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Abstract  

Digital consumer innovations provide functionality to consumers through different impact 
mechanisms. These act indirectly on carbon emissions by shaping behaviour. Outcomes include 
energy/emissions mitigation or, growth through rebound effects, where energy savings are offset by 
increasing demand for energy. 
 
In this study we use meta-regression techniques to quantify the relative strength of different impact 
mechanisms on emissions for a diverse set of digital innovations. We use data from two key 
synthesis studies, providing 135 estimates of impact across 22 different digital consumer 
innovations. We measure impacts using different metrics including activity, energy use, or carbon 
emissions (CO2/CO2 eq). We refer to these as “emissions-related outcomes”.  
 
We find strong evidence that impact mechanisms explain differences in emissions-related outcomes 
between digital consumer innovations. Digital consumer innovations that influence behaviour by 
technology ‘substitution’ e.g., food gamification apps, have a significantly larger impact (44% 
reduction) than those that ‘coordinate’ e.g., food pairing apps (17% reduction) or those that that 
improve ‘control’ e.g., smart home appliances (20% reduction).  
 
Estimates of impact included in energy studies are highly sensitive to boundary decisions and 
assumptions made by researchers, introducing further uncertainties into their magnitude and 
direction. When we control for variation in study design such as whether emissions-related 
outcomes data were collected using field experiments, or simulations we find that differences 
between impact mechanisms are amplified. A further key finding is that impact mechanisms explain 
more of the difference between-innovations than deployment context.  
 
Our novel approach of classifying innovations by the underlying causal mechanism through which 
they change user behaviour and so energy emissions adds a new dimension to methodological work 
on indirect impacts for which system boundary and variable definition are not fixed. Identifying 
causal mechanisms with the largest benefits for emissions reduction also guides policy, innovators, 
service providers, and digital users concerned with carbon footprint. 
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Highlights: 
 

• Meta-analysis of the emissions-related impact of 22 digital consumer innovations across 
transport, food and homes 

• Measurement of the emissions reduction potential of six digital impact mechanisms 

• Contrast with reduction potential of other confounding factors, including type of action 
(Avoid-Shift-Improve) 

• Statistical approach controls for the impact of study design 
  

1.0 Introduction 

Digital consumer innovations (DCIs) are novel goods or services available to consumers. They are 
digital or digitally enabled, accessed or controlled through smartphones or other information 
communication technologies. They offer alternatives to mainstream consumption practices. Their 
use can help reduce carbon emissions in line with the Paris Agreement on climate change [1, 2].  
 
The impact of digitalisation on energy and emissions is direct, indirect and systemic [3]. Direct 
impacts include the energy and emissions footprint in the production, operation and disposal of 
information communications technologies, including devices, and supporting infrastructure 
(information communication networks, and data centres). The direct impacts of digitalisation are 
estimated in the range of 1.5-4% of global greenhouse gas (GHG) emissions [4, 5]. Indirect impacts 
relate to changes in processes, systems and user behaviour, are more uncertain and vary widely 
across DCIs. Systemic impacts relate to economic activity more generally (e.g., jobs, skills), society 
and governance systems and are even more uncertain as impact pathways are diffuse [6]. Hilty, 
Köhler [7] describe an alternative taxonomy distinguishing the ordering of these effects from 1st-
order (direct), 2nd-order (indirect - user) and 3rd-order (indirect - society wide). 
 
Impact mechanisms characterise the underlying processes through which DCIs can help reduce 
energy use and emissions [3, 8-11]. They describe the behaviour-driven application of DCIs, 
emphasising the user-function that technical improvements provide. They link specific DCIs to 
potential emissions reduction benefits that result from changes in how energy services are provided 
or consumed [12]. They are described in the literature as ‘higher order’ (second order, or indirect) 
effects that result from the services that information communications technology provide to users 
[13, 14]. 

Understanding the mechanisms through which digitalisation impacts energy helps guide innovation 

activity towards functionality linked to energy savings, and emphasises the need to tackle rebound 

outcomes for certain types of DCI. 

On the one hand, DCIs help optimise, control, substitute, and coordinate the efficiency with which 

energy is used for a wide range of activities. But on the other hand, by saving time, and reducing the 

cost, and friction of these activities, digitalisation can lead to growth in demand – the ‘rebound’ or 

induced demand effect. This basic trade-off between efficiency and growth determines the net 

indirect impact of digitalisation on energy use and GHG emissions [15, 16]. 

In this study we build on existing typologies [3, 10, 17] to characterise six impact mechanisms 

through which DCIs can help reduce energy use and emissions (see Table 1). 
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Table 1. Taxonomy of impact mechanisms used in this study 
 

Mechanism Definition Examples 

Access 
Access a service instead of owning a 
good 

Ride sharing matches drivers with riders, 
verifying trustworthiness 

Coordinate 
Coordinate real-time demand with 
available supply 

Mobility-as-a-Service incorporates up-to-date 
booking and payment for services 

Optimise 
Optimise how a system functions to 
reduce its energy needs  

Autonomous Vehicles incorporate smart 
charging schedules responsive to electricity 
network information 

Substitute 
Substitute with a less energy-intensive 
technology or form of service provision 

Digital hubs connect users with local sources of 
food 

Virtualisation 
Virtualise from physical-to-digital 
forms of service provision 

Videoconferencing & virtual interaction replace 
physical travel. 

Control 
Control or manage how a user-service 
is provided, including for resource 
efficiency 

Smart lighting (including motion sensors) 
adaptively responds to external conditions and 
users' needs  

 
The ‘access’ mechanism enables opportunity for using services with high utilisation rates of physical 

technologies or assets. Mobility services such as car clubs or Mobility-as-a-Service (MaaS), for 

example, present alternatives to owning or using single-occupancy private cars. Radical societal 

shifts such as a widespread adoption of electrified modes of transportation or shared mobility 

services as alternatives to car ownership has high potential for energy use reduction [18, 19]. 

Replacement of incumbent technologies or activities with digital applications takes a shorter lead 

time than the creation of completely new systems [20]. 

‘Coordinate’ and ‘optimise’ are system orientated mechanisms that rationalise the use of energy 

resulting in increased efficiency or reduced waste [3]. DCIs using a ‘coordinate’ mechanism, facilitate 

the exchange of goods and services e.g., ridesharing, ride hailing, and peer-to-peer exchange of 

goods matching real-time demand with available resources. They are heavily dependent on 

accessible digital infrastructure (including networks, platforms, and applications). The digital 

platform is a way for highly distributed and granular (small-scale) distributed surplus supply e.g., a 

spare seat in a car, a spare meal from a restaurant, an unused kitchen appliance or book to be 

‘matched’ with demand spatially and in close to real-time. ‘Optimise’ defines how a system operates 

to enhance performance, increase efficiency and curb energy needs [3, 13]. Fully connected and 

automated vehicles enhance travel convenience, dynamically optimise routes, and reduce journey 

times when linked to other information communications technologies [3, 9, 11]. Smart 

charging/discharging optimisation (e.g., in shared fleets of AVs) is made possible through sensors 

and software that are responsive to real-time electricity network information [21]. 

‘Substitute’ is the replacement of conventional goods and services with digital goods and services 

e.g., digital hubs for local food displace large-scale food production and retail distribution with food 

delivered directly to consumers from multiple local producers. Digital platforms match users with 

providers. ‘Virtualise’ involves the complete/partial digitalisation of existing goods or services by 

facilitating physical-to-physical replacement (e.g., substitution of goods of higher for lower carbon 

intensity) or physical-to-digital replacement of goods for services (e.g., videoconferences deploying 

virtualisation instead of physical interaction). 

‘Control’ is a user-oriented mechanism that enables greater energy efficiency e.g., in residential 

buildings, through smart heating systems, smart lighting, or home energy management systems 
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(HEMS). These DCIs ‘control’ or manage how energy is used to provide a service in residential 

settings. For example, smart heating can be user-controlled to provide thermal comfort only in 

occupied rooms. We use a simple definition of efficiency that relates to the minimum input of 

resources to meet user’s needs - providing sufficiency with less. Expanded definitions consider 

interactions between social, economic, and environmental factors [22]. 

The relative influence of different impact mechanisms across DCIs has not been well established in 
literature. By framing and measuring the relative strength of these six mechanisms across a diverse 
sample of DCIs we contribute both to the methodological strengthening of research focussed on 
indirect impacts and the substantiation of impact mechanisms as underlying causal instruments of 
change in demand-based carbon emissions. 
 
Many studies have estimated the impact of DCIs on activity, energy consumption, or greenhouse gas 
(GHG) emissions. We refer to these different metrics as “emissions-related outcomes”. Differences 
in measures and outcomes between these studies brings uncertainties in the assessment of DCIs 
impact [3, 14]. Although synthesis studies characterise these uncertainties across different 
innovations, they do not explain them. Horner, Shehabi [3] collectively refer to these as ‘known 
unknowns’. In this study we are concerned with disentangling these uncertainties by characterising 
and measuring the impact of mechanisms not previously observed. We focus on 22 different DCIs 
which have all been introduced into the market within the last 10 years and/or have a least 15% 
market share. For these DCIs there is also clear, empirical evidence of potential emissions-reduction 
benefit. 
 
Table 2. Definitions for Selected DCIs included in this study 
 
Domain of 
Application 

DCI  Description General digital infrastructure 
requirements 

Tr
an

sp
o

rt
 

Car clubs (car-sharing in US) A membership-based service 
offering short-term rental of 
vehicles e.g., Zipcar 

platform for booking & locating 
available vehicles 

Ride-sharing (carpooling in 
US, lift sharing in UK) 

Networks connecting passengers 
and drivers for shared car journeys 
or commutes e.g., Liftshare 

platform for matching drivers 
with riders & verifying 
trustworthiness 

Shared taxis (shared ride 
hailing, taxi-buses) 

Cars or minivans with multiple 
passengers on similar schedules, 
booked at short notice via apps 
e.g., UberPool 

platform for real-time scheduling 
of passengers via app 

Mobility-as-a-Service (MaaS) App-based integrated scheduling, 
booking, and payment platform for 
multimodal mobility services e.g., 
Whim 

platform for multi-modal 
integrated scheduling, booking & 
payment  

E-bikes* Bicycles with an electric motor and 
battery for pedal assistance up to 
limited speeds e.g., Gocycle G3 

control app, charging schedule, 
pricing & payment schedule 

Fully autonomous vehicles Vehicles that can be autonomously 
driven without active human 
intervention e.g., Waymo 

operating system - sensors, 
information storage & 
communications, control 
software 

Neighbourhood Electric 
Vehicles (NEVs)* 

Light-weight, low-speed, battery-
driven vehicles allowed on roads 
e.g., Waev 

control app - charging scheduling, 
pricing & payment 

Bike-sharing Fleets of bicycles available for 
short-term rental from fixed points 

platform - match users with 
available resources & locations 
(pricing & payment) 
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(docked) or free-floating 
(dockless), e.g., Mobike. 

Telecommuting Remote working enabled by 
information and communication 
technology (ICT) e.g., Slack. 

ICT-enabled home working, 
communications software 

Videoconferencing and 
virtual meetings 

Virtual interactions between 
people in different physical 
locations, enabled by ICTs e.g., 
Cisco TelePresence. 

communications software, 
display monitor, microphone, 
camera, internet 

Digital hubs for local food Buy food for delivery directly from 
multiple local producers e.g., Open 
Food Network 

platform - match users with 
providers (pricing & payment) 

Fo
o

d
 

Meal kits (or meal boxes) Home deliveries of fresh produce 
pre-portioned for cooking specific 
recipes e.g., Hello Fresh 

app based ordering, scheduling 
systems 

11th hour apps Food outlets advertise surplus 
fresh food at reduced prices e.g., 
Too Good to Go 

app-based, real-time sourcing of 
surplus food from multiple 
providers 

Food pairing apps Design food recipes using surplus 
ingredients e.g., Plant Jammer 

platform for matching surplus 
home ingredients to recipes   

Food gamification apps (e.g., 
for waste reduction) 

Elements of gameplay used to 
support efforts to reduce food 
waste or meat consumption e.g., 
Quit Meat 

info app & algorithm 

Smart heating systems Monitoring, automation, adaptive 
learning, and control (via app) of 
heating e.g., Nest 

internet-connectivity supporting 
adaptive learning on heating 
preferences 

H
o

m
es

 

Smart lighting Customisation and control (via 
app) of lighting e.g., Philips Hue 

app based control, scheduling of 
lighting 

Home energy management 
systems (HEMS) 

Monitoring, control, and 
management system for multiple 
home functions including heating, 
cooling, lighting, appliances, and 
solar photovoltaics (PV) e.g., 
GreenWave Reality 

management system: software, 
sensors, info storage & 
communications 

Heat pumps* Heating (or cooling) technologies 
that extract available heat from 
the air or ground to thermally 
condition homes e.g., Worcester 
Bosch 

demand responsive heating or 
cooling system 

Pre-fabricated whole home 
retrofits* 

Custom-fitted high-performance 
building shells combined with solar 
PV and heat pump units fabricated 
off-site and retrofitted externally 
e.g., Energiesprong 

digital scanning, 3D printing and 
3D design modelling in off-site 
fabrication 

P2P (peer-to-peer) exchange 
of goods 

Networks of individuals for 
exchanging products, tools, and 
other material items, e.g., 
SnapGoods 

app / network to match users 
with providers 

Disaggregated real-time 
energy feedback 

Activity- or appliance-level 
electricity or gas consumption data 
available to households e.g., 
Neurio 

information app and algorithm 

*E-bikes are included as digital innovations as they can include apps for charging, scheduling, sharing, pricing & payment. 
NEVs can be controlled using a digital signal processor. The NEV market is undergoing a rapid digital transformation, the 
adoption of digital technologies such as artificial intelligence (AI), internet of things (IoT), and blockchain are further 
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enhancing operational efficiency. Heat pumps are included as digital as they can be used in flexible scheduling mode in 
response to price signals from electricity networks. Pre-fab retrofits incorporate digitalisation through scanning, 3D 
printing, and 3D design modelling techniques used in off-site fabrication processes. 

1.1 Deployment context 
 
Deployment context describes characteristic differences, not inherent to the DCI itself but likely to 
have a confounding influence on the strength of different impact mechanisms e.g., policy, 
infrastructure, markets [3]. We identify and quantify four of these for comparison purposes: domain 
of application, type of action, dependence on digital accessibility and skills, and dependence on 
physical infrastructure. In Table 3 we further characterise each DCI in terms of the impact 
mechanism through which they influence emissions-related-outcomes, and their corresponding 
deployment context. 
 
Table 3 - Mapping of DCIs across Influences on Emissions-Related Outcomes  
 

Digital consumer 
innovation 

Impact 
mechanism 

Deployment Context 

Domain of 
application 
 

Type of action  

Dependence 
on digital 
accessibility 
and skills 

Dependence 
on physical 
infrastructure 

Car clubs (car-sharing in 
US) 

Access 

 
 

Transport 

Shift High Low 

Ride-sharing (carpooling 
in US, lift sharing in UK) 

Coordinate Shift Medium Low 

Shared taxis (shared ride 
hailing, taxi-buses) 

Coordinate Shift High Low 

Mobility-as-a-Service 
(MaaS) 

Access Shift High Medium 

E-bikes Substitute Shift Low Low 

Fully autonomous 
vehicles 

Optimise Improve High High 

Neighbourhood Electric 
Vehicles (NEVs) 

Substitute Improve Low Medium 

Bike-sharing Access Shift High Medium 

Telecommuting Virtualise Avoid High Low 

Videoconferencing and 
virtual meetings 

Virtualise Avoid High Low 

Digital hubs for local 
food 

Substitute 

Food 

Shift High Medium 

Meal kits (or meal 
boxes) 

Coordinate Shift High Medium 

11th hour apps Coordinate Avoid High Low 

Food pairing apps Coordinate Avoid Medium Low 

Food gamification apps 
(e.g., for waste 
reduction) 

Substitute Avoid Medium Low 

Smart heating systems Control 

Homes 

Improve High High 

Smart lighting Control Improve Medium High 

Home energy 
management systems  

Control Improve High Medium 

Heat pumps Control Improve Low High 

Pre-fabricated whole 
home retrofits 

Substitute Improve Medium High 
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P2P (peer-to-peer) 
exchange of goods 

Coordinate Avoid Medium Low 

Disaggregated real-time 
energy feedback 

Control Improve Medium Medium 

 
Domain of application characterises the settings that influence consumption behaviour. It is defined 
as a classification of provision by site of practice or use [23]. DCIs tend to be grouped within three 
domains: transport, food, and homes (household energy) [24-27]. In general there is a lack of 
comparative research into the influence of different domains on the impact of DCIs, with transport 
historically prioritised in studies [18, 28].  

Type of action is captured in the Avoid-Shift-Improve (A-S-I) framework. This is an established 
framework used by the transportation research community but increasingly being applied in other 
research fields [25, 28, 29]. It describes three distinct actions associated with the use and ownership 
of a DCI. ‘Avoid’ relates to consuming less of a good or service, e.g., telecommuting avoids work-
related travel by working partially or entirely at home or locations close to home. ‘Shift’ relates to 
consuming more resource-efficient forms of good or service, e.g., Maas replaces single occupancy 
vehicle journeys with multimodal shared mobility. ‘Improve’ relates to a technological shift which 
upgrades the resource efficiency of an existing good or service, e.g., smart heating systems improve 
efficiency for heating, ventilation, air conditioning, cooking and electrical appliances.  

DCIs variously depend on availability and access to Information Communications Technology (ICT) 
infrastructure and services (e.g., digital platforms, networks, and connectivity). DCIs offer services 
via physical goods and infrastructure, necessitating an additional layer of dependence. DCIs that 
incorporate deeper digitalisation mechanisms have the potential for greater savings in emissions 
[30]. However, DCIs requiring high levels of digital skills may be less accessible so limiting the impact 
of their use [31]. Many DCIs also rely on dedicated physical infrastructure in order to provide a 
useful service, such as docking stations for bike sharing, and building energy infrastructure (PV 
panels, batteries, grid connection) in the case of Home Energy Management Systems (HEMS) [32-
34]. As digital technology continues to develop, there are additional requirements for new 
infrastructure and reconfiguration of existing infrastructure [32]. Van der Vooren [35] emphasises 
the relevance of this transition in transport systems. In this study we distinguish two types of 
structural dependency (digital and physical). 
 
Digital skills and accessibility enable impact mechanisms to influence emissions-related outcomes. 

They relate to user skills and competencies required to interact with digital infrastructure and 

supporting services such as digital platforms, applications, and software [36, 37]. Individualised 

services rather than goods form an increasing share of consumption met through widespread 

digitalisation and service automation that require access and capabilities e.g., booking a shared taxi 

via a smart phone application [38, 39]. Digitally-enabled services may rely on physical infrastructures 

such as transportation networks. The extent of this dependence enables or constrains the potential 

of different digital impact mechanisms (e.g., access to shared car fleets depends on availability of 

dedicated parking spaces). The interplay between digital capabilities and physical infrastructure has 

strategic relevance for providers and users [40]. Within these two types of structural dependency we 

further define different levels of dependency (see Appendix A Table A1. Structural dependencies 

influencing the effectiveness of impact mechanisms). 

1.2 Controlling Influences on Emissions-Related Outcomes 
 
The field of impact estimation is concerned with study design robustness and standardisation. It is 
important therefore to contribute to explanations of underlying causal mechanisms to try and 
account for some of the uncertainty [3, 41]. We define and account for four key sources of 

Jo
urn

al 
Pre-

pro
of



8 
 

methodological uncertainly. These are internal validity and robustness; external validity and 
generalisability; type of emissions related outcome; and analytical method. Internal validity and 
robustness compares strength of study design for making robust inferences about the magnitude of 
emissions-related outcomes. It is a known ‘effect modifier’ and cause of heterogeneity in outcomes, 
particularly observable across studies in the homes domain [27]. Meta-analysis performed on low 
quality primary studies also have a tendency to overestimate an intervention [42]. External validity 
and generalisability compares the wider applicability of the results. This measure considers self-
selection bias, sample size, heterogeneity, and whether field trials or natural experiments have been 
conducted. Ivanova, Barrett [27] consider internal and external validity to be a cause of heterogeneity in 

mitigation potential. Sample size is also negatively correlated with effect size [43].  
 
Studies also vary in the type of emissions-related outcome. Changes in activity levels (behaviour) 
measure the amount of activity or useful service/energy service consumed by a DCI, e.g., annual 
vehicle miles travelled, kilograms of avoided food. Changes in energy measure the amount of energy 
or resources needed to provide a useful service e.g., well-to-wheel energy consumption. Changes in 
carbon measure the amount of greenhouse gas emissions (CO2 or CO2-equivalent greenhouse gases) 
e.g., lifecycle CO2 emissions per passenger-kilometre. Analytical method relates to key design 
decisions made by the researcher distinguishing between for example, empirical approaches 
(collection of observed data through field trials or natural experiments) and simulation approaches (a 
digital parameterised model of a real-world system) (see Appendix A Table A2. Taxonomy of study 
design characteristics influencing the measurement of energy consumption and emissions). 
  
1.3 The Aim of this Study 
 
The impact of DCIs on emissions is likely to vary based on characteristic differences and subject to 

wide ranging influences currently not captured in synthesis studies. The main aim of this study is to 

disentangle these influences to enable generalisation of the magnitude of impacts. We do this by 

focussing on the underlying causal mechanism of the impact unique to digitalisation. Our findings 

will help explain uncertainties previously attributed to study design variation. 

2.0 Materials and Methods 

2.1 The Data 

We use data taken from two key publications. Both are synthesis studies containing multiple 
estimates of the emissions-related outcomes of DCIs. These are: 

 

• Potential Climate Benefits of Digital Consumer Innovations (N=120 estimates) [14] 

• Demand, Services and Social Aspects of Mitigation, the contribution of Working Group III 
to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change 
(IPCC) (N=15 estimates)  
 

Study 1, Wilson, Kerr [14] is a directed review of 215 studies assessing the potential emissions 
benefit of DCIs across transport, food and homes. The studies included measure one of three 
outcomes: activity levels, energy use, CO2 emissions (or CO2equivalent). At least six papers for every 
DCI were included in the study. 
 
Study 2, Creutzig, Devine-Wright [1] is a review of 90 studies assessing the digital service 

opportunities for transport, nutrition, shelter, and education and entertainment. Studies measure 

the same three outcomes (activity levels, energy use, CO2 emissions (or CO2equivalent). Findings are 

incorporated in the Sixth Assessment Report of the IPCC, and subject to a rigorous two-stage review 

process.  
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Across these studies we extract 135 impact estimates for 22 different DCIs (see Table 4).  
 

Table 4. Number of studies and number of estimates of emissions-related outcomes for each DCI 
 
Domain of 
Application 

Digital Consumer Innovation Impact mechanism 
(n) Estimates (n 
studies) 

Transport 

Car clubs (car-sharing in US) Access 11 (7) 

Ride-sharing (carpooling in US, lift sharing in 
UK) 

Coordinate 5 (5) 

Shared taxis (shared ride hailing, taxi-buses) Coordinate 8 (8) 

Mobility-as-a-Service (MaaS) Access 1 (1) 

E-bikes Substitute 4 (4) 

Fully autonomous vehicles Optimise 9 (6) 

Neighbourhood Electric Vehicles (NEVs) Substitute 2 (2) 

Bike-sharing Access 4 (4) 

Telecommuting Virtualise 13 (7) 

Videoconferencing and virtual meetings Virtualise 10 (8) 

Food Digital hubs for local food Substitute 5 (3) 

Meal kits (or meal boxes) Control 10 (4) 

11th hour apps Coordinate 2 (2) 

Food pairing apps Coordinate 1 (1) 

Food gamification apps (e.g., for waste 
reduction) 

Substitute 5 (5) 

Homes Smart heating systems Control 5 (3) 

Smart lighting Control 5 (3) 

Home energy management systems  Control 17 (11) 

Heat pumps Control 5 (3) 

Pre-fabricated whole home retrofits Substitute 2 (2) 

P2P (peer-to-peer) exchange of goods Coordinate 1 (1) 

Disaggregated real-time energy feedback Control 10 (7) 

 Total  135 (96) 

 

2.2 Data Preparation 
 
From each study we extract quantitative estimates of the emissions-related outcomes of DCIs. All 
estimates measure percent change (%∆) from the adoption or use of a DCI compared to a baseline 
measurement or reference point of no adoption/use. The outcome estimate relates to one of three 
types: (i) change in activity (%∆ activity (n=24)); (ii) change in energy (%∆ energy (n=54)); (iii) change 
in CO2 emissions (or CO2equivalent) (%∆ emissions (n=57)), collectively referred to as “emissions-
related outcomes”. 
 
Where studies include multiple point estimates across a range of values, we calculate the midpoint 
as a representation of the mean [44]. Around a third of studies contain multiple estimates due to 
different outcome metrics (energy; emissions), differing assumptions (e.g., 1 worker household, 2 or 
more worker household), or a variant on the innovation type (e.g., ride sharing in a conventional 
vehicle or an electric vehicle). For completeness we include multiple estimates from these studies 
and treat them as independent. Although there is some risk of covariance (due to methodological 
similarity), it is not possible to treat the data as multi-level, because not all studies provide multiple 
estimates [45]. 

 
To operationalise study design characteristics, each study included in the meta-analysis is reviewed 
by two coders independently and subjectively. Relevant information is extracted according to a pre-
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prepared coding framework, and the four study design characteristics coded according to these 
criteria. This is then re-appraised by a second independent coder. For methodological approach we 
initially identified seven categories with empirical methods subdivided according to natural 
experiment, field trial or demonstration project. These are subsequently aggregated due to small 
sample sizes. (see Appendix A Table A3. Estimates of (n) of emissions-related-outcomes across 
impact mechanisms and deployment context).  

2.3 Data Analysis 
 
Data analysis is based on meta-analysis techniques [41]. Meta-analysis is an established framework 

for synthesis approaches. By combining results of comparable studies we increase the range of DCIs 

observed, the statistical power, and generalisability of findings, compared to individual studies [46]. 

The 96 individual studies we use are representative of North America, Asia, Australasia, and Africa. 

They vary in generalisability, from studies based on a single household [47] to those based on several 

million households [48]. By using meta-analysis techniques we combine these strengths, to critically 

evaluate and build on findings, and importantly address questions that are not posed by individual 

studies.  

All statistical tests are based on meta-regression methods and include directional tests of 
association. Following sensitivity testing we rejected the use of formal meta-analysis software. This 
requires methodological details, not consistently reported in studies, e.g., measures of variability 
such as standard deviation and standard error. Using Stata Release 16 [49] we apply three tests: 
 
Test 1 – We test separate bivariate associations between magnitude of impact (emissions-related 
outcomes) and (1) impact mechanism (2) deployment context (3) study design. We use descriptive 
statistics. To account for ‘spread’ and ‘outliers’ we use both parametric and non-parametric tests.  

 
Test 2 - As Test 1 but testing directional associations. We use bivariate regression methods, and 
post-estimation to predict the magnitude of impact of each predictor variable. For each model we 
also predict explained variance (R2/pseudo R2). 
 
Test 3 – As Test 2 but with the inclusion of controls for study design. We use multivariate regression 
methods.  
 
3.0 Results 

 
We find only non-parametric tests are significant, suggesting synthesised approaches that rely on 
mean values of the emissions-related outcome will not provide reliable estimates. Subsequently we 
base all three tests on non-parametric meta-regression. Test 1 is a Kruskal-Wallace test [50]. This 
test uses a Chi2 distribution to compare differences between two or more groups. It is non-specific in 
this respect, and any significant result confirms only that there are differences between at least two 
categories of the predictor variable. Test 2 is a bivariate quantile regression [51]. This is a non-
parametric linear regression approach which predicts median impact values as a linear function of 
the distribution of the predictor variable. The bivariate quantile regression model takes the following 
form: 

𝑦𝑖 =  𝛽0
(𝑝)

+  𝛽1
(𝑝)

𝑥𝑖 +  𝜀𝑖
(𝑝)

 

Where y= outcome (emissions-related outcomes), β0=constant, βi =slope on predictor variable xi , (p) = 

pth quantile regression model percentile 

Test 3 is a multivariate quantile regression [51]. The multivariate quantile regression model takes the 
following form: 
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𝑦𝑖 =  𝛽0
(𝑝)

+  𝛽1
(𝑝)

𝑥𝑖 + 𝛽2
(𝑝)

𝑧𝑖 +  𝜀𝑖
(𝑝)

 

 
Where y= outcome (emissions-related outcomes), β0=constant, xi = , βi =slope on predictor variable xi, 

β2=slope on vector of control variables zi, (p) = pth quantile regression model percentile 

We present results in a series of tables. All tables report % reduction (-) or increase (+) in emissions-
related outcomes, highlighting significant differences.  
 
3.1 Results: Impact Mechanisms and Deployment Context 
 
Table 5 – Results for Test 1 (Chi2 statistic) and Test 2 (bivariate quantile regression), comparing the 
magnitude of emissions-related outcomes across impact mechanisms, and deployment context. 
 

 
 
 
Influence on emissions-related outcomes 

Results for Test 1 Results for Test 2 

Metric = Chi2 
Statistic 

Metric = % reduction 
(or increase) in 
emissions-related 
outcomes  

 
 
 

Impact mechanism 

Access Chi2(6) = 16.134 
Prob>chi2 = 0.007* 

-15.5 

Coordinate -22.0 

Substitute -34** 

Optimise -9.0 

Virtualise -0.6 

Control -20 

D
ep

lo
ym

en
t 

C
o

n
te

xt
 

Domain of Application 

Transport Chi2(2) = 5.369 
Prob>chi2= 0.068 

-11 

Food -23.1 

Homes -16.6 

Type of action 

Avoid Chi2(2) = 5.628 
Prob>chi2 = 0.060 

-6.1** 

Shift -20.0 

Improve -18 

Dependence on digital skills and 
accessibility 

High Chi2 (2) = 5.145 
Prob>chi2 = 0.076 

-14.5 

Medium -13.8 

Low -70.0** 

Dependence on physical 
infrastructure 

High Chi2 (2) = 2.66 
Prob>chi2= 0.875 

-18 

Medium -15.0 

Low -17.0 
 ** denotes difference is significant to 99% CI, * denotes significant to 95% CI  
 

DCIs that mitigate GHG emissions through the substitution mechanism have significantly larger 

impact (estimated reduction of 34%) compared to all other mechanisms (access (15.5%), coordinate 

(22%), optimise (9%), virtualise (0.6%), and control (20%)). 

Although food-based DCIs have the largest impact (estimated reduction in emissions-related 

outcomes of 23.1%), this is not significantly different from homes (16.6%) or transport (11%).  

DCIs that enable ‘avoid’ actions have a significantly lower impact (estimated reduction in emissions-

related outcomes of 6.1%), compared to those that enable ‘shift’ (estimated reduction of 20%) and 

‘improve’ actions (18%). Our findings contradict studies suggesting ‘improve’ actions have the 

greatest emissions potential [52-54].  

We also find significant differences between high, medium, and low dependencies on digital skills 

and accessibility. Innovations that require high levels of digital skills and accessibility e.g., digital 
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hubs for local food have a significantly lower impact (estimated reduction of 14.5%) than those with 

low dependence e.g., e-bikes (estimated reduction of 70%).  

We find no significant differences between DCIs that have high dependence on physical 

infrastructure e.g., AVs and HEMs (estimated reduction of 18%), those that have medium 

dependence e.g., meal kits (15%), or low dependence e.g., videoconferencing and virtual meetings 

(17%) . 

3.2 Results: Study Design Characteristics as a Secondary Influence on Emissions-Related Outcomes  
 
Table 6 – Results for Test 1 (Chi2 statistic) and Test 2 (bivariate quantile regression), comparing the 
magnitude of emissions-related outcomes across study design categories 
 

Study design 
characteristic 

Study design 
category 

Results for Test 1 Results for Test 2 

Metric = Chi2 Statistic 

Metric = % reduction 
(or increase) in 
emissions-related 
outcomes 

Internal validity / 
robustness 

High/Medium Chi2(2) = 3.974  
Prob>chi2 = 0.046* 

-11.4 

Low -20.5* 

External validity / 
generalisability 

High Chi2 (2) = 7.372 
Prob>chi2 = 0.025* 

-8.5* 

Medium -11.4 

Low -21.9 

Emissions-related 
outcomes 

%Δ activity Chi2 (2) = 8.834 
Prob>chi2 = 0.659 

-20.0 

%Δ energy -13.1 

%Δ carbon -16.7 

Analytical method 

Accounting Chi2 (3) = 1.406 
Prob>chi2 = 0.704 

-13.1 

Empirical -13.5 

Simple Estimation -20.0 

Simulation -20.0 
** denotes difference is significant to 99% CI, * denotes significant to 95% CI  
 

Comparing the results across study design characteristics (Table 6), these suggest there are 

significant differences between studies based on variations in the strength of internal 

validity/robustness and external validity/generalisability. Studies with low internal 

validity/robustness estimate higher reductions (20.5%) compared to studies with high/medium 

internal validity/robustness (11.4%). Similarly, studies with low external validity/generalisability 

estimate higher reductions (21.9%), compared to studies with high external validity/generalisability 

(8.5%). These findings are consistent with Ivanova, Barrett [27]. 

We find no significant differences between type of emissions-related outcomes. Studies that 

estimate impact as %∆ activities are more likely to estimate higher reductions (20%), compared to 

those that estimate impact as energy (13.1%) or emissions (16.7%). We find no significant 

differences between studies based on different analytical methods. Modelling studies (accounting 

models 13.1% simple estimation models 20%, simulation models 20%) do not estimate higher 

reductions compared to empirical methods (13.5%).  

Our findings in general reflect the difficulty in observing the direct relationship between emissions-

related-outcomes and study design which is unlikely to be independent of DCI characteristics. Our 

data shows for example there is a significant association between type of emissions-related-

outcome and domain of application (Chi2 = 73.63, p<0.000) (see Appendix A, Table A4. Association 

between type of emissions-related outcomes and domain of application). 
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3.3 Results: Impact Mechanisms as a Primary Influence on Emissions-Related Outcomes, Controlling 

for Secondary Influences of Study Design  

In this final section of results, we examine the impact of DCIs on emissions-related outcomes when 

we account for the secondary influence of study design. Results are reported in a comparative table, 

comparing Test 2 (bivariate quantile regression) and Test 3 (multivariate quantile regression 

controlling for study design characteristics) (Table 7).  

Table 7 – Results for Test 3 (multivariate quantile regression), comparing the magnitude of 
emissions-related outcomes across impact mechanisms, and deployment context controlling for 
study design characteristics 
 

 
 

Influence on emissions-related outcomes 
 
 

Results for 
Test 2 

Results for 
Test 3 

Absolute (%) 
change 
magnitude  
|test3-test2| 

Estimated % change in impact 
(emissions-related outcomes) 

no controls controls change 

 
 
 

Impact mechanism 

Access -15.5 -20.4 4.9 

Coordinate -20.0 -17.8 2.2 

Substitute -34** -44.1** 10.1 

Optimise -9.0 0.5 9.5 

Virtualise -0.6 -6.2 5.6 

Control -21.34 -20.9 0.5 

Explained variance pseudo R2 (%) 5.6 8.1 2.5 

D
ep

lo
ym

en
t 

C
o

n
te

xt
 

Domain of 
Application 

Transport -11.0 -9.0 2.0 

Food -23.1 -37.1** 14.0 

Homes -16.7 -14.3 2.4 

Explained variance pseudo R2 (%) 1.2 5.2 4.0 

Type of action 

Avoid -6.1** -9.7** 3.6 

Shift -20.0 -20.8 0.8 

Improve -18.0 -14.6 3.4 

Explained variance pseudo R2 (%) 1.7 4.2 2.5 

Dependence on 
digital skills and 
accessibility  

High -14.5 -14.0 .51 

Medium -13.8 -18.5 4.7 

Low -70.0** -60.8** 9.2 

Explained variance pseudo R2 (%) 0.5 4.1 3.7 

Dependence on 
access to physical 
infrastructure 

High -18.0 -14.0 4.0 

Medium -15.0 -18.8 3.8 

Low -17.0 -15.5 1.5 

Explained variance pseudo R2 (%) 0.01 3.1 3.1 
** denotes significant to 99% CI, * denotes significant to 95% C.I. 

 
Study design characteristics have a secondary influence on the magnitude and direction of 
emissions-related outcomes across different impact mechanisms, domain of application, and 
dependence on digital skills and accessibility. This finding is supported by a general increase in 
explained variance (pseudo R2) between Test 2 and Test 3 for all influencing characteristics.  

An important finding is that impact mechanisms account for the highest explained variance in 
emissions-related-outcomes (5.6%) compared to deployment context. Explained variance also 
increases with the addition of study design controls (8.1%) (see Table 7). This is still modest but does 
suggest that impact mechanisms are a higher order main effect compared to the four variables 
measured within deployment context and compared to study design.  
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Across impact mechanisms evidence remains in support of our overall findings. We find a significant 
difference in the magnitude of emissions-related outcomes for DCIs that provide functionality 
thorough ‘substitution’ compared to all other impact mechanisms. When we control for secondary 
influences, we capture potential rebound effects (+0.5%)in the measurement of DCIs which 
‘optimise’ (see Figure 1, Graph 1(a) and 1(b)). We see a decrease in the magnitude of emissions-
related outcomes of 9.5%.  

 

  
Graph 1(a) Estimated change in emissions-related 
outcomes across impact mechanisms, no controls 

Graph 1(b) Estimated change in emissions-related 
outcomes across impact mechanisms, with controls 

 
Figure 1 – Change in emissions-related outcomes across impact mechanisms, comparing between 

study estimates without additional controls for differences in study design (Graph 1(a)) and with 

additional controls for differences in study design (Graph 1(b)). Graphs depict median impact (bullet) 

with standard error bars. 

Our findings show that we can generalise the magnitude of impacts across applications and contexts 
by focusing on the underlying causal mechanism of the impact unique to DCIs. This helps explain 
uncertainty which was previously attributed to study design variation for different applications. 
Controlling for study design variation further strengthens the explanatory power of impact 
mechanisms. 

4.0 Discussion  

Key Finding 1 - DCIs that provide functionality through substitution have high emissions reduction 

potential. Our findings suggest that DCIs that impact consumption behaviour via ‘substitution’ could 

contribute on average a 44.1% reduction in emissions-related outcomes (compared to a baseline of 

zero). Whilst DCIs that provide functionality through ‘optimisation’ have attributes which possess 

substantial consumer appeal, there remains uncertainty regarding the impact of optimisation 

technologies in the transport domain where efficiencies e.g., in vehicle automation, potentially 

create induced demand [55-57]. When we control for study design, DCIs that ‘optimise’ have a 

slightly negative impact (0.5% increase in emissions-related outcomes compared to a baseline of 

zero). 

Key Finding 2 – DCIs that avoid high emissions activity have the lowest mitigation potential. This 

finding (avoid -9.7%, shift -21%, improve -14.9%) aligns with Creutzig, Niamir [29] who find ‘avoid’ 

has the lowest mitigation potential across buildings, transport, and food end-use sectors. Grubler, 

Wilson [58] propose that while ‘improve’ actions have historically been given prominence, avoidance 

and modal shift actions advance the feasibility of a ‘low-carbon supply-side transformation’. The 

IPCC (2014) presented the A-S-I framework as a hierarchy of actions in which ‘avoid’ is the first 
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course of action, followed by ‘shift’ and ‘improve’ [59]. Pye, Broad [60]suggest that an approach 

which focuses on ‘avoid’ and ‘shift’ is well-aligned with policy goals. In reality, a diversity of 

strategies is required to achieve ambitious climate targets [61]. 

Key Finding 3 – Characteristic differences between application contexts influence the impact of 
digital consumer innovations. There is substantial GHG emissions mitigation potential across each of 
the domains of transport, food, and homes (energy) [24-27]. Historically, impact-related studies have 
tended to focus on a single domain, with transport often given higher priority [18, 23]. A smaller 
number of studies consider impacts across multiple domains [62]. We find that food-related DCIs 
have potentially the largest impact on emissions-related outcomes (Transport -9.0%, Food -37.0%, 
Homes -14.3%). In drawing conclusions, we note that the selected food domain DCIs within our study 
use either the ‘coordination’ mechanism (exchanging with others to minimise food waste e.g., 
through digital apps) or ‘substitution’ (local foods substituted for imported foods via digital hubs) 
impact mechanisms, which we find have higher emissions reduction potential (Key Finding 1).  
 
Key Finding 4 - Ensuring good access to digitalisation and physical infrastructure is an enabler of 
impact but is not a critical determinant of the magnitude of impact. Global digitalisation is steering 
progress towards increased dependence on digital access and skills, physical infrastructure and 
complex interdependence across sectors [30]. Our study has not been able to disentangle these 
effects. We find very modest differences across high and medium dependence on digital accessibility 
and skills, with a large, estimated reduction in emissions with low dependence. We note however, 
that DCIs classified as having lower dependence on digital access and skills tend to be the same DCIs 
operating through a ‘substitution’ impact mechanism which demonstrates a larger emissions-related 
outcome (Key Finding 1). As digital technology continues to evolve the requirements for additional 
enabling physical infrastructure, and future reconfigurations to existing infrastructure is widely 
recognised [32]. Van der Vooren [35] emphasises the importance of this transition in transport 
systems. The diffusion of radically new vehicle technologies, for example could be impeded by 
charging infrastructure deficiencies [63].  
 
Key Finding 5: Study design characteristics exert a secondary influence on the magnitude of impact 
across different studies. In this key finding we concur with Horner, Shehabi [3]. Differences in 
impact are highly likely to reflect the subjectivity of decisions made by researchers in the study 
design process. There are of course inherent challenges to improving consistency in approaches to 
measuring the indirect effects of different impact mechanisms, which largely rely on the availability 
and validity of established empirical work. We suggest future work could be improved by 
encouraging standardised methodological approaches that enhance consistency in the framing and 
reporting of methodologies and results. Standardisation of reporting within studies would enable 
methodological differences across study design to be characterised and measured. Related reporting 
of uncertainties and errors would enable more advanced meta-analysis software to be reliably 
employed in future synthesis work. Bremer, Kamiya [64] allude to a critical need to develop and 
employ robust and consistent methodologies to assess, review and evaluate the energy and climate 
effects of digitalisation. In this they concur with the International Telecommunications Union [2] 
whose aim is to improve the consistency, transparency and comprehensiveness of how the use of 
ICT solutions impacts GHG emissions over time. 
 
Limitations 

We are unable to clearly distinguish between studies that account for rebound effects [65, 66] within 
their estimates of digital impact. This is an important consideration as it has a potentially large 
influence [67, 68]. For example, in a recent study Meshulam, Font-Vivanco [69] estimate that 50-94% 
of the expected GHG emission reductions from a free peer-to-peer food sharing platform, is offset by 
rebound effects. However, across the selected impact studies only a few account for these effects; 
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most studies do not. Rebound effects due to digitalisation are therefore not included as a variable in 
the study design controls. To understand the relationship between DCIs and energy and resource use 
more fully, these effects should be integrated into future impact studies.  

5.0 Conclusion 
 
There is a pressing need for intensified engagement and participatory dialogue between industry, 
companies in the ICT sector, ICT users and other stakeholders, and research communities. These 
collaborative processes could integrate deeper understanding of the use of innovative digital 
applications and the potential for climate change mitigation. In this study we contribute to this 
debate by disentangling the relative importance of different drivers of change in emissions-related 
outcomes for DCIs. We take a novel approach to test the relative magnitude of different impact 
mechanisms. Uniquely, we separate and concurrently control for uncertainties across impact 
estimates related to different study design characteristics. Our analytical framework combined with 
quantitative findings offer a more diverse perspective than previous studies and allows more 
granular consideration of the disparate influence of DCIs on energy use and emissions.   

Our work can help to deliver well-defined strategies for decision/policymakers. It can provide clearer 
focus on which impact mechanisms, mitigation actions, and application domains, offer the greatest 
reduction potential. Policy can shape digitalisation pathways with consequential influence on energy 
demand, and GHG emissions [70-72]. Decision makers can build integrated approaches between the 
dematerialisation strategies of the circular economy and digitalisation to meet the needs of different 
user groups [71, 73, 74]. Policy can direct digitalisation strategies towards meeting wider 
sustainability goals, promoting clean energy sources, investment in digital infrastructure, and the 
provision of state-of-the-art sustainable systems [73, 75]. To minimise the inherent risks of climate 
overshoot, there is also a need for policy development to counter the potential for rebound/demand 
induction associated with certain impact mechanisms.  
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Appendix A – Additional Tables 
 
Table A1. Structural dependencies influencing the effectiveness of impact mechanisms 
 

Structural 
dependency 

Strength Definition Examples 

Digital skills 
and 
accessibility 

High 

Use necessitates skills and access to 
digital infrastructure e.g., a platform 
with real-time matching of users and 
providers. 

Shared taxis 

Medium 
Use requires some skills and access 
to digital infrastructure, e.g., control 
apps and scheduling 

Smart lighting 

Low 
Use is possible without skills and 
access to digital infrastructure, e.g., 
an app to allow scheduled charging. 

E-bikes 

Physical 
Infrastructure 

High 
Use requires dedicated physical 
infrastructure e.g., thermostat and 
in-home wireless network 

Smart heating 
system 

Medium 
Use may require dedicated physical 
infrastructure e.g., distribution 
warehouse and delivery vehicles. 

Digital hubs for 
local food 

Low 
Use does not require dedicated 
physical infrastructure (additional to 
publicly available)  

P2P exchange of 
goods 

 
Table A2. Taxonomy of study design characteristics influencing the measurement of energy 
consumption and emissions 
 

Characteristic Metric Measurement criteria N (studies) 

Internal validity / 
robustness 

High/Medium 

Use of randomised control trial or clearly 
delineated control groups / pre-test baseline, 
clear system boundaries, and assumptions, 
hypothesis testing, testing of alternative 
explanations includes field trials or demonstration 
project, which may use controls/pre-test baseline 
but lacks some clarity in approach. 

72 

Low 

Single model and scenario, or self-reported 
behaviour / preferences, absence of 
methodological detail, coarse assumptions, e.g., 
100% household uptake of DCI, or anecdotal 
evidence 

63 

External validity / 
generalisability 

High 
Large heterogenous sample or synthesis of large-
sample field trials, testing performed in different 
conditions, long-time frame 

25 

Medium 

Real-world conditions, field trial results, but 
involve small-medium homogenous samples or 
the potential for opt-in bias. Large heterogenous 
sample but account for single condition 

35 

Low 

Simulation, small sample size e.g., a single-house 
simulation or single journey type with no time-of-
day variation, test performed in controlled 
conditions, potential opt-in bias 

75 
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Emissions-related 
outcomes 

percent change 
(%Δ) in activity 
* 

The amount of activity or useful service 
consumed, e.g., annual vehicle miles travelled 
(VMT) 

25  

percent change 
(%Δ) in energy 
* 

The amount of energy or resources needed to 
provide a useful service, e.g., well-to-wheel 
energy consumption (in GJ) 

35 

percent change 
(%Δ) in carbon 
* 

The amount of greenhouse gas emissions (CO2 or 
CO2-equivalent) e.g., lifecycle CO2 emissions per 
passenger-kilometre 

75 

Analytical method 

Accounting A linear combination of disaggregated variables in 
a mathematical model (e.g., lifecycle analysis) 

28 

Empirical The collection of observed data through field 
trials, natural experiments, and demonstration 
projects 

33 

Simple 
Estimation 

Based on empirical or anecdotal evidence with 
broad assumptions and uncomplicated 
accounting 

20 

Simulation A digital parameterised model of a real-world 
system. 

54 

* relative to a without-digitalisation reference case or baseline 

 
Table A3. Estimates (n) of emissions-related outcomes across impact mechanisms and deployment 
context 
  

Classification Mechanism 
Estimates 

(n) 

Impact mechanism 

Optimise 9 

Control 52 

Substitute 18 

Virtualise 23 

Access 16 

Coordinate 17 

Domain of application 

Transport 67 

Food 23 

Homes 45 

Type of action 

Avoid 32 

Shift 57 

Improve 46 

Dependence on digital 
access and skills 

High 100 

Medium 27 

Low 8 

Dependence on access to 
physical infrastructure 

High 40 

Medium 35 

Low 60 

 
Table A4 – Association between type of emissions-related outcomes and domain of application 
 

 Domain  %∆ Activity %∆ Carbon %∆ Energy  Total 

Food 
n 9 9 5 23 

% 39.13% 39.13% 21.74% 100% 

      

Homes 
n 1 4 40 45 

% 2.22% 8.89% 88.89% 100% 
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Transport n 14 44 9 67 

 % 20.9 65.67 13.43 100 

      

All Domains N 24 57 54 135 

 % 17.78 42.22 40 100 

 
There are underlying similarities between the choice of emissions-related outcomes by researchers 
in specific domains. Eighty nine percent of the 45 studies measuring the impact of DCIs in the homes 
domain were estimated as %∆ energy. In transport, 66% of the 67 studies were estimated as %∆ 
carbon. Studies in the food domain are more balanced across the three different outcome measures.  
 
Appendix B – Additional Graphs 

 

  
Graph B1(a) Estimated change in outcomes across 
application domains, with no controls 

Graph B1(b) Estimated change in outcomes across 
application domains, with controls 

 
Figure B1 – Change in emissions-related outcomes across domains of provision, comparing between 

study estimates without additional controls for differences in study design (Graph B1(a)) and with 

additional controls for differences in study design (Graph B1(b)). Graphs depict median impact 

(bullet) with standard error bars. 

DCIs in the food domain have a significantly larger influence on emissions-related outcomes 

(compared to homes and transport) when we control for the secondary influences of study design. 

The impact of food-related DCIs increases from a 23% reduction in emissions-related outcomes (see 

Graph B1(a)) to over 37% reduction (see Graph B1(b)). The overall effect is that there are significant 

differences between food and transport related innovations (Graph B1(b) error bars do not overlap).  
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Graph B2(a) Estimated change in outcomes for type 
of action, no controls 

Graph B2(b) Estimated change in outcomes for 
type of action, with controls 

 
Figure B2 – Change in emissions-related outcomes across type of action, comparing between study 

estimates without additional controls for differences in study design (Graph B2(a)) and with 

additional controls for differences in study design (Graph B2(b)). Graphs depict median impact 

(bullet) with standard error bars. 

We find no significant change in emissions-related outcomes across A-S-I actions. When we control 

for differences in study design the magnitude of studies measuring digital innovations that ‘avoid 

actions increase by 3.6%. DCIs that ‘improve’ energy and emission efficiency reduce by 3.4%.  

We find very modest change in outcomes across high, medium, and low dependence on digital skills 

and accessibility when we control for study design, but change remains insignificant. This implies 

that while ensuring good access to skills is an enabler it is not a critical determinant of the 

magnitude of impact. Changes in outcomes across high, medium, and low dependence on physical 

infrastructure are also not statistically significant. 
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