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Future land carbon removals in China
consistent with national inventory

YueHe 1,2, Shilong Piao 1 , PhilippeCiais 3, HaoXu1 & ThomasGasser 2

China’s commitment to carbon neutrality by 2060 relies on the Land Use,
Land-Use Change, and Forestry (LULUCF) sector, with forestation targets
designed to enhance carbon removal. However, the exact sequestration
potential of these initiatives remains uncertain due to differing accounting
conventions between national inventories and scientific assessments. Here, we
reconcile both estimates and reassess LULUCF carbon fluxes up to 2100, using
a spatially explicit bookkeeping model, state-of-the-art historical data, and
national forestation targets.We simulate a carbon sink of −0.24 ±0.03Gt C yr−1

over 1994–2018 from past forestation efforts, aligned well with the national
inventory. Should the official forestation targets be followed and extended,
this could reach −0.35 ± 0.04GtC yr−1 in 2060, offsetting 43 ± 4% of antici-
pated residual fossil CO2 emissions. Our findings confirm the key role of
LULUCF in carbon sequestration, but its potential will decline if forestation
efforts cease, highlighting the necessity for emission reductions in other sec-
tors to achieve carbon neutrality.

China has pledged to become carbon neutral by 2060 as part of its
Nationally Determined Contribution (NDC) under the Paris
Agreement1,2. Central to this pledge is the concept of carbonneutrality,
which involves achieving a balance between all anthropogenic CO2

emissions and the removal ofCO2 fromthe atmosphereby land, ocean,
and human activities3,4. Recognizing the dual role of land—both as a
source of emissions and a vital avenue for carbon capture—is crucial in
this context. This understanding underscores the importance of car-
bon removal through Land Use, Land-Use Change, and Forestry
(LULUCF) sector in offsetting emissions that are hard to abate4,5.
Although China has established several policy targets for afforestation
and reforestation (collectively referred to as forestation; Supplemen-
tary Table 1), their carbon removal potential remains largely unquan-
tified. Since the 1980s, China has launched extensive forestation
projects, increasing forest coverage from 157million hectares (Mha) in
1990 to 220Mha in 20206–9. Understanding these historical dynamics
is key to projecting reliable and consistent carbon removal potential
from LULUCF in the future and to facilitating progress tracking toward
China’s carbon neutrality goal.

Accurate quantification of anthropogenic LULUCF carbon fluxes
remains fraught with large uncertainties10–16. One key discrepancy
arises from the misalignment in definitions between global models
and national greenhouse gas inventories (NGHGIs) (Supplementary
Fig. 1). In model-based studies, only carbon fluxes from direct
anthropogenic activities (e.g., land-use changes, wood harvest, and
subsequent regrowth) are categorized as LULUCF (noted ELUC)

9,17–20,
while the indirect effects due to environmental changes (e.g., climate
change and CO2 fertilization) are not considered anthropogenic
(noted SLAND). In contrast, partly due to the near-impossibility of
separating direct and indirect effects in practice (as only the sum,
noted FNET, can be physically observed), NGHGIs consider all carbon
fluxes occurring on managed land as LULUCF (noted FNET(man))

13,14,21.
Comparison of LULUCF fluxes over 1994–2018 following both defi-
nitions reveal a substantial gap in China: while the NGHGI reports a
sink of −0.23 gigatons of carbon per year (Gt C yr−1), the Global Car-
bon Budget (GCB), based on the average of three bookkeeping
models (i.e., OSCAR-GCB, BLUE and H&C), indicates a source of
0.01 Gt C yr−1 (Fig. 1).
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Another key source of discrepancy is the land-use change forcing
data used to drive the models. In particular, the widely used Land-Use
Harmonizationdataset (LUH2) fails to capture theobserved increase in
forest area in China documented by the Food and Agriculture Orga-
nization (FAO) data, yet this increase has been noted in previous
studies9,22. While biogeochemical parameters also add a layer of
uncertainty, a previous model-based study suggests that it is primarily
the land-use change data that drives the uncertainties in ELUC in
China12. Lastly, a key limitation in many observation-based studies is
their focus on the impact of forestation on forest biomass sinks alone,
often using age-biomass relationships to estimate carbon
sequestration23–29. While these empirical statistical models provide
useful insights into forest biomass sinks, they do not account for the
broader LULUCF sector’s contribution, nor can they bedirectly aligned
with national inventory estimates of carbon sinks in the LULUCF sec-
tor. Consequently, there is a noticeable gap in the evaluation of
LULUCF carbon dynamics in China that aligns with the NGHGI con-
vention, encompassing both historical periods and future projections.

To consider these issues, we have implemented OSCAR-China, a
refined 0.5° × 0.5° gridded version of the reduced-complexity model
OSCAR, specifically tailored for China (Methods). Of the three book-
keepingmodels used in the GCB annual exercise, OSCAR distinguishes

itself by incorporating biogeochemical processes that enable simu-
lating all aspects of the land carbon cycle under environmental and
land-use changes11,12 and bridge the gap in definitions13. OSCAR-China
inherits this feature and incorporates spatially explicit, observation-
based historical land-use change data9.

Our analysis begins with an assessment of historical carbon
emissions and removals by LULUCF in China from 1900 to 2018, using
NGHGI as a benchmark. We then explore future carbon removal sce-
narios up to 2100 in alignment with national forestation targets
(Supplementary Table 1), considering different projections of climate
change, with a specific focus on the role of LULUCF in achieving Chi-
na’s 2060 carbon neutrality target. To address uncertainties in our
projections, we examine various spatial strategies for forestation and
consider the impact of different wood harvesting management prac-
tices on carbon sequestration potential. Through this comprehensive
approach, we aim to provide more robust estimates of the LULUCF
sector’s potential contribution to carbon neutrality in China.

Results
Historical LULUCF fluxes in China
To address biogeochemical uncertainty, we run a series of 1000Monte
Carlo simulations constrained by observation-based forest vegetation
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Fig. 1 | Comparison of anthropogenic carbon fluxes from Land Use, Land-Use
Change, and Forestry (LULUCF) estimated by differentmethods. The values are
defined from an atmospheric perspective: positive values indicate emissions and
negative ones represent removals. a Annual anthropogenic carbon fluxes from
LULUCF since 1980. The green line with circular markers represents LULUCF fluxes
consideringonly the impact of direct effects (ELUC) simulatedbyOSCAR-China.This
is compared with ELUC deduced from OSCAR-GCB (yellow line), BLUE (orange line)
and H&C (blue line). ELUC estimates from individual IAMs (thin gray lines) and the
IAM mean (thick gray line) are also shown. The black line with circular markers
represents LULUCF fluxes considering both direct and indirect effects onmanaged
land (FNET(man)) simulated by OSCAR-China, to facilitate a conceptual comparison
with NGHGI (black triangles) and FAOSTAT (black squares). Note that the carbon

emissions from peat burning and drainage are not considered and were removed
from the datasets if originally included. bMulti-year mean LULUCF fluxes over the
period of 1994–2018. The uncertainty bars of OSCAR-China ELUC and FNET(man)

denote the weighted standard deviation from a constrainedMonte Carlo ensemble
of 1000elements, while the boxplot for IAMs displays themedian and interquartile
range. c Forest area estimates based on various data sources. From left to right: (1)
the 8th National Forest Inventory (NFI) in China; (2) the forest map used by Grassi
et al.48, which integrates forest cover data fromHansen et al.63 and non-intact forest
data from Potapov et al.64 for 2013 (Han&Pot); (3) the Global Forest Resources
Assessment 2020 (FRA2020); and (4) the reconstructed forest map used in this
study. While the terms “unmanaged” and “managed” broadly correspond to “pri-
mary” and “secondary”, their exact definitions vary depending on the dataset.
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carbon stock data from the 9thNational Forest Inventory (NFI) and the
assessed net terrestrial carbon sink from the latest Regional Carbon
Cycle Assessment and Processes report (RECCAP2) initiative30,31 (see
Methods). Our model demonstrates good performance in capturing
both temporal and spatial dynamics of forest carbon in China, aligning
well with independent observations (Supplementary Fig. 2).

To ensure definitional alignment with NGHGI, we calculate
FNET(man) by combining the simulated direct effects (ELUC) with the
indirect effects on managed land (SLAND(man)). The latter involves
multiplying the simulated SLAND in forests by the fraction of managed
forests14. Ourmodel simulates a substantial shift in FNET(man) from 1980
to 2018, transitioning from a net carbon emission
(0.04 ±0.03Gt C yr−1; weighted average and standard deviation) to a
net carbon removal (−0.33 ±0.03GtC yr−1), demonstrating the impact
of China’s forestation policies (Fig. 1). Our simulations align well with
the NGHGI data in the overlapping period of 1994–2018, simulating
−0.24 ±0.03GtC yr−1 against a reported −0.23Gt C yr−1. This alignment
shows the consistency and reliability of our simulation based on the
NGHGI definition. Our data on total forest area (of which 95% is
assumed managed, see Methods) also shows strong agreement with
the national inventory (Fig. 1c).

Under the usual definition used in scientific assessments, our ELUC
are anotable carbon sink,with an averageof−0.20 ±0.03Gt C yr−1 over
1994–2018 (Fig. 1). Thismarkedly diverges from the results of the GCB,
which are based on three bookkeeping models: BLUE20, H&C22, and a
country-level version of OSCAR driven with different data (OSCAR-
GCB12). Specifically, BLUE, utilizing the LUH2 dataset, suggests a sig-
nificant source due to deforestation (0.12 Gt C yr−1), whereas H&C,
utilizing the FAO data, shows a sink (−0.07Gt C yr−1), reflecting
increased forestation. OSCAR-GCB, integrating both datasets, presents
a weaker sink of −0.04GtC yr−1. While differences in the chosen land-
use change datasets significantly contribute to these disparities, var-
iances in model assumptions can also exert influence10. Moreover,
when comparing our ELUC estimates with Integrated Assessment
Models (IAMs) sourced from theAR6 scenario database (Methods), the
IAMs fail to capture the current levels of carbon removal from LULUCF

(Fig. 1), which casts doubts on their projected mitigation pathways for
this sector in China.

Potential carbon removal from LULUCF
Building upon the validated OSCAR-China model, we project the
magnitude and temporal evolution of LULUCF fluxes up to the end of
this century, in line with national targets for forest coverage. To this
end, we have developed three land-use change scenarios based on
varying assumptions regarding policy continuity in forest area
expansion after achieving all official targets by 2035. These include
continued forestation, which maintains forestation efforts after 2035;
accelerated forestation, which increases efforts to meet a more
ambitious, non-official target set for 2050; and pledged forestation,
which halts efforts after 2035, thereby solely fulfilling official targets
(Fig. 2a). All scenarios are constrained by the land area suitable for
forestation in China, capped at a maximum potential of 317Mha
(Methods). By default, we also assume new forests will remain largely
unexploited, with reduced wood harvest in the future following SSP1-
2.6. These land-use change scenarios are then combined with three
climate change scenarios (SSP1-2.6, SSP2-4.5, and SSP5-8.5), resulting
in a total of nine combinations. Of these, we primarily focus on the
SSP126-Continued scenario, which is more closely alignedwith China’s
carbon neutrality goal.

Under a continued forestation effort, ELUC could provide a steady
carbon removal until the 2060s with an annual average of
−0.28 ±0.02GtC yr−1 over 2055–2065 (Table 1). This continuous
removal is the result of the roughly linear expansion of forest areas and
would last only until ~2040 should forestation be limited to the
pledged 2035 target (Fig. 2b). Projections then show a decline in car-
bon removal as of ~2070 even in the continued case, as forestation
reaches maximum area availability, eventually falling to
−0.14 ± 0.02GtC yr−1 in 2100. In a scenario of accelerated forestation,
carbon removals would first increase and culminate at
−0.35 ± 0.03Gt C yr−1 ~2060 and then steadily decrease in a similar
fashion after having reached the maximum area availability. Note that
because ELUC is the component of the land carbon flux that describes
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the direct effects of human activities, it is onlymarginally impacted by
the climate change scenario (Fig. 3a).

Looking in more detail at different carbon pools under the con-
tinued forestation scenario, ELUC is dominated by vegetation regrowth,
supplemented by a delayed response of soil systems, and partially
offset by the oxidation of harvested wood products (Fig. 3b). Spatial
analysis suggests that over 2019–2100, themajority of carbon removal
will occur in the precipitation-rich regions of southern and south-
western China, while emissions are mainly expected in the south,
southwest, and northeast China, due to historical deforestation and
other land-use changes (Fig. 4a–c). The future carbon emissions
attributable to historical deforestation are largely a legacy effect
caused by the inertia of biogeochemical processes such as the
decomposition of residual biomass and the equilibration of carbon
in soils.

The indirect effects of human activities on the land carbon sink
excluding direct land use (SLAND) show a strong increase in removal
until mid-century, after which point the response depends markedly
on the assumed climate change scenario (Fig. 3c). In SSP5-8.5, it keeps

increasing, whereas, in SSP2-4.5 and SSP1-2.6, it decreases in intensity
to an estimated carbon flux of 0.01 ± 0.02Gt C yr−1 in 2100 under the
latter scenario. These changes in SLAND broadly follow the scenarios’
changes in atmospheric CO2, as CO2 fertilization in OSCAR is sig-
nificant and above the average of models from the Coupled Model
Intercomparison Project Phase 6 (CMIP6)32, although this effect
remains modulated by climate-carbon feedbacks4,33.

It follows that under the SSP1-2.6-Continued scenario, indirect
effects contribute 18 ± 6% of the NGHGI-compatible carbon removals
(FNET(man)) over 2019–2100, markedly less than the 82 ± 6% from
direct effects (Fig. 4d–f). The contributions of indirect effects are
notably higher under SSP2-4.5 and SSP5-8.5, at 27 ± 9% and 39 ± 11%,
respectively. This contribution is expected to vary as SLAND responds
to atmospheric CO2 and climate change, with a marked decrease of
the indirect effects under SSP1-2.6 (Figs. 3 and Supplementary Fig. 3).
Including indirect effects in the national accounting of carbon
removals therefore creates a moving target in LULUCF mitigation
strategies: one influenced by the global climate pathway that
humanity will follow and that may mask actual mitigation efforts
because of opposite evolutions in the direct and indirect land carbon
fluxes13.

LULUCF contribution to 2060 carbon neutrality
Achieving carbon neutrality in 2060 requires reducing Chinese
emissions by 7–8Gt CO2 per year, primarily through energy and
industrial transformations, whichwill leave an estimated 3 Gt CO2 per
year (~0.82 Gt C per year) of hard-to-abate emissions34. In offsetting
these residual emissions, the LULUCF sector could significantly
contribute to China’s ambition. Under the continued forestation
scenario, our simulations estimate that direct land carbon removals
from LULUCF (averaging −0.28 ± 0.02 Gt C yr−1) could compensate
for around 34 ± 3% of these hard-to-abate emissions (Table 1). Fur-
thermore, by adding the indirect effects in managed forest
(−0.07 ± 0.03 Gt C yr−1) to the direct ones, the offset percentage
increases to 43 ± 4%. However, we must insist that this inclusion of
the indirect effects in the definition of carbon neutrality is incom-
patible with the notion of remaining carbon budgets, and precau-
tions must be taken when doing so13.

The accelerated forestation scenario markedly increases total
carbon removal until 2060, achieving a reduction of about half
the hard-to-abate emissions (50 ± 5%; Table 1), and surpassing the
continued forestation scenario in the short-term. Yet, due to finite
forestation space (317Mha, Fig. 2a), this initial benefit levels off
after 2060, with both the accelerated (−25.4 ± 2.4 Gt C) and con-
tinued (−26.0 ± 2.5 Gt C) scenarios eventually reaching similar
cumulative carbon removals in 2100 as all available land is
exhausted. Conversely, adhering strictly to pledged forestation
targets significantly reduces the emissions offset to 24 ± 4% in 2060
and decreases the overall carbon removal to about two-thirds of its
full potential (−17.7 ± 2.0 Gt C) for the period 2019–2100, high-
lighting the crucial need for ongoing forestation efforts beyond
initial commitments.

Moreover, if newly planted forests were more heavily exploited
for wood harvest (following SSP5-8.5, Supplementary Fig. 4), the direct
carbon removalwould be reducedby about0.02GtC yr−1 in 2060. This
reduction occurs because the accelerated transfer of carbon from
forests to wood products shortens the system’s carbon retention time,
diminishing long-term carbon sequestration. In the extreme case
where forests are heavily exploited for wood production, the capacity
for carbon capture could be entirely lost unless the lifespan of wood
products is also extended. Long-lived wood products provide pro-
longed carbon storage, while short-lived products release carbon into
the atmosphere more rapidly. In the context of a future bio-based
society,maximizing the lifespanofwoodproducts becomes crucial for
enhancing carbon sequestration and mitigating climate change35–37.

Table 1 | Synthesis of the Land Use, Land-Use Change, and
Forestry (LULUCF) carbon fluxes across land-use change
scenarios with a detailed breakdown by key land-use change
activities and processes

SSP1-2.6 Continued Accelerated Pledged

Cumulative carbon removal by direct effects during
2019–2100 (Gt C)

Default spatial allo-
cation strategy

−20.6 ± 1.7 −21.1 ± 1.8 −13.5 ± 1.5

High-carbon density
priority (high)

−20.9 ± 1.8 −21.2 ± 1.8 −14.7 ± 2.0

Low-carbon density
priority (low)

−20.1 ± 1.6 −20.8 ± 1.7 −11.8 ± 1.3

Cumulative carbon removal by direct effects during
2019–2100 (Gt C)

Deforestation 1.5 ± 0.3 1.5 ± 0.3 1.5 ± 0.3

Other land-use
transitions

−0.9 ± 0.8 −0.9 ± 0.9 −0.9 ± 0.8

Forestation and
wood harvest

−21.2 ± 1.7 −21.6 ± 1.8 −14.0 ± 1.3

Cumulative carbon removal from LULUCF during
2019–2100 (Gt C)

Direct effects (ELUC) −20.6 ± 1.7 −21.1 ± 1.8 −13.5 ± 1.5

Indirect effects
(SLAND(man))

−4.8 ± 1.8 −4.9 ± 1.8 −4.2 ± 1.6

Total (FNET(man)) −25.4 ± 2.4 −26.0 ± 2.5 −17.7 ± 2.0

Carbon removal from LULUCF in 2060 (GtC yr−1) *

Direct effects (ELUC) −0.28 ± 0.02 −0.33 ±0.03 −0.14 ± 0.02

Indirect effects
(SLAND(man))

−0.07 ± 0.03 −0.08 ± 0.03 −0.06 ±0.02

Total (FNET(man)) −0.35 ±0.04 −0.41 ± 0.04 −0.20 ±0.03

Contribution of LULUCF in offsetting hard-to-abate
emissions in 2060

Direct effects (ELUC) 33.8 ± 2.7% 40.8 ± 3.1% 16.9 ± 2.5%

Indirect effects
(SLAND(man))

8.9 ± 3.3% 9.5 ± 3.6% 7.3 ± 2.7%

Total (FNET(man)) 42.6 ± 4.5% 50.3 ± 5.0% 24.2 ± 3.8%
*We approximate 2060 using the average value from 2055 to 2065 to reduce the uncertainties
from interannual variability in SLAND.
Focus is on three land-use change scenarios: continued, accelerated and pledged forestation,
combined with the SSP1-2.6 climate change scenario, with default spatial allocation strategy
except where explicitly stated (Methods). The first two segments represent only the direct
effects from LULUCF (ELUC), while the subsequent segments display both direct and indirect
effects, as well as, the total effects from LULUCF. Positive values represent emissions, while
negative values indicate removals.
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We also explored different strategies for allocating annual forestation
area (Fig. 2b; see Methods for details). By prioritizing forestation in
regions based on their forest carbon density, high or low, we can
bracket the range of uncertainties in annual carbon sequestration,
despite reaching the same cumulative level by century’s end (Fig. 2b
and Table 1). The contribution of the LULUCF sector can, therefore, be
effectively managed and shaped by strategic decisions regarding the
timing and location of forestation efforts, but remains ultimately
bounded.

Discussion
While China’s climatemitigation commitments, such as those outlined
in its NDC, specify targets for forestation, comprehensive quantifica-
tion of the corresponding carbon removal potential demands investi-
gation. Our study fills this critical gap by utilizing the OSCAR-China
model to convert these forestation targets into explicit carbon
sequestration estimates for the LULUCF sector. However, the mitiga-
tion potential from forestation should not be overstated, and anthro-
pogenic appropriation of the natural land sink should be done with
extreme care. First, the efficacy of expanding forest areas for enhan-
cing direct carbon sequestration is limited in time: once the available
area suitable for forestation is fully utilized, the carbon sink will inex-
orably diminish (Fig. 2). Second, the effectiveness of indirect carbon
removal will likely weaken over time as global mitigation efforts pro-
gress, due to its dependence on atmospheric CO2 levels, as well as

deleterious climate impacts and increasing nutrients limitations4,13,38,39.
Therefore, the carbon removal potential of the LULUCF sector is
inherently limited but non-negligible.

Moreover, our estimate primarily centers on the potential of
LULUCF under fairly optimistic assumptions. However, this potential
could be significantly affected by various external factors that are not
fully considered here. These include disturbances such as extreme
wildfires and pest infestations, along with other climate extremes like
droughts andheatwaves,whichcan severely disrupt forest growth and
reduce carbon sequestration capacity40–42. For instance, while our
model accounts for wildfires by simulating fire intensity based on cli-
mate conditions and CO2 levels, it does not fully capture extreme
wildfire events or human interventions, such as efforts to limit and
control natural wildfire11,12. In addition to natural disturbances, socio-
economic factors, such as forest management practices (e.g., wood
harvest, thinning, and selective logging) and land use policies, are
critical in determining the actual achievable sink level. However, in the
current model, only wood harvest has been explicitly accounted for,
while other factors—such as competition for land with food produc-
tion, economic incentives for afforestation, and sustainable land
management practices—are not yet integrated43,44. Consequently,
while our findings provide a foundational understanding of the
LULUCF sector’s potential, they are likely optimistic. Future studies
would benefit from integrating these broader considerations to pro-
vide refined estimates.
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Fig. 3 | Historical and future trajectories of China’s land carbon dynamics.
a, c, e Annual land carbon fluxes: Land Use, Land-Use Change, and Forestry
(LULUCF) fluxes based on different definitions (ELUC and FNET(man)), indirect effects
resulting from environmental changes (SLAND), and the combined total of direct
and indirect effects (i.e., the net land carbon sink, FNET = ELUC + SLAND). Results are
shown for three climate change scenarios (that is, SSP1-2.6, SSP2-4.5, and SSP5-8.5)
with a continued forestation land-use change scenario (Methods). The shaded

areas represent the weighted standard deviation from a constrained Monte Carlo
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Article https://doi.org/10.1038/s41467-024-54846-2

Nature Communications |        (2024) 15:10426 5

www.nature.com/naturecommunications


In summary, our results highlight the opportunity for climate
change mitigation through LULUCF policies, but also that this role
should be viewed as complementary and only providing time for deep
decarbonization of other sectors25. While our various scenarios pro-
vide anoverviewof thepotential of forestation, they donot replace the
nuanced, localized planning required for specific forestation
initiatives45–47. This is particularly pertinent given the diverse ecologi-
cal, climatic, and socio-economic contexts across regions. Further-
more, considering the definition gaps in the accounting of land-based
carbonfluxes, it is imperative that national experts and scientists come
together to enhance the processes of monitoring, reporting, and ver-
ifying the carbon fluxes of the LULUCF sector13,48.

Methods
Overview of the OSCAR model
OSCAR is a reduced-complexity Earth system model designed to
mimic the behavior of more sophisticated models, facilitating analysis
of long-term climate policies and carbon budgets12,49–52. The standard
version ofOSCARdoes not operate on a grid scale; instead, it functions
at the regional and country levels. Despite this, it maintains a level of
flexibility, allowing the scale to be adjusted in response to specific
research needs. Its streamlined complexity reduces computing
requirements, thus making it an efficient tool for these types of
investigations. In terms of calibration, the preindustrial steady-state
parameters of the land carbon cycle are based on TRENDYv7
models53,54, eliminating the need for spin-up. The transient response of
land ecosystems to changes in climate and CO2 concentration is cali-
brated on the CMIP5 simulations55. OSCAR ismeant to be usedwithin a
probabilistic framework: simulations with a large range of parameters
in a Monte Carlo ensemble, the results of which can then be con-
strained with observation data12.

OSCAR-China model
We expanded OSCAR v3.2 into a grid-based version for China, herein
referred to as OSCAR-China. Our modified version functions at a
0.5° × 0.5° scale, thereby providing a spatially explicit representation
of localized land use and land-cover changes and their corresponding
effects on the carbon cycle. Given the limitations of the TRENDYv7
model ensemble in providing detailed carbon stocks and fluxes for
each plant functional type, direct calibration of steady-state para-
meters for China at the 0.5° × 0.5° scale is not feasible. Instead, we
adopted an approach grounded on Equation A45 from ref. 12. This
involves categorizing China into seven large geographical regions
(Supplementary Fig. 5), and then separately estimating steady-state
parameters for each of these regions. Subsequently, these regionally
derived parameters are applied to all grid points within their corre-
sponding regions. In this study,we leverage theOSCAR-Chinamodel in
an “offline”mode tomore accurately simulate land carbon dynamics in
China. In this context, “offline” refers to the model being driven by
external observational inputs, such as CO₂ concentrations and climate
data, rather than simulating these drivers internally within the model.
More details about the experimental setups are provided in the fol-
lowing sections.

Historical experimental setup
We initiated theOSCAR-Chinamodel in 1800but only reported carbon
fluxes from 1900 to 2018 to account for the legacy effect of land-use
history on current carbon dynamics. The simulation is driven by two
primary types of forcing data: environmental changes (atmospheric
CO2 concentrations, temperature and precipitation), and land-use
change perturbations (land cover change, wood harvest and shifting
cultivation). Atmospheric CO2 concentrations are taken directly from
the GCB protocol56. Observation-based temperature and precipitation
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data over the 1901–2018 period are sourced fromCRU-TS v4.0657, with
pre-1901 values estimated using the 1901–1920 average as a pre-
industrial baseline.

For a historical land cover change, we rely on the Yu22 dataset, a
recent reconstruction with corrected biases by integrating multiple
sources of inventories and observations9. This dataset categorizes land
into five biomes: forest, cropland, grass, shrub, and wetland. To align
this dataset with the biomes endogenously modeled in OSCAR-China
(forest, non-forest, cropland, pasture, and urban), a categorical rea-
lignment is performed. Specifically, forest and cropland in Yu22 cor-
respond directly to OSCAR-China, while shrubs and wetlands are
reclassified as non-forest. Grass in Yu22 is divided into non-forest and
pasture using HYDE3.2. The urban category, absent in Yu22, is sup-
plemented from LUH2-GCB201958. To maintain consistency, any
increase in urbanarea is offset by a correspondingdecrease in the non-
forest category, ensuring biome area fractions sum to 100% in each
grid cell. Due to the lack of pre-1900 land cover change data, we use a
back-casting approachwith LUH2-GCB2019’s transitionmatrix and the
1900 land cover data to reconstruct changes from 1800 to 1899. Our
method’s robustness is supported by the close alignment of our 1800
forest area estimate with an independent dataset59. For a concise
overview of biome area changes in China, see Supplementary Fig. 6.
Furthermore, given that shifting cultivation primarily occurs between
the latitudes of 33°N and 33°S,we assumed its absence inChina and set
this factor to zero. Wood harvest data are based on the Global Forest
Resources Assessment (FRA) national-level data and spatially allocated
according to the distribution of primary and secondary forests in
China as reported by LUH2-GCB2019.

To meet the specific needs of OSCAR-China, it was essential to
develop a transition matrix for land cover change. We, therefore,
assumed that the area increase of one biome is proportionally dis-
tributed across other biomes experiencing area decrease within the
same grid cell and year, based on their respective shares of total area
decrease (proportional allocation; Supplementary Fig. 7). Note that by
construction, this approach only provides net land cover transitions
without gross gains and losses in the same grid cell and a given year.

Future scenario design
To conduct future simulations from 2019 to 2100, OSCAR-China
requires the same type of input data as those utilized in historical
simulations. For this study, we develop future projections of carbon
dynamics by integrating three climate change scenarios with three
land-use change scenarios.

Future temperature and precipitation time series under SSP1-2.6,
SSP2-4.5, and SSP5-8.5 are taken directly from the database employed
in the CMIP6 project, as the multi-model average of 31 models (Sup-
plementary Table 3). To combine with historical data, we apply an
additive adjustment factor (offset) to temperature data and a multi-
plicative adjustment factor (scaling) to precipitation data, using the
average values from 2000 to 2018 as reference (Supplementary
Fig. 8a, b). All CMIP6 outputs are re-gridded to 0.5° spatial resolution
for China using a first-order conservative remapping scheme, as
implemented by climate data operators (https://code.zmaw.de/
projects/cdo). As for future atmospheric CO2 concentrations under
varying SSPs (Supplementary Fig. 8c), we rely on data provided
by ref. 60.

In developing future land-use change scenarios, our approachfirst
focuses on constructing forest area change scenarios aligned with
national targets. These involve three forest expansion trajectories and
corresponding spatial allocation strategies, detailed in their respective
sections. Following the establishment of forest area change scenarios,
we supplement the model with data for other biome area changes and
wood harvest information using the LUH2 v2f dataset under the sus-
tainable scenario SSP1-2.661. This choice of scenario is in line with the
national forestation targets in China. This step involves adapting data

for cropland and urban areas directly from LUH2 v2f, while changes in
pasture andnon-forest areas are estimatedbasedon their proportional
representation within this dataset. To align the future projections of
wood harvest and correct biases in cropland and urban areas between
LUH v2f and historical data, an additive adjustment factor is used with
the year 2018 as the referencepoint.Moreover, the expansionof forest
areas could also potentially lead to an increase in wood harvest in the
future. To account for this possibility, we also introduce the wood
harvest from the LUH2 v2f SSP5-8.5 scenario into our analysis, which
projects enhancedwoodharvest in the future. This scenario provides a
contrasting perspective to the SSP1-2.6, where forest will remain
mostly unexploited, offering a comprehensive view of the potential
outcomes stemming from China’s national forestation targets (Sup-
plementary Fig. 8d).

Forest expansion trajectories
Three distinct forest expansion trajectories are developed, each based
on a combination of current national forestation targets (Supple-
mentary Table 1), potential forest distribution, and different assump-
tions about policy implementation and ambition levels, offering a
spectrum of possible futures for forest area expansion in China. To
model the transition between different target years, a linear inter-
polation method is employed, ensuring a smooth and gradual change
in forest area over time. See details in Supplementary Table 4.

Spatial allocation strategies of forestation
In our study, we have devised three distinct strategies to prioritize and
allocate annual forestation opportunities. Our default approach, the
sustainable potential-based strategy, involves a gradual and equitable
distribution of forestation efforts across all regions. This strategy is
guided by the available potential forestation space, promoting con-
tinuous forestation to ensure ecological balance and sustainability.

In addition to this, we have formulated two more targeted
strategies, prioritizing forestation in regions with low or high-carbon
density of forest ecosystems. These strategies are designed to
bracket the ranges of uncertainty in future forestation efforts. The
first, with a low-carbon density priority strategy (named “Low”)
allocates forestation space each year by prioritizing areas with lower
carbon density first before moving to higher-density regions. Its goal
is to prioritize ecological restoration in these regions, thereby
enhancing carbon sequestration in areas that are currently less dense
in forest carbon. Conversely, the high-carbon density priority strat-
egy (named “High”) directs forestation efforts to regions with higher
carbon density first before moving to lower-density regions. This
approach ensures that forestation efforts are strategically con-
centrated in areas with the greatest potential for immediate carbon
sequestration.

In our study, we employ a clear nomenclature for various climate
and land-use change scenarios, such as “SSP126-Continued”, “SSP126-
Continued-Low” and “SSP126-Continued-High”. Note that unless
explicitly stated otherwise within the main text, our study defaults to
the sustainable potential-based strategy for forestation, with both
“High” and “Low” scenarios used only for sensitivity analysis.

Potential forest distribution
We identify potential forest areas based on three datasets from ref. 25,
which include predictions from a random-forest model, the World
Resources Institute, and the ORCHIDEE dynamic global vegetation
model. We focus on areas consistently classified as potential forests
across all three sources, ensuring reliability by selecting their inter-
section. Two key constraints were applied in defining potential forest
areas: (1) present-day forest area constraint: if the estimated potential
forest area for a grid cell is smaller than its existing forest area in 2019,
we adjust the potential area to equal the existing one; (2) non-forest
and pasture area are hard constraints. Considering the intensive use
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and socio-economic value of cropland and urban areas, the potential
for converting these lands to forests is limited. Therefore, the potential
opportunity for forest area increase is capped by the available non-
forest and pasture areawithin the grid cell. If the increase in forest area
exceeds the total available non-forest and pasture land, we adjust the
potential forest area to the combined area of the existing forest, non-
forest land, and pasture land. This ensures our projections align with
practical land-use change possibilities. As a result, our analysis reveals
that there is still an additional 98Mha suitable for forestation (Sup-
plementary Fig. 9), with a potential forest area of 317Mha compared to
the current 219Mha in 2019.

Managed forest area changes
To track themanaged forest area changes in China from 1900 to 2100,
the following steps are taken. First, similar to the approach of ref. 62,
we use a dataset (hereafter Han&Pot) that classifies forests in 2013 as
either “intact”or “non-intact”, interpreting “non-intact” asmanaged, to
ascertain the proportion of managed to total forest area in China63,64.
By applying this proportion, we identified the area ofmanaged forests
within the land-use change-forcing data for the corresponding year.
This approach was chosen because the total forest area in this dataset
was found to be relatively lower than other sources (see Fig. 1c),
making it necessary to use the proportion to more accurately repre-
sent the extent of managed forests. Note that for regions in the pro-
portion map where forest data is absent, we assume that the
proportion of managed forest is the same as the nearest
available value.

Due to insufficient historical data, we then assume that all forest
area gains from 1900 to 2100 were in managed forests. For forest
losses, our model differentiates between two periods: losses before
1980 are assumed to come from unmanaged forests, reflecting less
active forestmanagement at the time. Post-1980 losses are attributed
to managed forests, coinciding with the onset of major forest
restoration projects around the 1980s. This allowed us to extrapolate
changes in managed forests backward to 1900 and forward to 2100,
using the 2013 data as a starting point. The resulting changes in both
total and managed forest areas are depicted in Supplemen-
tary Fig. 10.

Constrained Monte Carlo ensemble
We run one historical experiment and various combinations of future
scenarios, each relying on a Monte Carlo ensemble of 1000 biogeo-
chemical parameterizations to address uncertainty. These para-
meterizations are selected at random and with an equal chance from a
pool of potential parameter sets12,65. To constrain our simulation
results, we utilize two observation-based benchmarks specific to
China. The first is the net land carbon sink (FNET) over the 2000 to 2019
period, reported as −0.30 ± 0.037Gt C yr−1 30 in the latest Regional
CarbonCycle Assessment and Processes report (RECCAP2)31. Note that
lateral fluxes, not captured by the OSCAR-China model, are excluded
from the FNET benchmark. The second is the forest vegetation carbon
stock (cVeg) from the 9thNFI, reported as 8.98Gt C on a national scale
for the period spanning 2014 to 201866. The NFI’s survey accuracy is
over 90%, which suggests an inherent uncertainty of ~10%. To remain
conservative, we double this figure to 20%, resulting in a standard
deviation of 1.80Gt C for the forest cVeg. For each simulation of the
ensemble (N = 1000), we assign a weight w1 based on its alignment
with the FNET benchmark, and a weightw2 based on its alignment with
the forest cVeg benchmark. All these weights are computed using the
Gaussian function as Eqs. (1) and (2):
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whereμ and σ are themeanand standarddeviation of the benchmarks,
and x is the value of the corresponding variable for each simulation of
the ensemble. Each Monte Carlo simulation is then assigned a final
weight w3 by normalizing the product of w1 and w2 across all simula-
tions as shown in Eq. (3):

w3 =
w1 �w2

PN
i = 1w1, i �w2, i

ð3Þ

This normalization ensures that the sum of weights w3 over all
simulations equals one, allowing them to be properly used as prob-
ability weights for calculating the weighted averages and standard
deviations of the simulation outputs. All results provided are the
ensuing constrained weighted averages and weighted standard
deviations. In Supplementary Fig. 11, we present the Monte Carlo dis-
tributions for key variables (ELUC, FNET, SLAND) in the OSCAR-China
model, both before and after applying the constraint.

Calculation of the loss of additional sink capacity
Our model is capable of calculating the “loss of additional sink capa-
city” (LASC), which is defined as the difference between the actual land
sink under changing land cover and the hypothetical land sink that
would have existed under preindustrial land cover11. This term, inher-
ently included in ELUC calculations from dynamic global vegetation
models, is absent frombookkeepingmodels and inventories due to its
counterfactual nature and its enduring presence after LULUCF activ-
ities have ceased. In China, LASC has been a small but consistent
source of emissions from 1900 to 2018, primarily due to deforestation
since preindustrial times. It is then projected to act as a carbon sink,
owing to increased forestation activities, as detailed in Supplemen-
tary Fig. 12.

The NGHGI LULUCF database
The NGHGIs submitted by parties to the United Nations Framework
Convention on Climate Change (UNFCCC) provide data on green-
house gas emissions and removals, with the LULUCF sector as a key
component conceptually aligned with the FNET(man) definition used in
our paper. In the case of China, a non-Annex I country, NGHGI data are
reported intermittently through National Communications and Bien-
nial Updated Reports. The NGHGI LULUCF data for China collected in
our study includes the years 1994, 2005, 2010, 2012, 2014, 2017, and
2018 (Supplementary Table 5). To address gaps in reporting, we
applied linear interpolation to estimatemissing values andgenerated a
continuous dataset for 1994–2018. This dataset was then used to cal-
culate multi-year averages, as shown in Fig. 1b.

The FAOSTAT LULUCF database
The FAOSTAT LULUCF database, managed by FAO, provides globally
standardized data on LULUCF. Its estimates are based on forest
resources data reported by countries, including inputs from the FRA
on biomass stocks and forest area. Unlike NGHGIs, FAOSTAT uses a
consistent methodology across countries, offering an independent
perspective on LULUCF emissions and removals.

Integrated assessment models
In this study, we show results from IAMs drawn from the IIASA AR6
Scenarios Database. The IAM-generated estimates of ELUC were
informed by the database’s Agriculture, Forestry, and Other Land Use
(AFOLU) variables. Since, by construction, CO2 emissions from agri-
culture are zero in the database, this AFOLU variable corresponds to
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the ELUC of our study. Moreover, we derive our IAM mean from an
aggregation of available model data over the period of 2005–2100
from 1685 scenarios for China.

Bookkeeping models used in Global Carbon Budget assessment
In our study, we incorporate results from three prominent book-
keeping models used in the GCB202367: H&C22, BLUE20, and OSCAR-
GCB12. These models have been widely adopted in the field of carbon
cycle research and provide comprehensive, scientifically robust
insights into terrestrial carbon emissions. Data for all three models are
retrieved from the supplementary information provided in the
GCB2023. Specific data related to peatland fires in China were sourced
directly from the BLUE team.

Data availability
The input data used for the OSCAR-China model, as well as the
resulting output data, are available at Zenodo (https://zenodo.org/
records/11182160).

Code availability
The main scripts for running the OSCAR-China model are openly
accessible on GitHub (https://github.com/yuehe1313/OSCAR-China).
Additionally, the source code for the foundational version of OSCAR
can be accessed at https://github.com/tgasser/OSCAR.
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