diversification investment for
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a combination of some of these 12]1 stocks. The annual rate of return Rt

for each stock is given by the following formula:

(P, ~-P )+Dt

(3.1) Rt-% for t=1969,---,1980,
t-1

where Pt denotes the stock price at the end of the period t and Dt
represents the dividend in the period t. Let :x,i (i=1,2,:--:,12) be
variables of Rt relabelled from smaller values to larger ones. Assume
that the relative frequency of Rt is 1/12, that is, the frequency function

f(xi) is given by
(3.2) f(xi) = 1/12 for all i=1,...,12.
Therefore, the distribution function Fl(xk) (k=1,...,12) 1is given by

1 k
(3.3) F(x) = 5 f(x)  for k=1,...,12.

Moreover we have

k
z

2 1
(3.4) F (xk) = , (xi-xi_l)r (xi-l) for kel,...,12

=1

(3.5) Pa) =2 ¥ o ox, OFa)+F(x, ] for k=1l 12
: N T2 40 T XA 1 i-1 e Rt

Gl(xk), Gz(xk) and G3(xk) are given in a simiiar fashion.

Stochastic dominence was applied in order tc narrow down the original
set of alternatives. The number of the efficient alternatives by FSD is
88 (reduction rate: 27.3 per-cent), that by SSD, 14 (reduction rate: 88.4
per-cent) and that by TSD, 1l (reduction rate: 90.9 per-cent). According
to the result, we can see that FSD does not help the investor very much.
It seems to be because the knowledge of his preference is too coarse.

SSd and TSD, however, reduce the number of efficient alternatives effec-
tively enough to our aix. The optimal diversification may be made among
these reduced efficient alternatives. To do this, we are trying to use

an interactive optimizatioun technique. The details of our experiment will

be presented in a separate paper.
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4. CONCLUDING REMARKS

Stochastic dominance seems to play the most effective role in group
decisions. As 1s well known, eveu if we accept the existence of the group
utility function theoretically (see, for example, Keeney,1976), the inter-
personal comparison of utilities is indispensable for practical assessment
of the group utility function. This seems to be a fatal drawback of the
utility approach to group'decisions. However, note that there are many
practical cases in which we can know some qualitative characteristics of
the group utility function. Once the group utility function-appears to be
of some class discussed above, we can reduce the set of alternatives by
using -the corresponding stochastic dominance. It is clearly easier for
members of the group to discuss their opinions based on the reduced set
of alternatives. More detailed discussion on the applicability of

stochastic dominance to group decisions can be seen in Nakayama and others (1981).

REFERENCES

Bell, D. E. (1981). Components of Risk, Proc. IPORS Meeting, Ramburg.

Bodily, S.E. (1981). Stability, Equality, Balance and Multivariate Risk,
Proc. IV Conf. on MCDM, Delaware, Springer.

Fishburn, P.C. (1975). Stochastic Dominance: Theory and Applications,
The Role and Effectiveness of Theories of Decision in Practice, ed. by
D.J. White and K.C. Bowen, Hodder and Stoughton.

Huang, CC., D. Kira and I. Vertinsky (1978). Stochastic Dominance Rules
for Multiattribute Utility Functions, Rev. Economic Studies, XLV,
611-615.

Keeney, R.L. (1976). A Group Preference Axiomatization with Cardinal
Utility, Management Sci., 23.

Keeney, R.L. and B. Raiffa (1976). Decisions with Multiple Objectives:
Conflicts and Value Trade-offs. Wiley N.Y.

levy, B. and J. Paroush (1974). Toward Multivariate Efficiemcy Criteria,
J. Economic Th., 7., 129-142.

Nakayama, H., T. Tanino and Y. Sawaragi (198l). Stochastic Dominance for
Decision Problems with Multiple Artributes and/or Multiple Decision=-
Makers, Preprints of IFAC Congress, Kyoto, Pergamon.

Richard, S.F. (1968). Multivariate Risk Aversion, Management Sci. 22. 12-21.

Takeguchi, T. and H. Akashi (1981). Decision Makimg by Stochastic Dominance,
Proc. JAACE Meeting, Kyoto, (in Japanese).







INTERACTIVE MULTIOBJECTIVE DECISION MAKING BY
THE FUZZY SEQUENTIAL PROXY OPTIMIZATION
TECHNIQUE AND ITS APPLICATION TO INDUSTRIAL
POLLUTION CONTROL

M. Sakawa' and F. Seo®

! Department of Systems Engineering, Kobe University, Japan
2Kyoto Institute of Economic Research, Kyoto University, Japan

Abstract

A nev interactive multiobjective decisionmaking technique, which is
called the sequential proxy optimization technique (SPOT), has been proposed
by the authors. Using this technique, the preferred solution for the
decisionmaker can be derived efficiently from among & Pareto optimal solution
set by assessing his marginal rates of substitution and maximizing the local
proxy preference functions sequentially. In this paper, considering the
imprecise nature of decisionmaker's judgements, techniques based on fuzzy
set theory are incorporated into the algorithm of SPOT. On the basis of the
decisionmaker's marginal rates of substitution presented in a fuzzy form,
which can be interpreted as type L-R fuzzy numbers, the revised version of
SPOT called the fuzzy sequential proxy optimization technique (FSPOT) is
presented. Based on the algorithms of FSPOT, & time-gharing computer program
is also written in FORTRAN to implement man-machine interactive procedures.
The.industrial pollution control problem in Osaka City in Japan is formulated
and the interaction processes are demonstrated together with the computer

outputs.
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1. Introduction

During the last few years, numerous methods related to multiobjective
optimization and decisionmaking have been proposed [1-3}, [7], [9-13}],
[17], [19), (20-25]), [27], [31-32}. The excellent survey paper of Cohon
and Marks [3] and, more recently, that of Wierzbicki [27] are devoted to
a comparative evaluation of existing techniques; among them two competitive
methods, namely, the multiattribute utility fumction (MUF) method [13]
and the surrogate worth trade—off (SWT) method [10, 11] use global and
local utility (preference) modelling respectively.

The MUF method developed by Keeney et al., global utility function
modelling, uses two assumptions of preference independence and utility
independence to limit the utility function to specialized forms. These
global functions are mathematically simple and convenient, but they have
a drawback. The assumptions are reasonable locally, but when assumed
globally, they are very restrictive and may force the decisiommaker (DM)
to fit a function not truly representing his or her preferences.

The SWT method developed by Haimes et al., based on local utility
function modelling, provides an alternative approach that avoids the
restrictive assumptions. Instead of specifyimng the utility function
globally, their procedures construct & sequence of local preference
approximations of it. The SWI method uses the e-constraint problem as &
means of generating Pareto optimal solutions. Trade-offs among objectives,
whose values are expressed by values of strictly positive Lagrange
multipliers, are used as a medium. The DM responds by expreaéing his
degree of preference over the prescribed trade-offs and by assigning

numerical values to each surrogate worth function. This method guarantees

the generated solution in each iteration to be Pareto optimal and the DM

can select his preferred solution from among Pareto optimal solutions.
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However, the original version of the SWI method is noninteractive and
several improvewents, particularly in the way that the information from
the DM is utilized, have been made [2)], [25].

Recently, Sakawa [20] has proposed a new interactive multiobjective
decisionmaking technique, which was called sequential proxy optimization
technique (SPOT), by incorporating the desirable features of the conventional
multiobjective decisionmaking methods. In his interactive on-line
scheme, after obtaining a Pareto optimal solution, the marginal rates of
substitution (MRS) assessed by the decisionmaker are used to determine
the direction to which the utility funciton increases most rapidly. The
local proxy preference function is updated to determine the optimal step
size and Pareto optimality of the generated solution is guaranteed. The
time-sharing computer program for this interactive procedure was also
written in FORTRAN and was called ISPOT (interactive SPOT) [21, 22]. It
was designed to facilitate the interactive processes for computer-aided
decisionmaking and implemented on the ACOS~6 time-sharing system at the
Kobe University, Japan.

SPOT requires & great number of precise MRS estimates of the DN,
but it is & guestion whether the DM can respond with precise and comsistent
values of MRS through the whole searching processes because the DM's
actions are often erratic, ipconsistent due to the imprecise nature of
human decision processes. Although by performing MRS consistency test
some of this erratic behaviour is usually reduced, it is required to

cope with the imprecise nature of DM's judgements.

In 1980, Baptistella and Ollero [1] proposed two different fuzzy
interactive decisionmaking methods for multiobjective convex problem
with linear comstraints using the fuzzy set theory [4-~6], (8], [28-30].
In their method, after reformulating the multiobjective convex problem

into the equivalent scalar optimization problem using the classical
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weighting method, the weighting vector is updated through the interaction
with the DM in a fuzzy form. In the first method, they assumed that the
DM can estimate in an approximate numerical way his local MRS between
objectives; in the second one they assumed that the only disposable

iterms of information are linguistic ones. Their methods emable wus to
consider in an efficient way inaccuracies, inheremt in the DM's judgements,
but concerning their interactive algorithm called basic algorithm some
improvements, particularly in the way of generating Pareto optimal
solutions as well as updating the weighting vector, must be made.

In this paper, considering the imprecise nature of DM's judgements,
techniques based on fuzzy set theory which are similar to the first
method of Baptistella and Ollero are incorporated into the algorithm of
SPOT. On the basis of the DM's MRS presented in a fuzzy form, which can
be interpreted as type L-R fuzzy numbers [4-6), the revised version of
SPOT called the fuzzy sequential proxy optimizarion technique (FSPOT) is
presented. Based on the algorithm of FSPOT, a time-sharing computer
program is also written in FORTRAN to implement man-machine interactive
procedures. Then the industrial pollution control problem in the
industrialized areas near Osaka City is formulated. The problem is to
allocate production factors (capital and labour) tc each industry in
such a way that industrial output, chemical oxygen demand (COD) and
sulphur dioxide (802) are optimized subject to reaource, technical and
frictional constraints. The interaction processes using the time-
sharing computer program based on FSPOT to solve this problem are also

demonstrated along with the corresponding computer outputs.



139

2. Multiobjective Decisionmaking by the Fuzzy Sequential Proxy Optimization
Technique
The multiobjective optimization problem (MOP) is represented as:

MOP

min f(x) & (fl(x), fz(x),..., fn(x)) (1)
X
subject to
x €X = {x|x € EN, gj(x) £0, j=1,..., m} (2)

where x is an N-dimentional vector of decision variables, fl,.... fn are

n distinct objective fumctions of the decision vector x, Byreeen &, aTe

inequality constraints and X is the feasible set of constrained decisions.
Fundamental to the MOP is the Pareto optimal concept, also known as

a noninferior solution. Qualitatively, a Pareto optimal solution of the

MOP is one where any improvement of one objective function can be achieved

only at the expense of another. Usually, Pareto optimal solutioms

consist of an infinite number of points, and some kinds of subjective

judgements should be added to the quantitative analyses by the DM. The

DM must select his preferred solution from among Pareto optimal solutions.

The multiobjective decisiommaking problem (MDMP) we wish to solve is:

MDMP

max V(£ (), £,(x),.0ny £ (%)) (3)
subject to

xex (4)

where XP is the set of Pareto optimal solutions of the MOP. U(-) is the
DM's overall utility function defined on F 4 {f(x)|x € E¥} bur his
local imprecise knowledge of U(-) is assumed.

One way of obtaining Pareto optimal solutioms to the MOP is to

solve ¢-constraint problem Pl(e_l) [2), [10-12]):
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PoCe_y)
min £, (x) (5)
subject to x € X N Kl(e_l) (6)
where € 4 (52. Casenes en) (7)
xl(c_l) Iy {xifi(x) e i%2,.., n} (8)
e € By o le g X (e ) # o). 9)

0f course, any objective could be chosen as fl. Note that (9) is a
necessary condition for Pl(s_l) to have & feasible scolution.

Let us assume that x*(s_l), an optimal solution to the Pl(c_l), be
unique for the given £t € El. And let A£l be a set of €1 such that

all the t-constraint (8) are active, that is

AEl L {e € El, fi(x*(c_l)) = i=2,..., n} (10)

-1len

Then the following theorem, which is essentially same as in Payne et al.
[19] shows that the Pareto optimal solution set of the MOP coincides
with the solution set of Pl(c_l) under suitable assumptions.
Theorem 1. x* € X is & Pareto optimal solution of the MOP if and only
if x* € X is a unique solution of Pl(s_l) for some €, € AEl.

If the Kuhn-Tucker condition for problem Pl(c_l) is satisfied, the
Lagrange multiplier Ali(s_l) associated with the ith active constraint
can be represented as follows:

PR Y G DVAC T D DR CT S (11)

By taking account of Theorem 1, if the unique optimal solutions of

the Pl(c_l), x*(C_l), are substituted to the MDMP given desired levels

of ¢ | € A£l, the MDMP can be restated as the following €_

-1 -parametric

1

utility wmaximization problem.
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Bax Te_y) & U(E, [x*(e-1)], ¢ ) (12)

€1 € AR

To proceed we introduce the concept of marginal rates of substitution
(MRS) of the DM.
Definition 1. At amy point of f-(fl,..., fi""’ fn)’ the smount of fl
that the DM is willing to acquire for sacrificing an additiomal umit of
fi is called the MRS. Mathematically, the MRS is the negative slope of

the indifference curve at the f:

my () = [PU(E)/3E, 11306/, ] = ~af) /dEy gyag, af w0, 91, 1 (13)

where each indifference curve is 8 locus of points among which the DM is
indifferent.

Usually, the decision analyst assesses MRS by presenting the following
prospects to the DM.

f fn) (14)

= 'm -
f (f £), £ (fl Afl,..., fi+Af

1o g yrecce

JEERRE

for a small fixed Afl, small enough 80 the indifference curve is
approximately linear but large enough 80 the decrement is meaningful.
The analyst varies Af1 untill the DM is indifferent between f and f'.
At this level, nli(f) ¥ Afl/Afi.

Dyer proposed algorithmic procedures for approximating the MRS
through a series of ordinal paired comparisons, where the DM is required
to indicate a preference for one of two possible choices, or to indicate
his indifference between the two {7]. For the fixed decrement Afl, a
modification of the bisection algorithm is applied to the value of Afi,
decreasing Afi if the DM prefers f and increasing Afi if he prefers f'.
The process is continued until a value Aii is obtained at which the DM

is indifferent between f and f',
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In this paper, considering the imprecise nature of DM's judgements,
we assume that the DM can estimate in an approximate numerical way his

local MRS as follows: "For the fixed decrement Afl, Afi should be an

approximate number between Afimin and Afimax with the mean in the vicinity

of Afi." Denoting

&, - Afl/AEi, o = af)/M . m = af_/af (15)

limin limax 1 imin

and using the concept of fuzzy numbers and its L-R representation [4-6],

the DM's MRS can be interpreted as type L-R fuzzy numbers with mean m

11’
left and right spread parameters Ny and eli:
By " By My bygdip 32ee, m (16)
where the membership fumction u- which describes El is
B, i
fLi@ m0/ny ) e sy,
be (T) =
- - i=2,..., n (17)
1i R[ (t mli)/eli], t > m,
and
L@y =By ypyn) /My d = O
i=2,..., 1 (18)
RU®) ey Byg)/8y4] = 0
L is for left reference function and R for right reference function.
Examples of L and R functions are :
y = max (0, 1-[x|P) »p >1
y =~ exp(-jx'P) p > 1
(19)

v
—

y = 1/a+)xP) p >

y =1 ino [-1, +1], y = 0 elsewhere
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Throughout this paper we make the following assumptions.
Agsumption 1: The DM's local imprecise knowledge of U is assumed.
Moreover, U is assumed to be concave, a strictly decreasing and continuously
differentiable function on F,

Assumption 2: All £ , i=l,..., n and all gj, j=1l,..., m are convex and

1
twice continuously differentiable in their respective domains and constraint
set X is cowmpact.
Assumption 3: €4 is an interior point of AEl.

From Assumptions 1-2, the following theorem holds [20].
Theorem 2. Under Assumptions 1-2, the utility function 5(:_1) is concave
with respect to €4 € AEl.

Now, we can formulate the gradient aﬁ(c_l)/aci(i-z,..., n) of
utility function ﬁ(c_l). Applying the chain rule

aﬁ(-)/aei = W(.)/ ok, + [au(.)/aflj[afl/aci] i=:2,..., n (20)
Using the relations (l1) and (13), we have the following:
Bﬁ(')/éei - [BU(')/afll (mli-Ali) i=2,..., n. (21)

From the strict monotonicity of U with respect to fl' au(-)/afl is
always negative. Therefore Xli-mli (i=2,..., n) decide & direction

improving the values of U(-) at a curremnt point.

Under Assumptions 1-3, if the maximum is reached at an interior

point of AEl, the optimality conditions for a maximization point €_, are
aﬁ(.)/ae_1 = 0, that is
L xli i=2,..., n. (22)

This 1is a well-known result that at the optimum the MRS of the DM
must be equal to the trade-off rate.
The optimality condition (22) can be rewritten by using the square

of their normalized scalar product C defined by:

- T 2 2 2
C= Cly Aym 0L Ay Imiy) (23)
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where 51 implies the sum over i=2,..., n. Obvicusly 0 < C <1 and the
alternative form of the optimality condition is then
C=1 (24)
However, when the PM's MRS are presented in a fuzzy form as in
(15), which can be interpreted as type L-R fuzzy numbers Eli - (ili'

Ny eli)LR (1=2, 3,..., n), C in (23) becomes & fuzzy number C as follows:

T Xi )‘nﬁlz’)z/( zi )‘ii iﬁlli) (25)
Operations of (25) can be greatly simplified by using L-R representations.
The following formulae were already demonstrated by Dubois and Prade [&-
6). Given the L-R fuzzy numbers m = (m, n, B)LR and T = (n, ¥, L‘)LR,

the sun T @0 is an L-R fuzzy number, and

@, n, 8) , ® (m, b, 0) = (e, MR, Beo) (26)

The approximation formulae for product & ®0, inverse of o and quotient
E@n are

(w, n, B)LR@(n, W, U)LR ¥ (mm, wi+nn, MB)LR (27)

(@, ¥, O =@, vn ™, w (28)
(m, n, 8). ., ®(n, w, v)_, ¥ (/n (w-h'm)/nz (um+n9)/n2) (29)
s LR H] y m [ > RI_,

Using these formulae we get

SFRIE PR LRI (30)
(LA Iep™ @y, 2% (31)
where
Pl A1i7'.5.1)2 (32)
o= 20y AgEy I ANy (33)
B =20y aBy; Ly A0y (34)
Q= 1/ Ei Xii zi mii) (35)
v L *ii L2800/ )ii iﬁii)z (36)

2 - © .2 ¢ 22 .2
&= (I, 2]y Iy 2@ ny /¢ Ly 215 L B (37)
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If we assume L(x) = R(x), an approximate L-R representation to T in (25

becomes

T~ (C, », R = (pq, pr+qa, pé+aB), ¢ (38)

~ e -~
When cowmparing the fuzzy numbers C 2 and Cl, the following question
=2
may arise: what is the true~value of the assertion; " Is C greater than
== ~£
[ L 7" 1In other words, what is the possibility for C to be greater than

El-l? The truth value of the assertion Ez is greater than ER»-I' which

we write El >~1-1, defined as [4-6]
wl ~f-
v@ T o max min Cu (0)y @) (39)
B9 ( C

where ) | and ,_, , are respective membership functions of C* and Lt
o cv
This formula is an extension of the inequality p > q according to the

extension principle. It can be easily checked that [4~6)

v(cl > El_l) ~ 1 if and only if El > Ei-l (40)
v(E* < Cz—l) = height @t a El-l) - p . (d) = (d) (41)
62 El-l

where d is the ordinate of the highest intersection point D between by
c

and b 1"

Thus, the answer to the question "Is Ei greater than Ei-l?" is a
fuzzy set A of the universe {yes, nol:
A= v@E s Ty e + v(@E < ¢y /ne (42)

Now, at the ith iteration, if we adopt the mean value i{i of the

DM's MRS, the possible direction of search Sfl is given by:

2 £ -2 £ =1
S_l - ( A12 - Byyaeee Aln - mln) (43)
£ L £ £
Then we adopt (fl(:_l + uS_l), € + us_l) as a search point in the

process of linear search for the step size u. Our search point becomes

& Pareto optimal solution by solving the e-coastraint problem and the DM
can select his preferred sclution from among the Pareto optimal solutioms.
In order to determine the step size, we introduce the following local

proxy prefefence functions like oppenheimer's method {17].
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(1) sum-of-exponentials

1f [-hij(f)/afj]/mij(f) - then P(f) = -] a exp(-uf,). (44)

(2) sum—of-powers (oJ#O)
Qa
If [=om (£)/0 1/myy (£) = (L+oy)/ Qe+t ) then P(f) = -] a, (M +E)) !

(45)

vhere Hi is & constant such that M1+f1 >0, i=l,..., n

(3) sum—of-logarithms
I [~ (£)/3f,)/m (£) = 1/(M;-£,) then P(f) =] 8, WM ~f) (46)
where Hi is a constant such that Hi-fi >0, i=1l,..., n.

Although these utility functions are very restrictive globally,
they are reasonable when assumed locally. We use one of these utility
functions only as a mechanism to guide the search for the best step
size.

Following the above discussions we can now construct the
algorithm of the fuzzy sequential proxy optimization technique
(fSPOT) in order to obtain the preferred solution of the DM for the
MDMP .

Step 1. (Initialization) Choose initial point € € El and set

2= 1.

Step 2. ( Pareto optimal solution) Set €, " Efl’ solve an e-

constraint problem Pl(efl) for Efl and obtain a Pareto optimal

solution x*(tfl), a Pareto optimal value fl = (ff(x*(cfl) 'Eil )

and corresponding Lagrange multiplier Aii(i=2,..., n). If all the
t~constraints are active, go to the next step. Otherwise, replace
€ for inactive constraints by fi[x*(efl)] (i=2,..., n) and solve

the €é-constrgaint problem to obtain the corresponding Lagrange

multipliers.
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Step 3. (Assessment) Assess the MRS of the DM at f1
in & fuzzy form and choose the form of 1L and R functions in &
subjective manner.
Step 4. (Termination) 1If v(El > El_l) =1, v(‘(f1 < El_l) = 1 and
C &1, scop. Then a Pareto optimal solution ( i;[x*(cfl)], sfl) is
the preferred solution of the DM.
Step 5. (Direction vector) Determine the direction vector Sfl by
S, = Ay - By, (1m2,..., m),
Step 6. (Local proxy) Select the form of the proxy function that
will be used at each iteration, and calculate the parameters using
the mean values of the DM's MRS,
Step 7. (Step size) Change the step size, obtain corresponding Pareto
optimal values and search for three a values Gu1 Op and % which
satisfy @, <ag <a. and P(uA) < P(GB) > P(ac). where P(a) £ P(fl[x*(:f1 +
asfl)}. efl + anl). This step operates either doubling or halfing
the step size until the maximum is bracketed. Then & local maximum

of P(a) is in the neighbourhood of o = og- Set { = 2+) and return

to step 2.

Remark. Reduction of some of the incousistent behaviour of the DM is
usually accomplished by performing MRS consistency test at the various
iteration points. Twe types of consistency tests may be performed using
the mean value Eli of the DM's MRS; the first testing MRS consisténcy at
a single point, and the second testing the comnsistency at successive
poiats.

The single point test requires a second set of assessments at each
point and checks whether the MRS of the DM satisfies the chain rule,
i.e., By * By mij’ i, 3=1,..., n, 1%k, keéi, kej.

The second test checks for decreasing marginal rates of substitution

of the proxy, which 1is based on the following theorem [20).
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Theorem 3.
(1) The sum—of-exponentials proxy P(f) is concave and strictly decreasing
if and only if

a, > 0 and w, > 0, i=1,..., n (47)

(2) The sum—of-powers proxy P(f) is concave and strictly decreasing if
and only if

a, >0and a, >1, i=1,..., n (48)

i i
(3) The sum—of-logarithms proxy P(f) is concave and strictly decreasing

if and only if

a. >0, i=1,..., n. (49)

3. An Application to Environmental Problems

Consider an application of the proposed method to an industrial
area in Japan. The middle part of Osaka Prefecture is one of the most
highly industrialized areas in Japan. Osaka City, which is the gecond
largest industrial and commercial arees in Japan, contains many small
rivers which are branches of the Yodo River. The Yodo River is an
important source of drinking water for Osaka's residents, but water
pollution in the Yodo River basin has become increasingly serioue because
of the rapid industrial development since 1960. Air pollution is also
at critical level in the greater Osaks area. In addition, the water
supply capacity is limited in this area. Although the sixth expansion
progran for Osaka's public water supply increased the supply by more
than 11 percent in 1975, water shortages are still predicted for the
future. The limitations of land use in this area are obvious since it
is one of the most populous areas in Japan,.

Here we formulate the industrial pollution control problem for

Osaka City as the following three objective optimization problems:
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n
1-b b
maximi f. =
ze 1 j)-_ AjKj ijj

n

minimize £, = jzl (mlj/kj) Kj

n
minimi f. =
nimize  f, le oy /) Ky

subject to

where

3

K
3

KJO

30

W, .
ij

i3

n
j%l(vij/kj) Kj =Ty (1=1,2)

I ]

q, < ( K, /( L) <gq
2 jm1 3 L 1
ak < K, < BK

Jo="3-"30

u'LJo _<_LJ < B'Ljo

an industry (j=1,..., 20),

(50)

(51)

(52)

(53)

(54)

(55)

(56)

capital value (book value of tangible fixed assets) in industry j,

actual capital value in industry 3,

number of employees in industry j,

actual number of employees in industry j,
unit load of chemical oxygen demand (COD) (i=1)

(502) (i=2) per industrial shipments in industry j,

sulphur dioxide

resource coefficient for land (i=l) or water (i=2) per industrial

shipments in industry j,

capital coefficient, namely capital value per unit of shipments

in industry j,

restriction for land (i=l) or water (i=2),
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9 upper (i=l) or lower (i=2) bound for the overall capital
intensity (ratio of total capital value to total number of employees),
bj, Aj parameters of the production function for each industry j, and

g,a', B’ parameters which represent friction (resistance) in

> ] ’

the transfer of capital and labour.

The objective function f. is & Cobb-Douglas type of production

1
function which is homogeneous of degree one and thus if to each factor
the value of its marginal product is paid, total output is distributed
between capital and labour in the production l-bj and bj’ respectively.
This value should be maximized 8o as to increase the totsl production.
The objective function fz is the total amount of COD and should be
minimized so as to decrease the water pollution. The objective function
f3 is the total amount of SO£ and should be minimized so as to decrease
the air pollution. Comstraints (53) are resource constraint, each of
which is land or water resource constraint. Comstraint (54) is the
technical comstraint which shows capital intensity as & whole. This has
been utilized to indicate the direction of technological changes occurring
as 8 result of the reformation of the industrial structure in each
region. Constraints (55) and (56) are frictional constraints: because
drastic changes in the industrial structure are nct desirable, frictional
coefficients are imposed to provide upper and lower bounds for each
decision variable. The problem is to find the optimal allocation of
production factors (capital and labour) to each industry under coastraints
(53) ro (56).

The resource restrictions [, and I, in the constraints (53) were

1 2

assumed to be I, = 232,200, T, = 200,000. The parameters q, and q, were

2

supposed to be 1.4 and 0.9 respectively. The parameters for capital and
labour, a, o', and £, B', were assumed to be S = ' « 0,903, B= B8 =

1.070. The parameters for Aj, bj' kj and wij' Yy are shown in Table 1
o
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and Table 2, respectively. The code numbers of the industrial classification
are explained in Table 3. The sources for these data have beer obtained
mainly from the Statistical Office of Osaka Prefecture [26), the Ministry

of Interpational Trade and Industry [16], and the Osaka Bureau of Trade

and Industry [18].

Table 1. Calculated Values of Parameters A ,, b

3* 3 J
Industry Aj bj kj
1 10.9000 0.1145 0.1195
2 8.6200 0.1391 0.1160
3 15.3900 0.1566 0.0716
4 6.1000 0.1779 0.1599
5 9.9900 0.1723 0.0926
6 5.4600 0.1540 0.1868
7 7.2200 0.2291 0.1824
8 7.9100 0.1294 0.1400
9 6.7300 0.1479 0.1735
10 9.5200 0.1737 0.1125
11 15.2200 0.1445 0.0670
12 6.1300 0.1865 0.1926
13 6.4900 0.1216 0.1746
14 8.1800 0.0870 £.1077
15 6.8500 0.1981 0.1486
16 7.4300 0.2000 0.1659
17 9.6700 0.1588 0.1020
18 7.3600 0.1841 0.1491
19 7.0000 0.2107 0.139
20 8.4700 0.1677 0.1228
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Table 2. Calculated Values of parameters «, 6.  and Y

13 i3
Industry
cop SO2 Land Water
1 0.07875 0.00822 0.0244 0.0407
2 0.03111 0.02235 0.0718 0.1292
3 0.03110 0.02235 0.0219 0.0072
4 0.00142 0.00076 0.1024 0.0324
5 0.00142 0.00076 0.0244 0.0121
6 0.21680 0.06751 0.0487 0.1564
7 0.07133 0.05218 0.0105 0.0154
8 0.07133 0.05218 0.0429 0.0599
9 0.03466 0.01505 0.1461 0.0212
10 0.02592 0.00413 0.0553 0.0549
11 0.02592 0.00413 0.0468 0.0542
12 0.00198 0.07963 0.1087 0.0617
13 0.00587 0.02136 0.0773 0.0562
14 0.00084 0.03055 0.035¢4 0.0373
15 0.00116 0.00778 0.0589 0.0293
16 0.00083 0.00340 0.0464 0.0129
17 0.00105 0.00243 0.0235 0.0133
18 0.00073 0.00116 0.0702 0.0267
19 0.00367 0.00228 0.0451 0.0324
20 0.00864 0.00228 0.0354 0.0258
Table 3. Classification of lIndustries
Code Industries Code Industries
1 Foods 11 Leather products
2 Textile mill products 12 Clay and stone products
3 Apparel products 13 Iron and steel
4 Lumber and products 14 Nonferrous metals
S Furnitures 15 Fabricated metal products
6 Pulp and paper products 16 Machinery
7 Printing and publishing 17 Electrical machinery
8 Chemicals and products 18 Transportation equipment
9 Coal and petroleum products 19 Precision machinery
10 Rubber products 20 Miscellaneous
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Let us now choose f. as our primary objective and formulate the

1
corresponding €-constraint problem Pl(E_l), where the sign of fl is

changed to reflect the maximization process.

Pl(c_l)
n
min -f, = - ) AKPy 1Y (57)
1 yo1 33 3
subject to
-ng (u /ky)Ky 20 £22,3 (58)
n
T, - ) A /k YK, 20 im=1,2 (59)
i 3
i=1
¥ 3 (60)
9, . L. K, 20 0
lJ_l J 4=1 J
i i
K, - g L, 20 (61)
- J 2 j-l J

and (55), (56).
For illustrative purposes, we shall assume that the DM's structure
of preference can be accurately represented by the utilicty function

U(f £3) where

ll le

V() = -(£,+5350000)%-1000(£,-140000) 2-5000(£ ,~101000) (62)
However, it should be stressed that the explicit form of utility
function as in (62) is used purely for simulating the responses of the
DM. To be more specific, for the assessment decrement Afl, the values

for Afi, af and Af are simulated by solving the following equations.

U(f1+Af1,..., fi-nfi...., fn) - U(fl, frreeny fn) (63)
UCE =BF ) ooy E40E Ly, £ = UGE), £queen, £1) + 8, (64)
U(fl-Afl,..., fi+A£I ey fn) =- U(fl. fz,..., fn) - 64 (65)
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Where the tolerance 6& is & prescribed positive number. Concerning
L and R functions, max (0, 1l-|x|) is choosed in a subjective manner.

In Fig. 1, the interaction processes using the time-sharing computer
program under TSS of ACOS-6 digital computer in the computer center of
Kobe University in Japan are explained especially for the first iteration
through the aid of some of the computer outputs. In this interaction,
the initial values of decision variables, x 2 (Kl,..., KZO’ Ll""’

. 1
), are set to be the lower bounds of them, the initial values of €

L0 1

_—

”
<

cé) are choosed to be (144000, 103000) by taking account of the
calculated individual minimum and maximum of fz and f3. Furthermore,
the assessment decrement Afl meaningful to the DM is assumed to be Afl =
1000 and the value of 6‘ is set to be 20000000.

Pareto optimal solutions are obtained by solving the e-comstraint
problems using the revised version of the generalized reduced gradient
(GRG) [14] program called GRG2[15]. 1o GRGZ there are two optimality
test, i.e.:

(1) to satisfy the Kuhp-Tucker optimality conditions,
(11) to satisfy the fractional change conditiom

|F¥ - OBJTST| < EPSTOP * |OBJTST]

for NSTOP times comnsecutive iterations. FM is the current objective

value and OBJTST is the objective value at the start of the previous

one dimentional search. NSTOP has a default value of 3.

In Fig. 1, it is shown that one of these conditions are satisfied.
After testing whether the trial point obtained at ITERATION 1 is
optimal or mot, the direction vector is determined and the same procedure
continues in this menner, where the sum—of-logarithms proxy preference

function is selected through the whole searching process.

In this example, at the 3rd iteration the termination criteria is
satisfied and the preferred values of the objectives and decision variables
are shown in Fig. 2. CPU time required in this interaction processes

was 79,56 seconds under TSS of ACOS-6 digital computer.
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INPUT NUMBER OF OBJECTIVES :

=3

LLOWER
1
5)
Q)
13>
17>
212
5
29,
33
37,

UPPER
1)
5)
Q)

133
172
21
25)
29
33
37

BOUNDS ON VARIABLES ARE

INITIAL X IS

1)
5)
)

13
17O
21)
25)
29
33
371

Interactive Decision Making Processes

0.285790E+05 2) 0.207490E+05 3) 0.913200E+04 4> 0.121700e+05
0.774800E+04 &) 0.334030E+05 7) 0.682540E+05 8) 0.780470E+05
0.180900E+D4 10) 0O.466000E+04 11) 0.339900E+04 12) D, 140290E+05
D.975460E+05 14) D.259580E+05 15) 0.680240E+05 16) 0.736230E+05
0.276980E+05 18) 0.3Z7640E+05 19, 0.413300E+04 207 0.237160E+05
0.203490E+05 22) 0.158200E+05 23» 0.1633Z0E+05 24) 0.743700E+04
0.747100E+04 26) 0.144830E+05 27) 0.396820E+05 28) 0.308440E+05
0.747000E+03 30> 0.378800E+04 31) D.497700E+04 32) 0.764900E+04
0.261520E+05 34) 0.916200E+04 35> 0.476270E+05 36 0.472740E+05
0.241400E+05 38) 0.167910E+05 39) 0.374500E+04 40, 0.204970E+05
BOUNDS ON VARIABLES ARE
0.338560E+05 2) 0.245800E+05 37 0.108180E+05 4) 0.144170E+05
0.917800E+04 6) 0.395710E+05 7, 0.808560E+05 8) 0.924560E+05
0.214300E+D04 10) O.552000E+04 11) 0.402600E+04 12) 0.166190E+05
0.115555E+06 14> 0.307510E+05 15) 0.805830E+05 16} D.872160E+05
0.328120E+05 18) 0.388130E+05 19) 0.489600E+04 20 0.280940E+05
0.257830E+05 22 D.187400E+05 23) 0.193470E+05 24) 0.8841000E+04
0.885100E+04 26) D.171570E+05 27> 0.470080E+D5 28) 0.3465390E+05
0.885000E+03 30> 0.448700E+04 31) 0.589600E+04 32) D.906200E+04
0.309800E+05 34) 0.108530E+05 35) 0.564200E+05 365 0.560020€+05
0.285970E+05 38) 0.198910E+05 39 0.443700E+04 40) 0.242800E+05
NO UPPER BOUNDS ON INEGUALITY CONSTRAINTS
0.28579DE+05 =) 0.207490E+05 3> 0.913200E+04 4) 0.121700E+05
0.774800E+04 6) 0.334030E+05 7) 0.682540E+05 8) 0.78D0470E+05
0.180900E+04 10) 0.466000E+D4 11> 0.339900E+04 12) 0.140290E+05
0.975460E+05 14) D.259580E+05 15) 0.680240E+05 160 0.736230E+05
0.276980E+05 18) 0.327640E+05 19> 0.413300E+04 20) 0.237160E+05
0.203490E+05 22> 0.158200E+05 23> 0.163320E+05 24) 0.743700E+04
0.747100E+04 26) 0.144830E+05 27> 0.396820E+05 28> 0.308440E+05
0.747000E+03 30> 0.378800E+D4 31) 0.497700E+D04 32 0.764900E+D4
0.261520E+05 34) 0.916200E+04 35) 0.476270E+05 346) 0.472740E+05
0.241400E+05 38) 0.167910E+05 39> 0.374500E+04 40> 0.204970E+05
INDIVIDUAL MINIMUM AND MAXIMUM
1 MIN 1 MAX

F(1) 1 -0.50209829€+07 1 -0.45931085E+07

F(2) 1 0.14327542E+06 1 0. 16291024E+06

F(3) 1 0.10174714E+06 1 0.11416334E+06

INPUT INITIAL VALUES OF EPSILONS ( EP(1):1=2+3
=144000.

103000.

) :
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DO YOU USE IDEAL DM ? (YES OR NO) ¢
=YES

WHICH METHOD DO YOU USE TO SIMULATE MRS ? ( 1y 2 OR 3 ) ¢
1 DIRECTLY BY DEFINITION
Z MRS SUBROUTINE THROUGH A SERIES OF ORDINAL COMPARISON
3 IN A FUZZY FORM

=3

PARETO OPTIMAL SOLUTIOGN FOR INITIAL EPSILONS
( KUHN=-TUCKER CONDITIONS SATISFIED )

1 F(1) = ~D.48677483E+07
z F(2) = 0.14400000E+06

EP(2) = 0.14400000E+06

LAGRANGE MULTIPLIER = 0.30927132E+0Z
3 F(3> = 0.10300000E+06

EP(3) = 0.10300000E+06

LAGRANGE MULTIPLIER = 0.32025648E+0Z

INPUT DECREMENT DF (1) :
=1000.

INPUT DELTA4 :
=20000000.

INPUT INCREMENT DF(2) IN A FUZZY FORM.
NAMELY,» DF(Z) 1S A FUZZY NUMBER BETWEEN DF (2)MIN AND DF (2)MAX
WITH THE MEAN IN THE VICINITY OF DF (Z)MEAN

= 116. 119. 121.

INPUT INCREMENT DF(3) IN A FUZZY FORM,

NAMELYs DF (3> IS A FUZZY NUMBER BETWEEN DF (3)MIN AND DF (3)MAX
WITH THE MEAN IN THE VICINITY OF DF(3)MEAN

= 47. 48. 49.

L-R FUZZY NUMBER C(1) 1S
C(1IMEAN = 0.835794807e+00
LEFT SPREAD PARAMETER = 0.70394781E -01
RIGHT SPREAD PARAMETER = (.70394187E-01

<ITERATION 1>

DIRECTION VECTOR TO UPDATE EPSILONS 1S
S(2) = 0.22500927E+0z
S(3) = 0.11021009E+0Z

INPUT INITIAL STEP S1ZE ( ALFD > :

=1,

YOUR MARGINAL RATES OF SUBSTITUTION ARE :
M(1+2) = 0.84262046E+01
M(113) = 0.210D4639E+0C
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SELECT LOCAL PRQOXY PREFERENCE FUNCTION ( 142 OR 3 1 ¢
1 SUM OF EXPONENTIALS

pes SUM (OF POWERS

3 SUM OF LOGARITHMS

=3

INPUT VALUE OF M(I1) SUCH THAT M(1)>=F(13>0 (1=1,3) :
=0. 147000. 107000.

LOCAL PROXY PREFERENCE FUNCTION

P(F)=
+ 0.10000000E+01#L0OGt 0. -Fc1))
+ 0.51930816E-02#L0G( 0. 14700000E+0&~F (2)>
+ 0.17260251E-01#L06¢ 0. 10700000E+06-F (3) )

PARATE OPTIMAL SOLUTION (ALF=0.100E+01)
¢ KURN-TUCKER CONDITIONS SATISFIED >

1 F(1) = —0.48687964E+Q7
2 F(z) = 0.1464402250E+06

EP(Z) = 0.14402250E+06

LAGRANGE MULTIPLIER = 0.30850401E+0Z
3 F(35 = (0.10301102E+06

EP(3)> = (0.10301102E+06
LAGRANGE MULTIPLIER = 0.32043529E+0Z

PARATE OPTIMAL SOLUTION (ALF=0.200E+01)
( KUMN-TUCKER CONDITIONS SATISFI1ED )

F(1) = —0,48698429E+07
=z F(2) = 0.14404500E+06
EP(Z) = (.14404500E+06
LAGRANGE MULTIPLIER = 0.30774908E+0Z2
3 F(3) = 0.10302204E+06
EP(3) = 0,1030Z204E+06
LAGRANGE MULTIPLIER = 0.,32061074E+02

INPUT THE MAXIMUM STEP S1ZE (ALFMAX)
=1000.

P(F)> 1S INCREASING i STEP SI1ZE WILL BE DOUBLED
PARETC QPTIMAL SOLUTION (ALF=0.400E+01>
( KUHNN-TUCKER CONDITIONS SATISFIED »

1 F(1) = -0.48719316E+07
2 F(2) = 0.14409000E+Q6

EP(2) = 0.14409000E+06

LAGRANGE MULTIPLIER = 0.306274846E+02
3 F(3) = 0.10304408E+06

EP(3) = 0.103D4408E+0¢

LAGRANGE MULTIPLIER = 0.32095189E+02
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P(F)» 1S INCREASING i STEP SIZE WILL BE DOUBLED
PARETO OPTIMAL SOLUTION (ALF=0.800E+01°
¢ KUMN-TUCKER CONDITIONS SATISFIED

F¢1) = —0.48760508E+07
= F(Zy = 0.14418001E+06

EP(Z) = 0.14418D01E+D6

LAGRANGE MULTIPLIER = 0.28823283E+02
3 F(3) = 0.10308817E+06

EP(3) = (0.10308817E+06

LAGRANGE MULTIPLIER = 0.32578238E+0Z

P(F) 15 INCREASING § STEP SIZE WILL BE DOUBLED
PARETO OPTIMAL SOLUTION (ALF=0.160E+02)
¢ KUMN-TUCKER CONDITIONS SATISFIED

1 F(1» = ~0.48840408E+07
2 F(Z) = 0.14436001E+06

EP(2) = 0.14436001E+06

LAGRANGE MULTIPLIER = 0.27952277E+0Z
3 F(3) = 0.10317434E+0D6

EP(3) = 0.10317634E+06

LAGRANGE MULTIPLIER = 0.32792177e+0z

P(F)> 15 INCREASING { STEP SIZE WILL BE DOUBLED
PARETCO QPTIMAL SOLUTION (ALF=0,320E+02)
( KUHMN-TUCKER CONDITIONS SATISFIED »

F(1) = ~0.48953261E+07
F(2) = D.14472D03E+06
EP(2) = D.14472003E+06
LAGRANGE MULTIPLIER = 0.10534637E+02
3 F(3) = 0.10335267E+06
EP(3) = 0.10335267E+06
LAGRANGE MULTIPLIER = 0.37522127E+DZ

1 .

P(F> IS5 INCREASING i STEP SIZE WILL BE DOUBLED
PARETCO OPTIMAL SOLUTION (ALF=0.640E+0Z2)
( KUHN-TUCKER CONDITIONS SATISFIED )

F(1) = —-0.49161106E+07
F(2) = D.14564006E+06
EP(2) = 0.145644006E+06
LAGRANGE MULTIPLIER = (0. 10690666E+02
3 F(3) = 0.10370534E+06
EP(3) = (0.10370534E+06
LAGRANGE MULTIPLIER = 0.37420754E+02

| NN
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PCF3 1S INCREASING i STEP SI1ZE WILL BE DOUBLED
PARETO OPTIMAL SOLUTION (ALF=0,128E+03)
¢ KUHUN=-TUCKER CONDITIONS SATISFIED

M

MAXIMUM OF P(F) 1S BRACKETED ( NEAR OPTIMAL STEP SI1ZE

F(1y = -0.49550901E+07
F(z) = 0.14688012E+06
EP(Z) = 0.14688012E+06
LAGRANGE MULTIPLIER = 0.98469370E+01
F(3» = 0.10441069E+06
EP(3) = 0.10441069E+06

LAGRANGE MULTIPLIER = 0.31313919E+0Z2

PARETC OPTIMAL SOLUTION FOR OPTIMAL STEP SI1ZE
( KUHN-TUCKER CONDITIONS SATISFIED >

F(1) = -0.49161106E+07
F(z) = 0.14544006E+06
EP(Z) = 0.14544006E+06

LAGRANGE MULTIPLIER = 0.10490666E+0Z

F(3) = 0.10370534E+D6
EP(3» = 0.10370534E+06

LAGRANGE MULTIPLIER = 0.37420754E+0Z

INPUT DECREMENT DF (1) :

=1000.

INPUT DELTA4
=20000000.

INPUT INCREMENT DF (22 IN A FUZZY FORM.

NAMELY« DF(CZ)

IS A FU2ZZY NUMBER BETWEEN DF (Z)MIN AND

WITH THE MEAN IN THE VICINITY OF DF (2)MEAN

= 77.

79. 81.

INPUT INCREMENT DF (3> IN A FUZZY FORM.

NAMELY. DF(3)

IS A FUZZY NUMBER BETWEEN DF (3)MIN AND

WITH THE MEAN IN THE VICINITY OF DF(3)MEAN

= 31.

32. 33.

L-R FUZZY NUMBER C(2) 1S

C(ZIMEAN

= 0.98805211E+00

LEFT SPREAD PARAMETER = 0.,90695848E-01
RIGHT SPREAD PARAMETER = 0O.90695957E-01

1S 0.640E+0Z

DF (2)MAX

DF (3)MAX
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COMPARISON BETWEEN TW(C FUZZY NUMBERS C(Z» AND C(1)
THE ANSWER TO THE QUESTION [ IS C(Z)» GREATER THAN C(1) 7 1]
IS A FUZZY SET A OF THE UNIVERSE (YES OR NO)

A = 0,100E+01/YES + 0.192E+00/NC

GRAPH OF TWO FUZZY NUMRERS C(Z) + C(1)

1.00+—————>——= V=X ' l==0 ' +
! !
! X X G 0 !
_l 1
! !
! X X (@] [¢] i
1 ]
, !
! X X ¢] ¢ !
0.50- -
! X X [¢] ¢} t
: \
! X X 0 [¢] !
_; .
X o X [¢] !
i )
! !
0. X——= ! Ol ==X ! ! O+
0.7876 0.8476 0.9076 0.9676 1.0276 1.087¢6
(10E O
(S A o ¢~
X H C(1)
L J H c(zy § Cc1) (SAME VALUE)

COMMAND?
=PROCEED

<ITERATION 2>

DIRECTION VECTOR TO UPDATE EPSILONS 1S
S(z) = -0.21529407E+01
S(3) = 0.60255409E+01

INPUT INITIAL STEP SIZE ¢ ALFO » ¢

=1.

YOUR MARGINAL RATES OF SUBSTITUTION ARE :@
M(1,2) = 0.12643606E+0Z
M(1:3) = 0.31395213E+02



comMmManND ?
=STOP

THE FOLLOWING VALUES ARE YOUR PREFERRED

Fig. 2.
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SOLUTION

The Preferred Solution of the DM

PREFERRED VALUES OF OBJECTIVES
Feinr = -0.49253282E+07
F(z) = 0.14483814E+06
F(3) = 0.10412229E+06
PREFERRED VALUES OF VARIABLES
x( 1)= 0.28841357E+05 X( 2= 0,20749000E+05 X( 3= 0,.91320000E+04
X( 4>= 0,14417000E+05 X( 5)= 0.91780000E+04 X( &)= 0.33403000E+05
X( 7>= 0.68254000E+05 X( 8)= 0.78047000E+05 X( 9= 0.18090000E+04
X(10>)= 0.55200000E+04 X(11r= 0.40260000E+04 X(12)»= 0, 14029000E+05
Xt13)= 0.10623457E+06 X(14)= 0.25958000E+05 X(15)= 0.80583000E+05
X(16>= 0.87216000E+05 X(17)= 0.32812000E+05 X(18)>= 0.38813000E+05
X(19)= (0.489460000E+04 X(20)= 0.28094000E+05 X(21)>)= 0.25783000E+05
X(z2Zr = 0.18740000E+05 X(23)= 0.19347000E+05 X(24)= (0.88100000E+04%
X(25)= (0.88510000E+04 X(z6>= 0.17157000E+05 X(27)>)= 0.47008000E+05
x(z8)= 0.36539000E+05 X(29>= 0.88500000E+03 X(30)= 0.44870000E+04
X(31>= 0.58960000E+04 X(32)= 0.90620000E+0% X(33>= 0,30980000E+05
X (3413= 0.10853000E+05 X(35>= 0.56420000E+05 X(36>= 0.56002000E+05
X(37:= 0.28597000E+05 X(38)= 0.19891000E+05 X (39)= 0.44370000E+04
X (40)= 0.24280000E+0%
GRAPH OF TWO FUZZIY NUMBERS C(5) + C(4)
1.00+ ! |t ! ! +
! +
, ;
! ] “ !
! 1
! '
! ] L] !
! '
' ‘
! xXG * )
0.50- -
! ] » !
! [
! 1
' ] L '
! '
! '
! X0 o '
: !
! [}
0. #» ! ' ! ! -
0.9044 0.9444 0.9844 1.0244 1.0644 1.1044
(10E 0O)

DIRECTION VECTOR 1S
Sz) =
S(3) =

-0.93272592E+00
0.24395976E+00
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The preferred allocation of capital and labour to each industry
corresponding to the results obtained by interaciton is summarired in

Table 4 together with the values in 1975.

Table 4. The preferred Allocation of Capital and Labour

Industry 1975 Proposal

Capital Labour Capital Labour

1 31653 22527 28841 25783
2 22981 17521 20749 18740
3 10114 18088 9132 19347
4 13479 8237 14417 8810
5 8581 8275 9178 8851
6 36996 16041 33403 17157
7 75595 43494 68254 47008
8 86440 34161 78047 36539
5 2004 827 1809 885
10 5161 4195 5520 4487
11 3764 5512 4026 5896
12 15538 8472 14029 9026
13 108036 28964 106235 30980
14 28750 10147 25958 10853
15 75339 52749 80583 56420
16 81541 52358 87216 56002
17 30677 26736 32812 28597
18 32687 18597 38813 19891
19 4577 4148 4896 4437
20 26266 22701 28094 24280

The obtained result compares favorable with the values obtained by

solving max U(fl, £2, £3) directly based on (62) using GRG2. These
xeX
values are (fl, £2, £3) = (4924409, 144676, 104144).
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The preferred values for the objective functions can be interpreted
as the compromised values of the DM between the conflicting objectives
which are the maximization of the production function and the minimization
of two environmental factors (COD and SOZ)' The preferred solutions for
the decision vatiables Kj and Lj show the preferred allocation of capital
and labour to each industry. These results show that capital values in
industry as a whole is reduced compared with the values in 1975. Especially,
capital formation in the coal and petroleum industry and in the chemicals
and related products industry is severely reduced and the nonferrous
wetals industry and the fabricated metal product industry decrease their
capital formation. On the other hand, in consumer industries such as

the lumber and furmiture industries, as well as in machine industries

such as the electical machinery industry, capital formation is promoted.

b, Conclusion

In this paper, we introduced the revised version of SPOT called
fuzzy sequential proxy optimization technique (FSPOT) in order to deal
with inaccuracies of the DM's judgements in interactive multiobjective
optimization problems. In our interactive on-line scheme, after solving
the €-constraint problem the values of DM's MRS assessed in a fuzzy form
were interpreted as type L-R fuzzy numbers and the mean value of the MRS
were used to determine the direction and the local proxy preference
function was updated to determine the step size. Pareto optimality of
the generated solution in each iteration is also guaranteed in our technique.
Based on the algorithm of FSPOT, the time-sharing computer program has
been written to facilitate the interactive processes.

An application to the industrial pollution control problem in Osaka
City demonstrated the feasibility and efficiency of both the proposed

technique and its interactive computer program by simulating the responses
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of the hypothetical DM. Although the actual DM for the formulated problem
would of course select other values of the three objectives than the ones
which were selected by the hypothetical DM used in this paper, the way to
iterate and calculate is essentially the same. However, further applications
must be carried out in cooperation with a person actually involved in
decisionmaking. From such experiences the proposed technique and its

computer program must be revised. We hope that the proposed technique and its
extension will become efficient tools for man~machine interactive

decisionmaking under multiple conflict objectives.
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MATHEMATICAL OPTIMIZATION FOR MULTIOBJECTIVE
DECISION MAKING

F. Seo! and M. Sakawa?

! Kyoto Institute of Economic Research, K yoto University, Japan
2 Department of Systems E. ngineering, Kobe University, Japan

I. Introduction

Multiobjective optimization techniques have been developed during
the past ten years. Evaluation criteria for the solution techniques
have been also presented. Loucks (1975) paid attention to conflict and
choice problems among objectives in an uncertain environment. In particular
he pointed out the importance of recognizing uncertainty in trade-offs
and preferences. However he was rather in line with pervasive economic
literature and emphasized the importance of simulation and prediction
techniques for the bargaining and the decision-making processes. Cohon
and Marks (1975), due to the undeveloped situations of the above techniques,
proposed the following criteria: (1) computational feasibility and
efficiency for practical use, (2) explicit quantification of the trade-
offs among objectives, (3) sufficient informatiom about the nominferior
solution set. Those criteria are all valid and useful. 1n particular,
explicit inclusion of a responsive decision-making process for quantifying
value judgement is of great value. However, from the operational point
of view, 'the more the better" rule for information available to the
noninferior solutions set is in need of examination. In this paper, the author
proposes alternative criteria for multiobjective optimization, and presents

a method for multiobjective decision making under upcertainty.

169
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The multiobjective decision-making process for a purposeful system
has two phases, analytical and judgemental. Ip the analytical phase,
mathematical optimization canm be executed along with modeling and simulatiorn.
In the judgemental phase, & responsive decision-making process for
intervention and coordination should be carried out. Generally the
decision-making process has a gap between these two phases, and this
paper is concerned with presenting a method to bridge this gap. Duality
of mathematical programming is used for basic systems evaluation and
combined with the decision analysis technique. Devices for treating

uncertain evaluation are alsoc suggested.

II. Characteristics of Multiobjective Optimization
1. Multiobjective decision problem
In general, an overall multiobjective optimization problem is
considered in the following form:
MOP

Maximize {fl(X), fz(x)...., fm(x)) (1)
Xx € X

where fi: R? — Rl, i=1l,..., m, is a criterion function (or objective
function) of an n~dimentional decision vector x. X is a constraints

set of feasible decisioms.
x€ X = {xxeR", g; () 0, 5 = Lo, i) (2)

In problem (1), mobjective functions are usually noncommensurate
and in conflict with each other. Thus it is impossible to find directly
the superior solution for the problem (1). Instead the preferred solution
x* of the multiobjective optimization problem is obtained from among
the Pareto-optimal or noninferior solution set XP. The poninferior

solution set XP is defined as follows:
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XP - {xPIxP € X, 3 x€X, x¢ xP, such that fr(x) > fr(xp)
(3)
for Yre 1=1[1,2,...,m], and £, (x) > £,(x') for k€I, k¥ 1l

For solving the overall optimization problem (1), an overall criteria
function should be maximized. Thus the MOP is converted to the multiobjective
decision problem in the following form.
MDP

Maximize U{fl(x), fz(x)...., fm(x)} (&)

% €%

The function U: Rm-oRl in problem (4) is an overall preferencé function
defined on all the values of the multiple criteria function {fi(x)}.
The preference function U is usually unknown, &nd so we are concerned
with finding a rational procedure to derive the preferemce fumctiom.
Thus procedural as well as substantive rationality should be considered

(Simon 1978).

2. Brief review for the solution techniques

During recent years, several approaches to solve the MDP (&) have
been presented. Those approaches are classified into three categories.
(1) Generating non-inferior set techniques.

The first is the generating techniques for identifying the noninferior
or Pareto-efficiency set. Although the preference function is gemerally
unknown, the decision-maker can find the preferred solution 3f he knows
the preferred marginal rates of suhstitution between objectives from among

those on the Pareto-efficiencv frontier.

The marginal rate of substitution (MRS) for the preference function
U is defined as follows:

dfi(x)
dfj(x)idu = 0, dfr =0, re¢i, )
(5)

mij(f) - [BU(f)/BfJ]/[BU(f)/Bfi] = -

where f = {fl,..., fm},
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For the prefered solution, the MRS m corresponds to the trade-

i3

off rate, Tij - -dff(x)/dff(x), on the Paretian frontier. The Paretian

frontier can be mathematically derived.
(1) The weighting or parametric method formulates the MDP (4) as follows.

Maximize W(f) = w

xiniz fl(x) + wzfz(x) +ooaot wmfm(x) (6)

1

From the extremal conditionm,

dk‘dfr -0 " widfi + wjdfj =0 . (7)
riiyj
At optimal,
dfi ji
“9F "o (8)
hi by

Thus the weighting or parametric method finds the prefered solution with

the weighting coefficient Vis i=1,..,., m, for determining the preferred
marginal rates of substitution. However this method has no device for
finding if the Paretian trade-off rate Tij corresponds to the MRS o,

3

on the preference function. The weighting parameter vy should be set
as given. For example, in the conventional multi-sectoral optimization
problem for ecomomic activity such as maximizatior of a gross national
income , market prices are used as the weighting coefficient for each
sectoral income. Dorfman (1972) treated the weighting coefficient as
the "political weight” in his net benefit maximization problem for

regional water quality management.

(i1) The constraint method is & counterpart of the weighting method.

The e-constraint wethod with parametric variation of the constraint values
can derive the noninferior set without the reguirement of convexity for
preference and constraint functions. The é-constraint method formulates

the MDP in the following form.
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Maximize fr(x) (9)
x €X
subject to fk(x) 2 % kel,..., m, k¥r (10)

- v
where Ck fk + € X’

objective function f

L& >0 and EL is an minimized value of an
K

In this method, although the weighting parameters corresponding to
the Pareto optimality are given analytically as a result of mathematical
optimization, a process of searching for the prefered weights corresponding
to the preferred solution is not provided.

Marglin (1962, 1967) used this method for his bi-criteria problem
for economic efficiency and income redistribution. 1In the place of
market prices and "political weights,"” he used the pre-assigned marginal
opportunity cost or Lagrange multiplier as the weighting parameter,

(2) Prior articulation of preferences and its extension

Goal programming techniques have been long developed based on prior
articulation of preferences, and recently interactive versions have been
presented (Dyer 1972, 1973). A device for combining goal programming
techniques with multiattribute utility functions for pre—assigning the
desirable goal is also provided (Dyer 1977). His study is based on

assumption of the additively separable utility function. Those devices

are intended to articulate directly the desirable goal with the preference
function without any regard to deriving the noninferior solution set,

and to seek the most efficient path to the ideal goal.

(3) Interactive derivation of the preference function

The methods for deriving the preference function U in the MDP (4)
with interactive processes have two directions. One is to obtain the
non-inferior solution set and, based on evaluation of the trade-off rate
functions corresponding to it, to assess the surrogate worth functionms

for seeking the most preferable solution (Haimes 1974, 1975). An interactive
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version for assessing the marginal rates of substitution has also been
presented (Chankong and Haimes 1978). This method is called Surrogate
Worth Trade-Off (SWT) method. The main characteristic of this method is
cowposed of two steps. In step 1, a scalar optimization problem is

solved in the forms of the e-constraint or Lagrange-type weighting

af . (x)

method. The dual optimal solution i, (f (x)) = -—*— >0 is used as
13773 afj (x)

the trade-off rate function between objectives fi and fj' In step 2,

., (A,,) 1is assessed as an ordinal number

137743

and the preferred solution is chosen which corresponds to the preferable

the surrogate worth function w

trade-off rate function to which the decision maker will be indifferent.
Thus, in the SWT method, the analytical process of mathematical optimization
is combined with a judgemental process. However any device for manipulating
the ‘phase gap” has not been provided. Evaluation of the marginal rates
of substitution is straightforward, and, even though it is interactive,
wholly depends on the subjective appraisal of the DM.

Another direction for interactive derivation of the preference
function is multiobjective decision analysis (Keeney 1974, Ostrom and

Gros 1975, Keeney and Raiffa 1976). In the following sectiomn, the main

idea of multiattribute decision analysis is discussed.

3. Multiobjective decision analysis

Multiobjective decision analysis proceeds in the following way.
First, the overall multiobjective optimization problem (MOP) (1) is
decowposed to m~subsystems.

DMOP
Maximize {fl(xl), fz(xz),..., fm(xm)) (11)

where xi is an ni-dimensional decision vector in a subsystem i, i = 1,
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To manipulate the noncommensurateness and conflict in problem (11),

consider & decomposed multiobjective decision problem in the following

form:
DMDP
Maximize {ul(fl(xl)), uz(fz(xz)),..., um(fm(xm))} (12)
xi € X

Decision problem in each subsystem i is described in terms of utility
function ui(fi(xi)), and the argument fi(xi) is defined as the measure

of effectiveness that indicates the degree to which the objective fi is
achieved. This measurable quantity is called an attribute and redefined

as X, = fi(xi)- ui(Xi) is an upiattribute utility fumctiom. In this
section hereafter, the notation x is used to express the systems attribute

i

for convenience in place of X,.
i

Then the DMDP (12) is converted to an overall multiattribute decision
problen in the following form, where X shows a feasible attribute set.

MADP

Maximize U (xl, E TR xm) (13)

The overall preference fumnction U:Rm_-Rl is called the multiattribute
utility function (MUF). Arguments for the MUF, x;, can also be the
MUF. The procedure of sequentially embedding those component utility
functions into the multiattribute ufility function is called nesting.
The overall preference function U expresses a preference or objectives
hierarchy in the following form (q < m):
Max Ui, W¥6),. .., 3G (14)
X € X

. Max U[ul(ul(xl), uy(xp)se s u (x)), wi(u

x, € X
i

t+l(xt+l)""’

N CIDD I uq(us+l(x8+l),..., up (xp )] (15)
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Expression (15) shows the nesting of the m-subsystems into q-subsystems
where u, can also be a multiattribute utility function. The nesting
procedures can be executed one after another in the objectives hierarchy
of the stratified systems.

Now the problem is to specify é functional form of formulation
(13). Keeney and Raiffa,under the assumptions of preferential independence

and utility independence, show that funccion (13) is assessed in the

following forms (Representation Theorems) .

Additive utility function

m
U(x), Xppeen, X ) = 15_1 koo (x), if Eki -1, (16)

Multiplicative utility function

1 F °
U(xl, Xypeney xm) = X [ il;'!l(l + Kkiui(xi)) - %], if lki ¥1 (17)

i) U and u, are utility functions scaled from 0 to 1,

1) 0 < ki <1l, i=1, 2,..., m, and

n
ii1i) 1f E kg ¥ 1, k> -1 45 the non-zero solution to
i
m
1+ K= IT (1+Kk,). (18)
i
i=]
Parameters ki and K are called scaling constants, and xi is the
attribute. Identification of the u and ki is executed by the chance
lottery technique and the indifference experiment. 1In the identification
process of the MUF, value trade-offs among objectives are assessed and the
systems coordination to cope with incompatibility among them is also
performed. By reducing the overall decision problem (4) to the heuristic
identification and maximization problem (13) of the MUF, noncommensurability

in the original multiobjective optimizatjon problem (1) is manipulated

in commensurated terms. The preference structure of large-scale systems
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is elucidated ip s hierarchical configurationm with the nesting procedure.
However, with this method the optimization process for each subsystem 1
included in problem (12) is disregarded. Imn other words, systems evaluation 1is
wholly disjuncted from optimization of the fi(xi). In additionm,

diversification and ambiguity of the systems evaluation are also neglected.

4. Criteria for multiobjective optimization techmniques

Now we enumerate the criteria which a desirable multicbjective
optimization technique should meet. The MDP is concerned with a Complex
Problematique whose characteristics are as follows: (i) largeness of scale,
(i1) noncommensurateneas, (iii) conflict and (iv) uncertainty. Systems
to be optimized include many attributes related to various disciplines.
Naturally the systems attributes are not measurable quantitatively in &
commensurated unit and usually are incompatible with one another. In
addition, systems evaluation is usually under uncertainty or faces
fuzziness.

Because of those characteristics, & desirable technique should meet
the following requirements.
(1) For coping with the large scale, systems should be structured to
correspond to the level of complexty for decision-making including
modeling and evaluation. Systems decomposition and coordination in a
hierarchical configuration have been well-developed (Mesarovic and
other 1970, Haimes 1977) and are recommended for effective structuring.
(11) For manipulating the noncommensurability, a scalar-valued criterion
function which is transformed from the vector criteris function should
be introduced, and an operational identification procedure for deriving
such a preference function should be developed with the procedural ratiomality.
(4i1) For coping with the incompatibility of objectives, conflict management
processes gshould be embedded, and value trade-offs among the conflicting

objectives should be articulated.
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(1v) For treating uncertaino quantities, probabilistic or fuzzy assessment

techniques should be included.

1n short, the MDP is constructed and solved for supporting decisions
that treat real problems in today's world. Thus the method should be
problem-£finding and problem—solving, and it should be able to determine
priority among alternative policies. For raising the acceptability of
the preferred solutions, interactive or learning and adaptation processes

for achieving the "best compromised” solution should be implemented.

1i1. Multiobjective Decisiop Making and Mathematical Optimization

In the preceding section, it has been pointed out thar the original
multiobjective decision analysis techmique has disjuncted the optimization
phase from the judgemental phase of multiobjective decision-making.
However, in the first step toward solving the DMDP(l2), it is possible
to optimize each subsystem fi(xi) independently with mathematical
programming techniques, and in the second step, the coordination process
is executed with judgemental decisions. Thus two-layer systems are
configured (Figure 1), which correspond toc systems characteristics such
as incompleteness of information (i.e., degree of uncertainty), modeling
difficulty (i.e., feasibility of quantification) und complexty of decision
making (i.e., level of abstraction). Now the problem is to bridge those
two phases in this system. In other worde, we are concerned with hov to
coordinate the systems and, based on this coordination, how to comstruct
an overall systems evaluation preserving analytical results from
the independently executed optimization process. For this purpose,
we have proposed direct utilization of dual optimal solutions
as the basic systems evaluation factor (Seo 1977, 1980, Seo and Sakawa
19794, 1979B). This device is based on an interpretation of mathematical

programing formulated in a multilevel svsten.
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—_—
Multicriteria max U= u{fl(xl), fz(xz),.... fm(xm)) 20d layer
decision xi e X
problen ,L
|
|
I
Il
!
Scalar max f.(x,) max f_(x.) wax £ (x) A
optimization |x, € X 171 x, € X 272 x ex » © lst layex
1 2 ]
problex J A
i
}
— Actual processes

Figure 1. Systems decomposition and coordination in two-layers optimization

Consider the following mathematical programming problem.

(P) Maximize fi(xi) 19)
subject to hij (xi) f-dij- 3= 1,..., Py (20)
gi‘(xi) < Pyg, t-pi+l,..., L (21)
where x, € B° £ R = Rl h. RS = Rl g :R" - Rl Constraints are
F O s M44° * Bys” :

partitioned into policy constraints and technical constraints. The problem
(P) is constructed independently for each subsystem, but also considered
in & hierarchical systems configuration. The objective function fi(xi)
is regarded as the lower-level objective and the policy comstraint d 13
is the upper-level objective indicated by the upper-level decision wmit.

The decision vector x, is the lowest level objective. The problem (P)

is solved in the lower-level decision unit. The dual optimal solution
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);j is used as the basic evaluation factor and information on it is sent
up to the upper-level decision unit. The primal optimal solution x;

is sent down to actual activity process. The overall decision problem
(DMDP) (12) is solved, via the nesting procedure (14) - (15) into the q
subsystems, in the following form (q < m), where the dual optimal solution

is used an inverse image of the utility fumetion. We call this the nested

Lagrangian multiplier problem.

NLMP (NDMDP)

Maximize  Ulul lat[ah)y, ..., w3 29x4}d%) ) (22)
xTe X

T be

where v , Ar. X and & are all vectors included in the nested
subsystem r, r = 1,..., q. With this device, the hierarchical configuration
of the two-layer optimization system shown in Figure 1 is converted to

the two-layer decision system shown in Figure 2.

vevlutoday,. . etade@h]

Multiattribute Regional-level Decision 2nd layer
utility assessment planning analysis ¢ 4

A ! -

| !

ufaT) |‘ daT
‘ !
! Yy T
-
Primal & dual Local-level Mathematical 1st laver
solution planning (Ar, x5 programming s i;ye
T
X
!
————-————'-: Actual process

Figure 2. Structure of two laver decision system.
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For example, the problem (P) is formed as & local environment
management plan within a comprehensive regional plamning. The problem is
independently constructed without any regard to other subsystems. The
objective function f i(x.i) is a local industrial production function

and the policy comstraint d is an environmental requirement such as cop or

i3

SO2 effluent discharge. The decision variables % ={ x are

41000 xin}
sectoral capital formation and etc. The problem (P) is solved in each
local administration agency. Information on the dual solution A;j is
sent up to the regional authority as an evaluation medium for local-
level planning and local industrial activity units (firms etc.) are informed
of the primal solution x;. Evaluation (22) for overall regional planning
is used for assessing alternative environmental management plans and
selecting the "best compromised’ policy (Figure 3). In the next sectionm,
some theoretical points regarding using the dual optimal solution as the

basic systems evaluation factor are examined.

IV. Optimality and the Kuhn-Tucker Multiplier

Consider & general mathematical programming problem.

(P) Maximize £, (xp) (23)
subject to gij(xi) < dij , i =1,..., 11 , (24)
where x.€ S = {x,ja, <x, <b x, € R%, a,, b, € R°} .
i F S S S i ’ 1 Vi

Now, formulate the following Lagrangian function:
(s M) = £ (x) El"u{gu"‘z) dyy] A G = b (g a) (29)
*
Suppose the (P) has the optimal solution X . Then the Kuhn= Tucker theorem
.. 1

gurantees, under the comndition fi& Cl, gijec and holding the constraint

. 3 . - * 1
qualification,the exsistence of the Lagrangian multiplier vectors:{izo, )~.é.-R,1

i

* * * *
*ﬁ' Vi'zo’/%’ v eRn, satisfising the Kuhn-Tucker conditioms (26)-(27).



182

‘3ujuusd [aAa[-[ed0T JOo Lyd1eaajy JeUOFIOUNY *¢ @anBy4d

89]3938136 JO UOT]IIBTag

I «x
X :)oBqpa’ ] ¥

@aduswiojiad iuojaed0[I®

l

;
b 4
ﬁﬂw ﬂﬂ«
:youqpaay ¥
asuewiojaad {uofuaaniajuy iuojienyeas

uoyjjezjuedio-jiag

Ayoaviayy uofBFIap 13LBTTITRH

uojidepe 10 Sujulea] {

Ty aTqefieA I
uosyIap) "
|
uojlewio] | ToAad(
feajded 4 Teriisnpug
i '
| [
| !
(*3 uvoyaoun; | "
anji09afqo) | _
! |
i }
| (uojda1-qns)
suoflouny
uojionpoad _. Tanery
! 1edoq
| _
ﬂ«v Jue3sU0D ! "
Juje.IISU0d) ] )
i |
193N | |
pue ] |
be—
| _ ELER
\ Teuoy3ay
|
EFNSRISET sjfun
wayqouiy uosfaa(



183

Kuhn-Tucker conditions

[

* * * * *
- D U - AL )
VE () ;1 1V (KD e v (26)
* * * - - =
xlj 20, )\ij[glj(xi) dij o, J lr""*:li

- * * * (27)
AL 2C M;(xi'bi)‘ o, V.20, \)i(xi- ai) =0

The theorem shows that the existence of the Kuhn-Tucker multiplier is the
*
first-order necessary condition for the X to be locally optimal in the (P) and
*
only differentiability is assumed. Thus exsistence of the Kuhn-Tucker vetor)»ij
*

corresponding to the x, is guranteed as the necessary condition of optimality in
non-convex as well as convex problem.

Under the approapriate conditioms, we can perform meaningful differenciation

- n £ L1

of the (L) for xi(di) andli(di), where xieR , xieR and dieR . in the

vector form,

- X, A,
5T (9% PR iUy, | - g.<x.)-d.2—k+)\. (28)
T 3%, i 1 3di 171 1]a 4 1
3¢ 9% i o,
Especially when x* > 0, from (26) and (27) ig;" A; = jfi
sp " r 3 .
i ' adi oy

Now the A; > 0 has an interpretation as an evaluator. First, the
component of A; - af:/adi shows a ratioc of a marginal variation of the
criterion function fi (system output) expressed in terms of value to
marginal variation of the comstraint constant di (system input) expressed
in terms of quantity. In other words, the inverse of AI is imputed
prices or shadow prices of the constraints measured in terms of the

value of criterion function (Luenberger 1973). Second, A; is the dual optimal

solution. Consider the following minimax dual problem (Lasdon 1970).

(P*) Minimize max ‘i(xi, Ai) (29)

A, €D x. € 8§

i i

Ei -
where D -{AilAi >0, )y € R7, max L(xi, A) exists).
x, € §
i

h(li) = max L(xi,)-i) (30)

xi € §
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is the dual function. Domain D does not have to be convex. When fi

and B, are differentiable &and convex, the P)* corresponds to Balinski-

)
Baumol's dual problem (1968) which is a variation of Wolfe's dual problem
(1961). Thus the Kuhn-Tucker multiplier vector AI is the solution of
the dual problem (P)* combined with the primal problem (P). When the
solutions (x*, A*) are the saddle point of the @, f(x:) - h(x;).
Even in the case of a non-convex problem, the saddle point can be achieved

locally with an heuristic algorithm if proper inmitial values are selected.

Now the above discussion is applied to the original problem (19) -

(21).  Form the Lagrangian function:

Py
(L) Lo(x, ) = £,(x) - 321 Ay (lnij (x) = dij>
ﬂi
- s_zpﬂ SECCRER I (1)
1

When the Kuhn-Tucker multiplier X;j > 0, then Aij = afl/adi In the

5
hierarchical system, the A;j inversely shows a marginal variation of
the upper-level objective evaluated in terms of & marginal variation of
the lower-level objective. The larger the Xij is, the smaller the
opportunity cost of the dij measured in terms of the marginal variation
of the fi is. This means that the degree of satisfaction of the dij
(quantity) measured in terms of the fi (velue) is already high. The

is the opportunity cost or shadow price. The Xij represents
proportionally the degree of satisfaction with the lower-level objective

*
M,

in the presentation of the upper-level objective. Note that the market
price expresses the degree of satisfaction with the commodity inversely.
In contrast, the 1;} can express proportionally the degree of satisfaction
with the dij because the inverse 1/XIj is the opportunity cost or the

shadow price.
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In the case of our local-level planning (Section III),the X;j is
used as the basic evaluation factor for the environmental comstraint
imposed by the regional authcrity, which is examined from the point of

viev of maximizing local industrial output in subregion 1i.

v. Conversion of the Kuhn-Tucker Multiplier to a Quasi-utility Function
and its Nesting
1. Derivation of the component utility fumction
Now the basic utility function uij(kij(xi)dij)), 3= 1l,e.e, Py»
should be derived from the above discussions. The problem is to convert
the Kuhpn-Tucker multiplier into a utility index function. Along the
line of von Neumann and Morgenstern's theorem, it can be shown that
positive linear transformation of the A:j to uij is admissible.
Define a relation A = ( Q, R) and call it preference relation A.
Here (@ 1is a nonempty set and R is & binary relation defined on
elements of
Definition 1 ( preference relation A). 1f R is a binary relation
on the set & and if &, 3/, % € Q, then preference relation A on
individual choice satisfies the following axioms:
(1) Traositivity: if #RY, YRZ, then ZREZ,
(11) Weak conmnectivity: XRY, or ¥RZ,
(11i) Nomsatiety: 1f #1I% , then 2'py for ' = £+ 4%, 8Z>0
(1v) Continuity: if X RY¥ and ¥R Z, then there is a real number
o such that 0 <o <l and GEZ+ (1 -a)8) Iy
Here R shows 'prefer to" (P) or "indifferent to" (I).
The von Neumann-Morgenstern theorem is restated as follows (Luce and

Suppe 1965).
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Theorem 1. Under preference relation A, there exists a real-
valued function S defined on ! such that for every &£ and 3 in &
and a parameter a in [0, 1]

(i) &Ry 1if and only 1f S(& ) 2 5(% )

(11) SaZ+ A -y ) =aS(Z)+ L~a)s(Y)

Moreover, if S' is any other function satisfying (i) and (ii), then
the S' 1is related to S by & positive linear transformation.

According to the interpretation of the Kuhn-Tucker multiplier as
the shadow price, the k; can replace the S in theorem 1. Consider
teal valued functions ,(X2) and S( X ) defined on the decision set
D(Z, Y €D). From now on, * is omitted.

Proposition. Two real valued functions Ai(il ) and S(& )
defined on the set D are in an equivalence class. Namely

(i) A binary relation R for numerical magnitudes of Ai and S

on the set D is reflexive, or AiRAi for every Ai €D .

(1i) The binary relation R for the A, and S is symmetric, or

i

if XiRS then SR)\i for every S, Xi eD .

Thus the above S 1in theorem 1 1is replaced with the Ai.
Theorem 2. For every 2 and Y in the set D defined under the

preference relation A, the following properties are preserved for the

function ki.

(1) 2RY 4f andonly 4f 2 (X) 22, (%),

(i1) >.i{a2+(1-a)y}-u>‘i(x)+(l-u) MOy

The £ and ¥ are regarded as some implicit evaluations for the system's

constraints d and d respectively. We can write Ai(dir) = A

ir is ir

and Ai(dis) = kis where s, T €I = [1,..0, Jyerr, pi].
The function ki can be linearly transformed to the function uy
which satisfies (i) and (ii). We can describe this in the following

way.
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Theorem 3. (derivation of quasi-utility function) A Kuhn-Tucker

multiplier Aij can be positive-linearly transformed to & numerical
utility uij defined on a value between O and 1.
Thus we derive the quasi-utility functiom in altermative
forms.
u - ui(xi) (32)
= u, Gy (=, ]d,)) (33)
--a + bi ).i(xiidi) , (34)

where >‘i b Miji)‘ij

The basic idea for deriving the quasi-utility function is shown iun

>0, j-l,...,pi) .

& more general vector form in Figure 4. The procedure of converting the

Aij into the uij is shown in Figure 5. In practice, we choose lower

and upper bounds, lij and xij , 0f the xij such as 0 < Aij < Aijmin

.(Aij)-OmdA > A >0 at

13 i3 1jmax ugyagy) = L

at u

( LINEAR TRANSFORMATIOXN )

S » S'

(EQUIVALENCE)

CLASS

( EQUIVALENCT, ) It
CLASS !
|

|
i
|
|

A > U

( LINEAR TRANSFORMATION )

Figure 4. Deviation of a basic utility functionm.

For the numerical utility, although differences between the utilities
are numerically measurable, the position of origin and the unit of a
numerical scale for the utilities can be arbitrarily decided. This
type of scale is called an interval scale. Thus, the cardinal utilicy

functions &re derived.
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>
h Y
-
Y

4 ; _
-a'.ﬁ 14 Mymax 43

lﬂj xijmin

Figure 5. Gonversion of the shadow prices into quasi-utility functioms

In our local-level planning, the uij(xij(xiidij) is used as a
component utility function which is related to the environmental restriction

(target constraint) dij indicated for subregion i.

2, Nesting into the multiattribute utility functions

Now, using the component utility function, the multiattribute
utility functions (MUF) are constructed and nested. The procedure for
deriving the MUFs is similar to the technique of multiattribute utility
analysis by Keeney and Raiffa, except that here the assessment of trade-
offs between attributes is executed on normalized utility values.

In local-level planning for each subsystem i, multiattribute

utility functions are constructed in the following forms.
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Additive
Py Py
ceey = R - 34
Ui(ul. Uy upi) le kijuij(xij) jzl kij 1 (34)
or multiplicative
R
U (uyy ugyeen, upi) - Ei[ g a+ Kikijuij(xij)) -1}
Py
; kij ¥1, g>-1 (35)

i=1

When constructing an overall MUF via nesting into the q-subsystem,

additive
U= (L,, U u)-aku( ) (36)
1’ 200 q 121 i1 ul, uz,..., up'
- 1
or multiplicative
1 q
Us (U1) Uz,-... Uq) - % [ ? (1 + KkiUi(ul,..., upi)) -1} 37)

The NDMDP (22) is expressed, using formulations (34) -~ (37), in the

following form.
Maximize  U[U;(u;y (A, (290D, b9y, (0,(x9)), ulpl(xlpl(xl))).....

U Uqa Cqa 30 Uz Gga Bgdesers vy Ugp X)) (38)

The nesting procedures can be carried out one after another in more
complex forms of an objectives hierarchy.

In the process of assessing the MUFs, a coordination procedure in the
judgemental phase of decision making is explicitly introduced with the
trade-off experiments. The component utility functions are weighted by

the DM and compromised with each other.
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A drawback of the MUF method lies in the strong assumption of
preference independence and utility independence among the attributes.
However in our method the uniattribute utility function uij is based

only on the Aij and simply transformed from it. Thus, it is not necessary

for the assessor to be bothered with an independence check.

VI. Summary of the technique

The technique for multiobjective decision-making described in
Sections III to V is summarized in the following.

(1) Problems which a purposeful system includes are structured in
a hierarchical modeling of multi-level systems, mainly according to the
levels of abstraction of objectives. It is called an objectives hierarchy.
This system is composed of two-layer decision systems corresponding to
the complexity of the decision making.

(2) Mathematical modeling is constructed for each subsystem in the
first layer, and mathematical programming is solved independently as
single-objective optimization problems.

(3) Using the Kuhn-Tucker multiplier, the oportunity cost or the
shadow price for the systems constraint is assessed. The Kuhn-Tucker
multiplier is directly transformed to the quasi-utility function, which
is used as the basic uniattribute utility function.

(4) The basic utility functions are nested into the MUFs. This

nesting procedure is executed sequentially with interactive processes.

In this nesting process, systems coordination of the decomposed multilevel
systems is carried out.

(5) Finally an overall MUF for the overall decision system is
derived. Using this value, alternmative policy programs are examined and
compared. Priority for selecting the most desirable programs (8 set of

normative values of decision variables) is determined.
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We call this procedure the Nested Lagrangian Multiplier (NLM) method.

Using this procedure, the multiobjective optimization problem (MOP) is
reduced to a set of scalar optimization problems (p) in the first step, and
then these are coordinated into an overall decision problem (MDP) in the
second step. This procedure is primarily based on the duslity of mathematical
programming and the multiattribute decision analysis.

Now the strong and weak characteristics of the NIM method should be
examined.

(1) The method configures & hierarchical structure of objectives.
Thus & problem structure can be clearly specified according to the
properties of the systems objectives.

(2) Due to utilization of the duality of mathematical programming.
The evaluation problem and the optimal resource allocation problem
combined with it are simultaneousely solved.

(3) The method directly utilizes the Kuhn-Tucker multipliers for
basic systems evaluation. By this device, ambiguity included in decision
analysis is excluded in the first step of the evaluation.

(4) The noncommensurable objectives are commensurated with the
quasi-utility function &8s & medium converted from the Kuhn-Tucker multiplier.
The quasi-utility function is used as the prefer.nce function(cardinal
utility function) without any loss of genmerality.

(5) The function of the DM for systems coordination is explicitly
introduced by using decision analysis. Thus the snalytical and judgemental
phases of the decision making process are combined.

(6) Quantitative evaluation of alternative systems degigns or
programs is carried out with a single evaluation standard. Thus the
ordering of priorities for selecting the alternmatives is determined.

(7) For epplying this method to empirical problems, unit measures

selected for data bases should be reasonable and practically meaningful,
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namely, numerical results are not free from the magnitude or dimensions
of the unit measures of data bases. However because of this property of
the method, differences in relative scale between systems are reflected
in the evaluation results.
(8) This method carries out optimization of systems and evaluation
of preferences with heuristic procedures, depending only on local information
for the systems' functions. Thus devices to correct possible biases in
information are Tequired even if this characteristic may avoid risky u-values.
(9) The systems coordination ultimately depends on the gingle DM
who is assumed to be a knowledgeable person. This Platonic assumption
should be mitigated and methods for introducing variety of evaluation

and for forming consensus should be developed.

VII. Example
In this section, this method is applied in a case study of regional

planning.

Figure 6 is the hierarchical systems configuration, where regional
decomposition has been performed on three levels in the gecond layer and
functional decomposition has been done on two levels in the first layer.

Mathematical programming formulatiomns are as follows.

Local residential problem (Seo 1977)

n W,
Maximize £(W) = ] (C - ABY) (39)
i=1
subject to
W, 2 W, , = 1,00, 0, (40)

(41)
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where

3 denotes an industry,

n is the number of industries,

Wj denotes the wages and salaries per employee per year in industry j
(decision variable),

W is the vector (Hl..--, Wn).

ﬁj denotes the actual value of wages and salaries in 1974 in industry j,

w is the actual mean value of the unit payment in all industries,

v is the sum of the deviations from the actual mean value of wages

and salaries, and A, B, C are parameters.
Constraint (40) represents the minimum requirements for wages and salaries
in each industry, and constraint (41) is an equity requirement among all
the industries. For the objective function, a modified exponential
curve has been estimated:
n w
£(W) = ] (1.0102 - 0.9926 x 0.76808 J) 42)
=1

Both primal and dual optimal solutions have been obtained, and the
Lagrangian multipliers have been converted into single-attribute utility
functions.

Ae &n example of deriving the quasi-utility function, utility

values for the equity requirement are shown in Table 1.

Table 1. Assessment of the equity requirement
Region (i) Osake Yao Daito Higshi-Osaka
-3 -3 -3 -3
iy 1.6209 x 10 1.665%9 x 10 1.6452 x 10 1.6886 x 10
u 0.2099 0.6593 0.4524 0.8864

o 41.53 34.60 38.60 34.15




195

Here o 1s a standard derivation of average wages and salaries among
industries and is used for checking the results of the u-value assessment.
Ordering of the u-values for equity corresponds well to that of the
o=-values.

Local MUFs for the regidential problem

Osaka City
UG = goeg [+ 0,43 62 ) + 0,13 w8 ) - 1] (43)
East Osaka:
Ul;"ziT[(1+l9.0u$)(l+0.95u§)-1] (64)
Uﬁnﬁ[(1+0.25u§)(l+0.05u;)-1] (45)
U = gy [+ 0.1 DA + 0.0 ug ) = 1] (46)

where o and u  are the utility functions for the minimum—wages
requirement and the equity requirement respectively, and the subscripts
0, Y, D, and H denote Osaka, Yao, Daito, and Higashi-Osaka respectively.

Local industrial pollution control problem (Seo and Sakawa 1979A)

2, by
Maximize ) f (K . L) = ] c Ky Ly "N
r T r T T
subject to
w
TR €1, J=1,...,4 (48)
K T h] ’
T
Al
4
PR Ll ey, (49)
T
ok ¢K sBE , e l,..., 0 (50)
T T T

a'rr(Lr( B'ir, rel,..., 0, (51)
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where

depotes an environmental factor [chemical oxygen demand (COD),v
sulphur dioxide (SOZ), land, or water] (j= 1,..., 4)

Kr is the capital value (book value of tangible fixed assets) of

industry r (decision variable),

K is the actual capital value of industry r,

L is the number of employees in industry r (decision variable),

T is the actual number of employees in industry T,

w is the requirement or discharge of environmental factor j per
unit of shipments in industry 7,

L is the capital coefficient, namely capital value per unit of shipments
in industry r.

Tj is the restriction or target level for the environmental factor j,

Y is the actual overall capital intensity (ratio of total capital
value to total number of employees),

a_ b €. are parameters of the production function for each industry r,

a, B, o', BR' are parameters which represent friction in (resistance to)
the transfer of cepital and labor (0 < a, o' <1; 1 <§g, £').

The objective function (47) is a Cobb-Douglss type of production
function which is homogeneous of degree one (ar + br = 1), and thus if
each factor is paid its marginal product, total output is distributed
between iabor and capital in the respective proportions a, and br.
Constraint (48) is the target constraint which shows that the total
amount of any environmental factor required or discharged by each industry
must not exceed a limi: imposed by the decision-maker. Constraint (49)
is a technical constraint which shows capital intensity as a whole.
Constraints (50) and (51) are frictiomal constraints for avoiding drastic

changes in the industrial structure.
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The problem is to find the optimal allocation of productiom factors

(capital and labor) to each industry under constraints (48) to (51).

The augmented Lagrangian method proposed by Pierre and Lowe (1975) has been

utilized in solving the nomlinear optimization problems.

The asseasment with the u-value is shown in Table 2.

Table 2. Assegsment of the u-values for environmental control.
Area (j) COoD SOz Land Water
(1) A u A u A u A u
Osaka
case 1 2.1642 0.0323 0.9474 0,0012 0.0000 =-0.0230 37.5866 0.9383
case 2 0.2275 0.0008 14,4730 0.4101 4.7484 0.1307 30.3245 0.8656
Yao 0.0000 0.0000 11.5712 0.7714 8.1213 0.5414 6.1050 0.4070
Daito 10.9544 0.7121 0.9618 0.0008 7.2767 0.4503 0.0000 -0.0676

Higashi-Osaka 15.5528 0.7760 0.1605 0.0005 7.0646 0.3483

9.1199 0.4519

Here a negative sign of the u-value is used to indicate slackness

of inactive constraints.

Local MUFs for the industrjal pollution control problem

Osaka City
so
IPC 1 cop 2
Up = 58768 [ - 0.6614 ug™ ) - 0