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Abstract
Purpose of Review Landscapes can be defined as mosaics of different land covers, habitats, ecosystems, or land-use systems. 
The link between spatial heterogeneous patterns and ecological processes is the core concept in the research field of land-
scape ecology. Nowadays, advanced computational methods are essential to the field due to its cross-disciplinary nature, the 
increasing availability of data, and the complexity of landscape systems.
Recent Findings This review provides an overview of recent developments in computational methods that have advanced 
the research field of landscape ecology. We focus on key topics such as spatial patterns, connectivity, landscape genetics, 
sampling, simulations and modeling, and spatial planning.
Summary The review highlights key innovations, challenges, and potential future directions in the field, emphasizing the 
role of computational methods in addressing complex ecological questions.

Keywords Spatial data · Spatial patterns · Pattern-process link · Open-source · Scientific software

Introduction

Landscapes are typically defined in landscape ecology as 
mosaics of different ecosystems, habitats, land covers, or 
land-use systems [1], with emphasis on heterogeneity of at 
least one factor of interest [2]. Linking spatial heterogene-
ity and ecological processes, including potential interactions 
between heterogeneity and processes, is the fundamental 
concept of landscape ecology [2]. Typical research topics 
include, but are not limited to, pattern-process links, land-
scape complexity, ecological flows, scale effects, landscape 

modeling, conservation, drivers and consequences of land 
use and land cover (LULC) change, and human activities 
within landscapes [3].

Computational science analyzes abstracted core mecha-
nisms of research questions using data and algorithms and 
is one of the most important tools of modern science [4]. 
Following, computational ecology can be defined as com-
putational science that is used to address ecological research 
questions with focus on data-driven and model-driven 
approaches [5]. Computational ecology is crucial for land-
scape ecology as a research field because data is often con-
text- and scale-dependent, making it challenging to design 
controllable, reproducible, and replicable experiments [6], 
but see [7] for a review of experimental studies]. Addition-
ally, because landscape ecology is a cross-disciplinary field 
[8], the availability of data increases steadily [9], and the 
complexity of landscape systems [10], there is a need for 
advanced computational methods.

Here, we provide a perspective on recent developments 
and advances in computational methods in multiple key 
topics of landscape ecology (Fig. 1), including software 
that implements them or is potentially capable of creating 
novel insights in these topics (Tab. 1). In this context, we are 
focusing on open-source software and scripting languages 
such as R, Python, and Julia. However, we do not aim to 
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provide a systematic literature review or a general introduc-
tion to (computational) landscape ecology. For such, please 
see [2, 11], or [8].

Data Models

There are two fundamental data models used to represents 
landscapes, namely the raster and the vector data model. The 
raster data model typically uses regularly spaced grid cells, 
while the vector data model uses points, lines, and polygons 
to represent landscape features [8]. Often, the choice of the 
data model is driven by data and software availability or 
by familiarity with the approach [60]. For example, many 
LULC maps are provided as gridded raster data as they often 
relate to underlying remote sensing products.

Similarly, the issue of scale is closely related to the used 
data model. This includes the extent of the study area and 
resolution of the data (i.e., the smallest data unit). Addition-
ally, thematic resolution in landscape ecology often refers 
to the values describing landscape features, e.g., the num-
ber of discrete LULC categories or habitats [61]. Various 
classification systems are relevant at local, regional, and 
global extent, such as the National Land Cover Database 
(NLCD), the Coordination of Information on the Environ-
ment (CORINE), or the Food and Agriculture Organization 
(FAO) systems [62]. Lastly, temporal scales are relevant in 

terms of extent and resolution, but also with regards to the 
detail of captured ecological processes.

The spatial reference system of the data is less frequently 
discussed but often critical. Cartesian coordinate reference 
systems measure distances between two points in Euclidean 
distances, typically in meters. In contrast, geographic coor-
dinate reference systems are based on degrees and measure 
distances as great-circle distances. Numerous coordinate 
reference systems exist and novel projections are constantly 
being developed to improve spatial cohesion, efficiency and 
accuracy [63]. However each reference systems comes with 
distinct properties that may distort areas, distances, angles, 
and aimed to represent specific regions or countries. There-
fore, it is essential to choose the appropriate spatial reference 
system based on the available data, area of interest, and the 
specific research question.

Data quality is generally variable, and data products are 
not flawless, potentially containing errors and biases. For 
example, global land-cover products typically have an over-
all accuracy of 70 to 80% [64], indicating that 20 to 30% 
of the grid cells may be misclassified. Furthermore, these 
misclassifications are not random, but are often correlated 
with specific LULC types, regions, and seasonal variations 
[65]. Rather than relying on global products, however, there 
are also increasingly voices that advocate for the production 
and use of regional land-cover products [66]. Nevertheless, 
many landscape ecology studies tend to accept the data at 
face value, neglecting its accuracy and inherent uncertainty.

Fig. 1  Overview of landscape ecology topics discussed in relation 
to computational methods. All topics are highly interconnected. For 
example, the quantification of spatial patterns often relies on sam-
pling approaches and can serve as target values for simulation mod-
els. Simulated neutral landscapes may act as null hypotheses for con-

nectivity analyses. Landscape genetic analyses frequently depend on 
connectivity estimates, which can, in turn, inform spatial planning 
decisions. The image uses modified Copernicus Sentinel-2 data from 
2024–09-07
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Table 1  Software and 
models that implement recent 
methodological advances in 
landscape ecology

Topic Programming language Software Reference

Spatial patterns R sf [12]
terra [13]
landscapemetrics [14]
multilandr [15]
bespatial [16]
rasterdiv [17]
LandComp [18]
geodiv [19]
glcm [20]
vectormetrics [21]
motif [22]

Python GeoPandas [23]
Rasterio [24]
PyLandStats [25]
LecoS [26]

Julia GeoStats [27]
GeoInterface [28]

Stand-alone software FRAGSTATS [29]
GuidosToolbox [30]

Connectivity R ResistanceGA [31]
lconnect [32]
grainscape [33]

Julia Circuitscape [34]
ConScape [35]
Omniscape [36]

Stand-alone software Graphab [37]
Conefor [38]
LSCorridors [39]

Landscape genetics R graph4lg [40]
landgenreport [41]
adegenet [42]
ape [43]

Python Python based scripts [44]
SDMtoolbox 2.0 [45]

Sampling Python ZonalMetrics [46]
Simulation models R NLMR [47]

rflsgen [48]
Python NLMpy [49]

Pathwalker [50]
Julia NeutralLandscapes [51]
Stand-alone software GradientLand [52]

Landscape Generator [53]
HexSim [54]
RangeShifter2.0 [55]

Spatial planning R prioritizr [56]
CoCo [57]
restoptr [58]

Python CAPTAIN [59]
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Spatial Patterns

Spatial patterns can be defined as the scale-dependent pre-
dictability of the physical arrangement of observations [67] 
or as clearly identifiable structures in nature itself or data 
extracted from nature [68]. Importantly, patterns observed in 
nature contain information about the history of the system, 
such as demographic processes, dispersal characteristics, or 
climatic patterns [69]. However, spatial patterns are not only 
a result of processes but could also be drivers of them. Thus, 
untangling a landscape’s history and linking its spatial pat-
terns to ecological processes is one of the core concepts of 
landscape ecology [2].

Landscape Metrics

Traditionally and at present, many prominent approaches 
that quantify spatial patterns revolve around raster data using 
categorical values based on the patch mosaic model [60, 70]. 
The strength of landscape metrics is that they are easy to 
apply, communicate, and can be calculated straightforwardly 
from raster data based on remote sensing derived products 
[71, 72]. However, limitations have also been identified 
for many landscape metrics. These include shortcomings 
to quantify the spatial structure, sensitivity to both spatial 
scale and thematic resolution, and correlation and redun-
dancy between metrics [71, 73, 74].

To address limitations related to correlation and redun-
dancy several approaches have been used to identify core 
metrics that capture main components of landscape patterns, 
such as multivariate factor analysis [75], multivariate statis-
tics [76], principal component analysis [77], or the variance 
inflation factor [78]. More recently, principal component 
analysis over a set of landscape blocks revealed two main 
components of landscape configuration, namely complex-
ity and aggregation which together explain about 70% of 
variance [79]. These results are in line with recent reviews 
that have similarly suggested that there are two fundamen-
tal components of landscape patterns, namely amount and 
adjacency [80, 81]. These components are connected to 
complexity and aggregation as suggested by [79] and later 
formalized in [82].

Landscape Mosaic Method

The landscape mosaic method offers a way to quantify spa-
tial patterns through a tri-polar classification model involv-
ing three LULC classes [83]. The approach uses a moving 
window to determine the proportions of these three classes 
within each focal grid cell. These proportions are then classi-
fied into 19 mosaic classes based on thresholds that describe 
the presence, dominance, or uniqueness of each class. This 

allows the assessment of content, context, and interface 
zones of LULC data in a scale-dependent manner. Recently, 
the method has been improved by expanding the classifica-
tion to 103 classes and incorporating heatmap visualizations 
and summaries [84].

Entropy

Entropy measures in landscape ecology are mainly derived 
from information theory and thermodynamics. They are 
mainly used to quantify the complexity of the landscape 
(spatial heterogeneity), and less often unpredictability (tem-
poral heterogeneity), as well as scale dependence (spatio-
temporal heterogeneity) [85]. However, studies show that 
insights gained from entropy measures depend on the for-
mulation of the selected measure and on the underlining 
data model, e.g., the composition of categories or the co-
occurrence matrix representation [86].

The Shannon diversity index [87] quantifies the richness 
and evenness of categories in the landscape, omitting the 
spatial configuration. Shannon’s entropy can also be modi-
fied to include the landscape’s spatial configuration, e.g., by 
weights calculated from intra- and interclass distances [88]. 
However, to quantify the spatial configuration and the total 
complexity of the landscape, other measures from informa-
tion theory must be adapted. Nowosad and Stepinski [82] 
proposed to compress information about the landscape’s 
composition and configuration into a co-occurrence matrix 
which could be used to calculate various entropy measures. 
This includes conditional entropy (representing configura-
tional complexity), joint entropy (representing overall spa-
tial-thematic complexity), mutual information, and relative 
mutual information (both representing the degree of spatial 
autocorrelation).

Based on concepts from thermodynamics initiated by 
the work of [89] and [85], in the last few years, there has 
been a surge in the development of entropy-based metrics 
for landscape ecology. In the late 1800s, Boltzmann for-
mulated a probabilistic interpretation of the second law of 
thermodynamics using the concepts of “macrostate” (the 
general state of a system) and “microstate” (the configura-
tion of the system elements) [90]. [91] proposed to relate 
the edge length (defined as the side lengths of neighbor-
ing cells with different LULC classes) to the microstate 
of the landscape and use the proportion of microstates to 
compute the relative Boltzmann entropy of a landscape 
mosaic. This approach was later generalized for calcula-
tions based on the raster surface model and point patterns 
[92]. Subsequently [93], proposed to use the Boltzmann 
entropy to quantify the complexity of a landscape surface 
by transforming the input raster into a series of landscape 
surfaces with different levels of detail (microstate) and 
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calculating the Boltzmann entropy based on the total num-
ber of microstates that are able to generate the observed 
macrostate. Recently [94], extended the original definition 
of Boltzmann entropy to incorporate information about the 
adjacency of the same categories in the landscape mosaic 
by using the number of contiguous patches of the same cat-
egory. The relationship between Shannon and Boltzmann 
entropies in landscape ecology remains contentious, with 
recent studies challenging the thermodynamic interpreta-
tion of Boltzmann-inspired measures and advocating for 
Shannon entropy as a more general form [95, 96], high-
lighting the need for further research to elucidate their con-
nections to environmental processes.

Moreover, many other entropy-based metrics have been 
proposed for use in landscape ecology. The Renyi [97] 
and Gibbs entropies, which are both generalizations of the 
Shannon entropy, have been applied to quantify landscape 
complexity. The Rao quadratic entropy [98] has also been 
applied recently [99], as it measures not only the relative 
abundances of elements but also the pairwise dissimilari-
ties or distances between them. Thus, it can be useful in 
cases where the dissimilarities between LULC classes are 
relevant. Another recent development to describe patterns 
across scales is the use of Kullback–Leibler divergence 
(also known as relative entropy) which is a measure of dif-
ferences between two probability distributions [96].

Surface Metric

Surface metrics are based on the gradient surface model 
using raster data and continuous values [100, 101]. These 
metrics are mostly adapted from microscopy and molecular 
physics [100, 102]. The gradient surface model can increase 
the resemblance of the data to the natural world because it 
allows for the inclusion of more heterogeneity within each 
grid cell [101, 102]. Many surface metrics have analogous 
landscape metrics [101], however, using surface metrics 
allows for the exploration of different or additional patterns 
and potentially pattern-process links [100, 103]. The metrics 
are able to quantify various characteristics, such as rough-
ness, skewness and kurtosis, total and relative amplitudes, 
curvatures of local peaks, or surface bearing area ratios 
[101].

Nevertheless, similar to landscape metrics, also surface 
metrics are scale-dependent because they are used to quan-
tify landscape heterogeneity which is itself scale-dependent 
[104]. Software to calculate these metrics is still rare and 
further research is needed into the specific pattern-process 
links and ecologically meaningful interpretations [102, 
105].

Related to surface metrics, another recent approach 
to quantifying the gradient surface model is based on 

frequencies and local adjacencies of continuous input pixel 
values [106].

Vector‑based Metrics

As hundreds of metrics have already been developed for 
gridded raster data, the most straightforward approach 
may be to reimplement these same metrics for vector data. 
Although this is possible for many metrics, there are also 
metrics specifically related to the corresponding data mod-
els [107]. For example, in urban planning vector-based 
metrics are applied to quantify the shapes of urban areas 
and characterize the complexity of building footprints 
[108]. Earlier approaches to quantifying shape complexity 
included four categories of compactness measures: perim-
eter-area, single parameters of related circles, dispersion 
of elements of the area around a centroid, and direct com-
parison to standard shapes [109]. More recently, a unified 
theoretical foundation for measuring shape compactness 
was introduced using a set of ten distinct properties of a 
circle and metrics associated with each of these properties 
[110].

However, also vector-based metrics have limitations. The 
most important limitation relates to computational complex-
ity, which makes calculations of vector-based metrics slower 
than their raster equivalents. Another technical issue is the 
requirement for topologically correct data (e.g., geometries 
cannot overlap), which is often problematic, especially for 
data from different sources. Last, the pattern-process link 
for vector-based metrics remains underexplored compared 
to raster-based metrics.

Operations on Spatial Patterns

Spatial patterns can be analyzed through a range of com-
putational operations, e.g., comparing, searching, or 
grouping. These operations are based on spatial signatures 
(multi-numerical representations of landscape pattern) and 
dissimilarity measures (functions that quantify differences 
between the signatures), and can be calculated for differ-
ent areas or for the same area at two different moments in 
time. Comparing spatial signatures is often used to analyze 
landscape dynamics, e.g., to detect changes in landscape 
structure over time [111]. Furthermore, signature-based 
searches can be used to compare the spatial signature of a 
focal area to the spatial signatures of multiple other areas. 
This allows for the identification of areas with similar sig-
natures compared to the focal area, e.g., areas with similar 
environmental conditions [112]. Additionally, it is pos-
sible to calculate spatial signatures for multiple areas and 
group them to similar clusters based on their signatures 
[113].
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Connectivity

Landscape connectivity describes how landscape features 
facilitate or impede movement, flow, and dispersal of 
organisms (e.g., active movement of animals, or dispersal 
of sessile plants by wind or water). It underpins ecosystem 
functionality, maintains biodiversity and populations, and 
plays an important role in many conservation actions [114]. 
Connectivity can be divided into structural and functional 
connectivity [115].

Structural connectivity describes the physical arrange-
ment of landscape elements, focusing on spatial aspects such 
as continuity and adjacency. It is solely a landscape feature 
and independent of species characteristics [114, 116]. Land-
scape metrics are commonly used to describe structural con-
nectivity in terms of, e.g., total habitat amount, patch size, 
or patch isolation. Recently, there has been an increasing 
focus on within-patch connectivity using metrics such as 
the effective mesh size [117]. However, landscape metrics 
are frequently criticized for an ambiguous link to functional 
connectivity [71, 74]. Functional connectivity, in contrast, 
integrates landscape structure with the perceptual, behavio-
ral, and dispersal characteristics of species, making it both 
species- and landscape-specific [115, 118].

Although multiple approaches that measure connectivity 
have been developed [119, 120], the technical and concep-
tual quantification of connectivity has proven challenging 
[115, 121]. Generally, movement and dispersal data from 
individuals is required to infer the elements in the landscape 
that organisms preferentially move or disperse through 
[119]. While improving technologies have made tracking 
animal movement at high tempo-spatial resolution avail-
able [122, 123], it is still logistically challenging to track 
high numbers of individuals. Thus, in practice connectivity 
is primarily determined by indirect estimations. Calabrese 
and Fagan [121] distinguished three types of estimates: i) 
structural connectivity determined by the physical attributes 
of the landscape, ii) potential connectivity as a combina-
tion of physical landscape attributes and limited informa-
tion about dispersal characteristics of species, and iii) actual 
connectivity related to observations of individuals moving 
through a landscape.

Resistance Surfaces

Many modern connectivity approaches rely on resistance 
surfaces to represent the landscape [124]. A resistance sur-
face is a raster-based representation of a landscape where 
each cell is assigned a value reflecting the species specific 
cost for an individual to traverse or disperse that cell based 
on landscape features such as habitat type, topography, 
or barriers [125]. Creating resistance surfaces involves 

obtaining landscape data for the area of interest, quantify-
ing cost values for each cell using movement and disper-
sal data, and finally analyzing the surfaces [126]. This can 
include expert opinion (widely used due to low effort, how-
ever, difficult to measure accuracy) [127], detection data 
(single point locations of unknown individuals), relocation 
data (multiple sequential locations of the same individual 
but at low frequency), pathway data (high-frequency reloca-
tion data allowing for movement track inference), or genetic 
data (samples used to calculate genetic distances between 
populations).

Least-cost modeling identifies potential pathways 
between two points that minimizes the related movement 
or dispersal costs based on the resistance surface [118]. By 
calculating pathways between two points it is possible to 
estimate connectivity between these points based on the 
accumulated cost along the path. This method can also 
generate accumulated cost surfaces depicting the minimum 
cost from a single point to all other locations helping to 
identify reachable areas within a threshold. The creation of 
least-cost paths is a well established technique and there are 
highly optimized and efficient algorithms available for its 
calculation.

Contrastingly, circuit theory considers all possible 
pathways between locations simultaneously [128]. In this 
approach, the landscape is represented as a network of elec-
trical nodes connected by resistors (weighted by the values 
in the resistance surface), and movement is analogous to 
electrical current flow. Circuit theory is particularly use-
ful when multiple alternative pathways are available. It can 
describe isolation by measuring multiple low- or high resist-
ance pathways and identify areas of high movement prob-
ability highlighting important corridors and bottlenecks in 
the landscape [129].

However, resistance surfaces are not free of critique 
including missing spatio-temporal variability or context 
dependency [130, 131]. Thus, recent developments have 
shifted towards a combination of both resistance and pro-
cesses-based modeling approaches [50, 54, 55], modeling of 
dynamic landscape connectivity [132], inclusion of stochas-
ticity and spatial context [39], genetic optimization algo-
rithms [31], or general computational improvements [133].

Graph Theory

Following the formative work of [134], graph theory has 
become a cornerstone approach to studying landscape con-
nectivity by integrating landscape features and species 
movement and dispersal in landscape graphs [129]. Graph 
theory and related connectivity metrics can be applied over 
various geographical contexts and for various species [135], 
require very little data inputs [136], and can provide key 
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information for conservation planning and management. 
For example, graph theory based metrics can assist wild-
life movement corridor planning [137], assist infrastructure 
placement while minimizing habitat fragmentation [138], 
or identify habitat patches that maintain overall landscape 
connectivity [139].

Within the landscape, discrete habitat patches are modeled 
as nodes, and the potential movement and dispersal between 
patches is modeled as edges. The edges can be binary rep-
resenting whether a connection between two nodes exists 
or not, weighted by cost values representing movement or 
dispersal efforts from one patch to another, or undirected 
or directed allowing movement or dispersal in both or only 
one direction [134, 140]. Connectivity can be quantified 
through various graph-theoretical metrics describing differ-
ent aspects, such as the importance of specific patches in 
maintaining connectivity. Widely reported connectivity met-
rics include the probability of connectivity index [141], habi-
tat availability metrics quantifying potential and functional 
connectivity [138, 142], or the integral index of connectivity 
which is based on a binary connection model [142, 143].

Recently, a new generation of graph-theoretical met-
rics, commonly reported in combination [144], have been 
developed to account for landscape features that are critical 
for space use and species-specific movement or dispersal 
[140]. Furthermore, the modeling framework was initially 
only applied to single species, but is increasingly being used 
to model multispecies landscapes to account for interspe-
cific movement and dispersal abilities and habitat prefer-
ences [145–147]. In addition, modern multiple-layer graph 
approaches enable the modeling of not only spatial but also 
spatio-temporal graphs [148, 149]. Modeling the temporal 
dynamics helps to identify habitat patches that impact con-
nectivity over time and the corresponding effects on biodi-
versity patterns [149].

However, despite the robust theoretical underpinnings of 
graph theory and its powerful application in landscape con-
nectivity research, contradictory results could emerge from 
different methods used to construct a graph or various data 
sources. In many cases, data availability limits the represen-
tation of the modeled landscape with subsequent implica-
tions for the calculated connectivity metrics and inferences 
of connectivity [135]. For example [136], modelled the same 
landscape using three different data types which resulted in 
different distribution of connectivity values.

Landscape Genetics

Genetic data can be applied in complement with ecologi-
cal data to integrate evolutionary processes and patterns 
into landscape ecology [150–152]. Landscape genetics 

unite molecular population genetics, spatial statistics, and 
landscape ecology and emerged from the goal to study the 
interaction between landscape features and microevolution-
ary processes, such as gene flow, genetic drift and selection 
[151, 152].

Landscape genetic approaches have traditionally been 
used to inform landscape ecology applications, e.g., through 
connectivity modeling and spatial conservation planning 
[150, 151, 153, 154]. Using holistic approaches that consider 
evolutionary processes and patterns in addition to ecological 
data can fortify results, e.g., by improving predictive models 
of species range shifts in response to climate change [155], 
improving the identification and delineation of landscape 
connections among populations [156, 157], allowing for 
the interpretation of spatial structuring in context of socio-
cultural connections [158], or understanding local adaptation 
associated with specific environments [155, 159, 160].

Advances in molecular methodologies and syner-
gistic developments of bioinformatic and computa-
tional approaches to analyze large-scale genomic data have 
recently enabled the integration of genome-wide data with 
spatial ecological data. This shift towards landscape genom-
ics [161, 162] comes with novel utilities through which 
researchers can apply genomic data across spatio-tempo-
ral scales, including the integration of historic or ancient 
DNA [163] or simulated present-day and future population 
genomic data [164, 165]. Analytical frameworks such as 
the FOLDS model (gene flow, genetic offsets, genetic load, 
dispersal and SDMs) [155], constrained coordination where 
covarying sets of genotypes are correlated with multivariate 
environments through redundancy analysis [166], and spatial 
simulations provide promising potential for future landscape 
genomic studies. Such studies may explore interactions 
between complex evolutionary processes, including demog-
raphy, multidimensional (e.g., strength and direction) gene 
flow and migration across spatio-temporal scales, genetic 
differentiation across landscapes, genomic load and adaptive 
potential, and the interpretation of these evolutionary pro-
cesses in context of landscape ecology [152, 163–165, 167].

Sampling in Landscape Ecology

Establishing a pattern-process link usually requires field-
work and data collection. Given the cost of collecting field 
observations across landscapes, computational sampling 
tools have been designed to optimize the study designs [168, 
169]. To improve the statistical significance of the relation-
ships between landscape features and field observations sev-
eral aspects need to be considered when selecting sampling 
sites for data collection. First, selected sites should cover 
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the maximum possible range of landscape heterogeneity to 
maximize the variance of independent variables. Second, 
statistical power can be improved by ensuring independence 
between sites and consequently response variables. Finally, 
since many landscape features that influence response vari-
ables are spatially dependent, it is essential to evaluate spa-
tial autocorrelation.

Furthermore, identifying scales at which the ecological 
processes of interest operate is a crucial step [170]. However, 
in practice, the appropriate scales may not be obvious or data 
at such scales may not be available and landscape-wide and 
local process interactions can occur across multiple scales 
[171]. Here analyses at multiple spatial scales can help to 
identify the scales of interest. For instance, scalograms can 
be used to reveal scale thresholds that maximize landscape 
heterogeneity [168] or show the strongest relationships with 
response variables [15].

Directly related to the location and extent of sampling 
sites is the issue of overlapping landscapes which can result 
in a lower range of landscape heterogeneity, lack of sta-
tistical independence, or pseudo-replications [169, 172]. 
Nonetheless, the lack of independence between sites is 
likely more related to spatial autocorrelation and thus not 
necessarily prevented by using non-overlapping landscapes 
[169]. Instead, spatial autocorrelation between sampling 
sites can be evaluated using comparisons of similarity 
measures between sampling approaches or spatial scales 
(e.g., Moran’s I) [168]. Furthermore, spatial autocorrela-
tion in model residuals can be diagnosed using the similar-
ity between two sites as a function of the distance between 
them, i.e., correlograms [173]. If spatial autocorrelation is 
detected researchers may either consider further data collec-
tion or use modeling methods to accommodate for spatial 
dependencies [169], such as mixed models [173] or apply 
smoothing kernels that compute distance-weighted averages 
surrounding the sites [174].

Simulation Models

Simulation models are a powerful tool to study complex 
adaptive socio-ecological systems in controllable, repro-
ducible, and replicable settings [6]. Thus, simulations can 
be seen as experimental systems that allow all imagina-
ble manipulations which would be impossible in natural 
systems in order to advance theoretical developments or 
test hypotheses [175]. Due to the spatio-temporal scales, 
complex interactions and feedbacks, or scale mismatches 
between patterns and processes, simulation models are one 
of the major approaches in landscape ecology [176, 177]. In 
general, simulation models can be classified using two major 
divisions, namely i) predictive or exploratory models, and ii) 
pattern- or process-based models [175, 177]. Here, we focus 

mainly on exploratory models, but include both pattern- and 
process-based models.

Landscapes Simulators

Landscape simulators are typically used to generate null 
hypotheses, baselines, or scenarios that allow to control 
certain aspects of the landscape using the raster data model 
[178, 179] and are generally simpler than ecological simu-
lation models [180]. Landscape simulators can be classi-
fied into two major categories, namely pattern-based and 
process-based approaches [181, 182].

Pattern-based approaches simulate landscapes without 
assuming any underlying abiotic or biotic processes (i.e., 
neutral landscape model) [183]. The earliest neutral models 
are based on percolation theory and assign LULC classes 
randomly to cells in the landscape [183] or hierarchical 
models that consider different spatial scales while assigning 
cell values [184]. Landscapes characterized by continuous 
values can be simulated by fractal models, such as Brown-
ian motion [185]. Borrowing from computer graphics, more 
recent neutral landscape models make use of spectral syn-
thesis (e.g., Perlin noise) [186] or binary space partitioning 
[187]. Neutral landscape models are also able to simulate 
landscapes dominated by anthropogenic activities based on 
least-cost networks [188]. In order to ensure realistic neutral 
landscapes several approaches exist that use comparisons 
with real landscapes [189], target values optimization (tar-
get values are optimized as close as possible) [53], or target 
value satisfaction (target values are strictly satisfied, or can-
not be satisfied) [48].

Contrastingly, processes-based approaches explicitly 
include abiotic or biotic pattern-forming processes (i.e., 
landscape generators) [182, 190]. Several earlier landscape 
generators are based on cellular automata models and are 
able to simulate urban growth [191] or deforestation [192]. 
More recent, landscape generators have allowed to simu-
late patchy landscapes based on Gibbs processes [193], 
deforestation based on road and agricultural fields access 
[181], loss of wetlands, expansion of mining and croplands 
using the Ising model [194], agricultural areas dominated 
by smallholders [190], or vegetation surrounding watering 
points in semi-arid savanna rangelands (combining pattern- 
and process-bases approaches) [180].

Individual‑based Models

Individual-based models (or agent-based models) simulate 
discrete entities that are described by attributes and behavior. 
Patterns emerge from bottom-up interactions of individuals 
with each other and their environment [195]. In landscape 
ecology individual-based models are increasingly used 
to model social-ecological systems [196–198], but also 
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disturbances [199–201], or connectivity [202]. They can 
also incorporate a range of socio-economic, political, and 
governance information to influence how individuals, such 
as farmers, interact within a landscape [203].

In order to facilitate future model developments recent 
progress includes adaptable modeling frameworks [54] 
or reusable building blocks [204]. Furthermore, hybrid 
approaches, coupling or integrating different model types 
with individual-based models, could benefit from rich devel-
opment histories or facilitate corresponding strengths [205], 
e.g., linking an individual-based and ecosystem model [206].

Digital Twins

The digital twins concept include three connected elements, 
namely i) a physical object or system, ii) its digital rep-
resentation, iii) and a data exchange between the former 
two [207, 208]. The need for timely and evidence-based 
decision making in combination with increasing data avail-
ability make digital twins a powerful tool for landscape 
ecology. The use of general data processing, statistical and 
mechanistic models, or artificial intelligence allows digital 
twins to constantly update the digital representation and 
analyze, visualize, or predict the physical counterpart. This 
is further facilitated by the increasing rate of novel sources 
of data generation in ecology, e.g., due to sensors deployed 
on airplane, satellites, or unmanned aerial vehicle [209]. 
Digital twins are particular useful for real-time workflows 
that allow now- and forecasting of complex dynamics in a 
landscape.

Digital twins aim to provide real-time state of nature 
measurements, early detection of conservation trends, rela-
tionships of ecosystem trends and environmental conditions, 
impact assessments of interventions, or to identify uncer-
tainties and information gaps [208]. Thus, there is increasing 
interest and use of digital twins in both the industry and aca-
demia [207]. They are increasingly applied in agricultural 
landscapes research, e.g., for livestock farming, controlled 
environment farming, or fertilization management [210, 
211]. Further applications include planning of rural ecologi-
cal landscapes [212] or exploration of relationships between 
urban expansion and vegetation coverage [213].

Spatial Planning

Spatial planning uses decision theory to identify and allo-
cate areas to specific purposes, such as reserve selection 
through spatial conservation prioritization [214–217]. In the 
context of landscape ecology, it provides a pattern-process 
link and outcomes related to decision making by distin-
guishing between structure, function, and scales [218]. As 
an integrative approach most spatial planning approaches 

can benefit from various computational advances in land-
scape ecology. For example, there have been several recent 
advances in considering landscape patterns directly in spa-
tial planning or through using simulation model outputs as 
input features [219]. Generally, spatial patterns influence 
planning outcomes because of their compactness, contigu-
ity, and connectedness. Furthermore, aggregation can be 
important because of ecological or practical reasons, for 
example, by ensuring that selected areas satisfy minimum 
patch size constraints [220, 221]. Novel computational 
approaches make use of graph theory to identify valuable 
landscape areas in terms of compact core habitat and reduc-
ing boundary exposure [222]. Similarly, contiguity and con-
nectivity are generally considered important to ensure that 
landscapes or habitat patches are connected, such as river 
networks [223]. In particular, recently the direct considera-
tion of connectivity has received increasing attention in spa-
tial planning and new computational methods are developed 
[219, 224–226].

Particularly noteworthy are two advances that incorpo-
rate landscape metrics in spatial planning. One is the use of 
graph theory to guide conservation and restoration efforts 
in linear [227] or constraint programming [221]. These 
spatial networks approaches have the potential to provide 
more cost-effective and precise solutions to design reserve 
networks [227]. For example [221], used landscape ecology 
theory and metrics to spatially optimize restoration efforts 
aiming to maximize broader landscape connectivity in New 
Caledonia.

A second development is the increasing use of deep rein-
forcement learning, a machine learning approach based not 
on patterns but agents and pathways. Reinforcement learning 
can be used to identify cost-efficient solutions to area-based 
conservation planning [59]. Additionally, it can be applied 
to identify the best possible solutions to improve landscape 
connectivity indices [228], such as the integral index of 
connectivity [143]. Advantages of reinforcement learning 
include the ease of incorporating both linear and non-linear 
functions as well as the scalability of spatio-temporal pro-
cesses to larger spatial extents [228]. However, this comes 
with the drawbacks of reduced interpretability, and similar 
to traditional spatial planning approaches such as Marxan, it 
relies on heuristics that can not guarantee that a best possible 
solution can been found [229].

Multiple open-source software solutions have been 
developed to support integration of landscape ecology the-
ory and indicators into spatial planning. Most software are 
based on linear or constrained programming approaches and 
require a solver to create any outputs. Unfortunately, there 
are differences between open-source and proprietary solvers 
in terms of computational efficiency [229] and the perfor-
mance of any individual solvers can depend on the specific 
problem, data and computational resources. Nevertheless, 
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existing comparisons often show that proprietary solvers 
can be used to obtain solutions to complex problems in 
reasonable time periods [217], however, due to software 
licenses and related cost certain solvers might not always 
be openly accessible.

Conclusion

Since its emergence in the 1980s [8], landscape ecology 
research has constantly evolved and is now highly depend-
ent on computational methods. Thus, future progress within 
the field will largely depend on integration of novel data 
sources and available software and computational tools 
[60]. Here, we present and summarize some recent develop-
ments of computational methods related to spatial patterns, 
connectivity, simulations and modeling, landscape genetics 
and spatial planning. In this context, we highlight open-
source software as a cornerstone of “Open Science” offer-
ing key advantages like shareability, reproducibility, and 
transparency, which provide great benefits to the research 
community [230, 231]. 

Alongside the previously introduced methodological 
advances specific to landscape ecology, the research field 
will also benefit from technological innovations from 
related disciplines. This includes advances in remote 
sensing technology with increasing data availability and 
diversity from a range of sources, including satellites, 
unmanned aerial vehicles, and ground-based sensor sys-
tems [232, 233]. These systems provide both passive sen-
sors, such as multispectral, hyperspectral, and thermal 
sensors and active optical sensors, such as LiDAR and 
SAR [233]. Related to this, there is a growing number 
of up- and downscaling approaches for remote sensing 
data which makes a wider range of products accessible 
[234]. In combination with other increasingly avail-
able data sources, e.g., citizen science data, ecology has 
entered the era of big data, requiring methods that can 
handle heterogeneous data and high-throughput comput-
ing resources [209]. Due to its high flexibility and perfor-
mance artificial intelligence has become popular in ecol-
ogy, and deep learning and machine learning algorithms 
can be used for, e.g., mapping, classifying and extracting 
features, modeling, or predicting [235–238]. Furthermore, 
quantum computing may additionally offer a potential 
pathway to surpass the limits of current computational 
technologies [239]. Last, landscape ecology will, as many 
other research fields, benefit from a general paradigm shift 
related to data sharing, management, and documentation 
[240].

Climate change, as well as the biodiversity crisis, are 
two intervening and complex issues that need integrative, 
multi-disciplinary, and scale-dependent solutions to face 

them [241, 242]. Landscape ecology is well equipped 
to provide answers because it connects several research 
fields at multiple scales, such as social sciences, geography, 
and ecology and evolution [8]. Up-to-date and constantly 
evolving computational methods are required to meet the 
increasing complexity of research questions. Nevertheless, 
the review provided here that showcases current computa-
tional methods in landscape ecology will only be a snap-
shot in time because of the development and emergence of 
future analytical approaches.

Key References

• Frazier (2019) Emerging trajectories for spatial pat-
tern analysis in landscape ecology. Landscape Ecology 
34:2073–2082.

The paper describes how interdisciplinary perspectives 
have contributed to spatial pattern analysis and intro-
duces new innovative developments.

• Unnithan Kumar et al. (2022) Moving beyond landscape 
resistance: Considerations for the future of connectivity 
modeling and conservation science. Landscape Ecology 
37:2465–2480.

The paper provides a historical overview of connectiv-
ity modeling with a focus on resistance surfaces and 
discusses current missing aspects and how to address 
them.

• Zuckerberg et al. (2020) A review of overlapping land-
scapes: Pseudoreplication or a red herring in landscape 
ecology? Current Landscape Ecology Reports 5:140–
148.

The paper discusses theoretical and practical impli-
cations over overlapping landscapes in the context of 
landscape buffers of varying sizes surrounding sam-
pling sites.

• Synes et al. (2016) Emerging opportunities for land-
scape ecological modeling. Current Landscape Ecology 
Reports 1:146–167.

The paper identifies existing gaps in landscape eco-
logical modeling while highlighting potential emerg-
ing opportunities.

• Manel and Holderegger (2013) Ten years of landscape 
genetics. Trends in Ecology & Evolution 28:614–621.

Ten years after their first paper introducing landscape 
genetics, this paper reviews the state-of-the-art and 
describes main topics that have contributed to the pro-
gress of landscape genetics.



Current Landscape Ecology Reports            (2025) 10:2  Page 11 of 18     2 

• Jung et al. (2024) An assessment of the state of conserva-
tion planning in europe. Philosophical Transactions of 
the Royal Society B 379:20,230,015.

The paper assesses where and how spatial conservation 
planning have been applied across Europe.

Acknowledgements We are thankful to the anonymous review-
ers and the editors who provided valuable comments to improve the 
manuscript.

Author contributions All authors contributed particular sections to the 
manuscript and assisted with the revision. Overall coordination, first 
and revised draft was led by MHKH.

Funding Open access funding provided by International Institute for 
Applied Systems Analysis (IIASA). No external funding was received.

Data Availability No datasets were generated or analysed during the 
current study.

Declarations 

Conflict of Interest The authors declare no competing interests.

Human and Animal Rights and Informed Consent This article does not 
contain any studies with human or animal subjects performed by any 
of the authors.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

 1. Forman RTT, Godron M. Landscape ecology. Chichester, UK: 
Wiley and Sons; 1986.

 2. Turner MG, Gardner RH. Landscape ecology in theory and prac-
tice: Pattern and process. 2nd ed. New York: Springer; 2015.

 3. Wu J. Key concepts and research topics in landscape ecol-
ogy revisited: 30 years after the allerton park workshop. 
Landscape Ecol. 2013;28:1–11. https:// doi. org/ 10. 1007/ 
s10980- 012- 9836-y.

 4. Wilson G, Aruliah DA, Brown CT, Chue Hong NP, Davis M, 
Guy RT, Haddock SHD, Huff KD, Mitchell IM, Plumbley MD, 
Waugh B, White EP, Wilson P. Best practices for scientific com-
puting. PLoS Biol. 2014;12: e1001745. https:// doi. org/ 10. 1371/ 
journ al. pbio. 10017 45.

 5. Poisot T, LaBrie R, Larson E, Rahlin A, Simmons BI. Data-
based, synthesis-driven: Setting the agenda for computational 
ecology. Ideas Ecol Evol. 2019;12:150128. https:// doi. org/ 10. 
24908/ iee. 2019. 12.2.e.

 6. Petrovskii S, Petrovskaya N. Computational ecology as an emerg-
ing science. Interface Focus. 2012;2:241–54. https:// doi. org/ 10. 
1098/ rsfs. 2011. 0083.

 7. Wiersma YF. A review of landscape ecology experiments to 
understand ecological processes. Ecol Process. 2022;11:57. 
https:// doi. org/ 10. 1186/ s13717- 022- 00401-0.

 8. With KA. Essentials of landscape ecology. 1st ed. Oxford, UK: 
Oxford University Press; 2019.

 9. Jarić I, Correia RA, Brook BW, Buettel JC, Courchamp F, Di 
Minin E, Firth JA, Gaston KJ, Jepson P, Kalinkat G, Ladle R, 
Soriano-Redondo A, Souza AT, Roll U. iEcology: harnessing 
large online resources to generate ecological insights. Trends 
Ecol Evol. 2020;35:630–9. https:// doi. org/ 10. 1016/j. tree. 2020. 
03. 003.

 10. Newman EA, Kennedy MC, Falk DA, McKenzie D. Scaling and 
complexity in landscape ecology. Front Ecol Evol. 2019;7:293. 
https:// doi. org/ 10. 3389/ fevo. 2019. 00293.

 11. Gergel SE, Turner MG. Learning landscape ecology. New York, 
New York, NY: Springer; 2017.

 12. Pebesma E. Simple features for r: standardized support for spa-
tial vector data. R J. 2018;10:439. https:// doi. org/ 10. 32614/ 
RJ- 2018- 009.

 13. Hijmans RJ. terra: Spatial data analysis. 2024. R package version 
1.7-83. https:// doi. org/ 10. 32614/ CRAN. packa ge. terra.

 14. Hesselbarth MHK, Sciaini M, With KA, Wiegand K, Nowosad J. 
Landscapemetrics: An open-source r tool to calculate landscape 
metrics. Ecography. 2019;42:1648–57. https:// doi. org/ 10. 1111/ 
ecog. 04617.

 15. Huais PY. Multilandr: An r package for multi-scale landscape 
analysis. Landscape Ecol. 2024;39:140. https:// doi. org/ 10. 1007/ 
s10980- 024- 01930-z.

 16. Nowosad J. bespatial: Boltzmann entropy for spatial data. 2024. 
R package version 0.1.2. https:// doi. org/ 10. 32614/ CRAN. packa 
ge. bespa tial.

 17. Rocchini D, Thouverai E, Marcantonio M, Iannacito M, Da Re D, 
Torresani M, Bacaro G, Bazzichetto M, Bernardi A, Foody GM, 
Furrer R, Kleijn D, Larsen S, Lenoir J, Malavasi M, Marchetto E, 
Messori F, Montaghi A, Moudrj V, Naimi B, Ricotta C, Rossini 
M, Santi F, Santos MJ, Schaepman ME, Schneider FD, Schuh 
L, Silvestri S, Ŝímová P, Skidmore AK, Tattoni C, Tordoni E, 
Vicario S, Zannini P, Wegmann M. Rasterdiv an information 
theory tailored r package for measuring ecosystem heteroge-
neity from space: To the origin and back. Methods Ecol Evol. 
2021;12:1093–102. https:// doi. org/ 10. 1111/ 2041- 210X. 13583.

 18. Konrád KD, Bede-Fazekas A, Bartha S, Somodi I. Adapting 
a multiscale approach to assess the compositional diversity of 
landscapes. Landscape Ecol. 2023;38:2731–47. https:// doi. org/ 
10. 1007/ s10980- 023- 01759-y.

 19. Smith AC, Dahlin KM, Record S, Costanza JK, Wilson AM, Zar-
netske PL. The geodiv r package: tools for calculating gradient 
surface metrics. Methods Ecol Evol. 2021;12:2094–100. https:// 
doi. org/ 10. 1111/ 2041- 210X. 13677.

 20. Zvoleff A. glcm: Calculate textures from Grey-Level Co-Occur-
rence Matrices (GLCMs). 2020. R package version 1.6.5. https:// 
doi. org/ 10. 32614/ CRAN. packa ge. glcm.

 21. Matuszek T, Nowosad J, Sciaini M, Hesselbarth MHK, Ma Y. 
Vectormetrics: landscape metrics for categorical map patterns in 
vector data. 2024. R package version 0.2.4. https:// github. com/r- 
spati aleco logy/ vecto rmetr ics.

 22. Nowosad J. Motif: An open-source r tool for pattern-based spa-
tial analysis. Landscape Ecol. 2021;36:29–43. https:// doi. org/ 10. 
1007/ s10980- 020- 01135-0.

 23. Jordahl K, den Bossche JV, Fleischmann M, Wasserman J, 
McBride J, Gerard J, Tratner J, Perry M, Badaracco AG, Farmer 
C, Hjelle GA, Snow AD, Cochran M, Gillies S, Culbertson L, 
Bartos M, Eubank N, Max A, Bilogur A, Ren C, Arribas-Bel D, 

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/s10980-012-9836-y
https://doi.org/10.1007/s10980-012-9836-y
https://doi.org/10.1371/journal.pbio.1001745
https://doi.org/10.1371/journal.pbio.1001745
https://doi.org/10.24908/iee.2019.12.2.e
https://doi.org/10.24908/iee.2019.12.2.e
https://doi.org/10.1098/rsfs.2011.0083
https://doi.org/10.1098/rsfs.2011.0083
https://doi.org/10.1186/s13717-022-00401-0
https://doi.org/10.1016/j.tree.2020.03.003
https://doi.org/10.1016/j.tree.2020.03.003
https://doi.org/10.3389/fevo.2019.00293
https://doi.org/10.32614/RJ-2018-009
https://doi.org/10.32614/RJ-2018-009
https://doi.org/10.32614/CRAN.package.terra
https://doi.org/10.1111/ecog.04617
https://doi.org/10.1111/ecog.04617
https://doi.org/10.1007/s10980-024-01930-z
https://doi.org/10.1007/s10980-024-01930-z
https://doi.org/10.32614/CRAN.package.bespatial
https://doi.org/10.32614/CRAN.package.bespatial
https://doi.org/10.1111/2041-210X.13583
https://doi.org/10.1007/s10980-023-01759-y
https://doi.org/10.1007/s10980-023-01759-y
https://doi.org/10.1111/2041-210X.13677
https://doi.org/10.1111/2041-210X.13677
https://doi.org/10.32614/CRAN.package.glcm
https://doi.org/10.32614/CRAN.package.glcm
https://github.com/r-spatialecology/vectormetrics
https://github.com/r-spatialecology/vectormetrics
https://doi.org/10.1007/s10980-020-01135-0
https://doi.org/10.1007/s10980-020-01135-0


 Current Landscape Ecology Reports            (2025) 10:2     2  Page 12 of 18

Wasser L, Wolf LJ, Journois M, Wilson J, Greenhall A, Hold-
graf C, Filipe, Leblanc L. geopandas/geopandas: v0.8.1 (Version 
v0.8.1). 2020. https:// doi. org/ 10. 5281/ zenodo. 39467 61.

 24. Gillies S, Others. Rasterio: geospatial raster i/o for python pro-
grammers. 2013. https:// github. com/ raste rio/ raste rio.

 25. Bosch M. PyLandStats: An open-source pythonic library to com-
pute landscape metrics. PLoS ONE. 2019;14: e0225734. https:// 
doi. org/ 10. 1371/ journ al. pone. 02257 34.

 26. Jung M. LecoS — a python plugin for automated landscape 
ecology analysis. Eco Inform. 2016;31:18–21. https:// doi. org/ 
10. 1016/j. ecoinf. 2015. 11. 006.

 27. Hoffimann J. GeoStatsjl – high-performance geostatistics in julia. 
J Open Source Softw. 2018;3:692. https:// doi. org/ 10. 21105/ joss. 
00692.

 28. JuliaGeo and contributors. GeoInterface. Julia package version 
1.3.8. https:// github. com/ Julia Geo/ GeoIn terfa ce. jl.

 29. McGarigal K, Cushman SA, Ene E. FRAGSTATS v4: spatial 
pattern analysis program for categorical maps. 2023. Computer 
software program produced by the authors; available at the fol-
lowing web site: https:// www. frags tats. org.

 30. Vogt P, Riitters K. GuidosToolbox: Universal digital image 
object analysis. Eur J Remote Sens. 2017;50:352–61. https:// 
doi. org/ 10. 1080/ 22797 254. 2017. 13306 50.

 31. Peterman WE. ResistanceGA: An r package for the optimiza-
tion of resistance surfaces using genetic algorithms. Methods 
Ecol Evol. 2018;9:1638–47. https:// doi. org/ 10. 1111/ 2041- 210X. 
12984.

 32. Mestre F, Silva B. Lconnect r package: a versatile tool for evalu-
ating landscape connectivity and prioritizing habitat patches in 
conservation research. Ecol Model. 2023;484:110489. https:// 
doi. org/ 10. 1016/j. ecolm odel. 2023. 110489.

 33. Chubaty AM, Galpern P, Doctolero SC. The r toolbox grain-
scape for modelling and visualizing landscape connectivity using 
spatially explicit networks. Methods Ecol Evol. 2020;11:591–5. 
https:// doi. org/ 10. 1111/ 2041- 210X. 13350.

 34. Anantharaman R, Hall K, Shah VB, Edelman A (2019) Cir-
cuitscape in julia: High performance connectivity modelling to 
support conservation decisions. Proc JuliaCon 1: https:// doi. org/ 
10. 21105/ jcon. 00058

 35. van Moorter B, Kivimäki I, Noack A, Devooght R, Panzacchi 
M, Hall KR, Leleux P, Saerens M. Accelerating advances in 
landscape connectivity modelling with the ConScape library. 
Methods Ecol Evol. 2023;14:133–45. https:// doi. org/ 10. 1111/ 
2041- 210X. 13850.

 36. Landau V, Shah V, Anantharaman R, Hall K. Omniscape.jl: 
Software to compute omnidirectional landscape connectivity. 
J Open Source Softw. 2021;6:2829. https:// doi. org/ 10. 21105/ 
joss. 02829.

 37. Foltête J-C, Clauzel C, Vuidel G. A software tool dedicated to 
the modelling of landscape networks. Environ Model Softw. 
2012;38:316–27. https:// doi. org/ 10. 1016/j. envso ft. 2012. 07. 002.

 38. Saura S, Torné J. Conefor sensinode 2.2: A software package 
for quantifying the importance of habitat patches for landscape 
connectivity. Environ Model Softw. 2009;24:135–9. https:// doi. 
org/ 10. 1016/j. envso ft. 2008. 05. 005.

 39. Ribeiro JW, Silveira Dos Santos J, Dodonov P, Martello F, 
Brandão Niebuhr B, Ribeiro MC. LandScape corridors ( lscor-
ridors ): A new software package for modelling ecological cor-
ridors based on landscape patterns and species requirements. 
Methods Ecol Evol. 2017;8:1425–32. https:// doi. org/ 10. 1111/ 
2041- 210X. 12750.

 40. Savary P, Foltête J-C, Moal H, Vuidel G, Garnier S. graph4lg: 
A package for constructing and analysing graphs for landscape 
genetics in r. Methods Ecol Evol. 2021;12:539–47. https:// doi. 
org/ 10. 1111/ 2041- 210X. 13530.

 41. Gruber B, Adamack AT. Landgenreport: A new r function to 
simplify landscape genetic analysis using resistance surface lay-
ers. Mol Ecol Resour. 2015;15:1172–8. https:// doi. org/ 10. 1111/ 
1755- 0998. 12381.

 42. Jombart T. Adegenet: A r package for the multivariate analysis 
of genetic markers. Bioinformatics. 2008;24:1403–5. https:// doi. 
org/ 10. 1093/ bioin forma tics/ btn129.

 43. Paradis E, Schliep K. Ape 5.0: An environment for modern 
phylogenetics and evolutionary analyses in r. Bioinformatics. 
2019;35:526–8. https:// doi. org/ 10. 1093/ bioin forma tics/ bty633.

 44. Etherington TR. Python based GIS tools for landscape genetics: 
visualising genetic relatedness and measuring landscape con-
nectivity. Methods Ecol Evol. 2011;2:52–5. https:// doi. org/ 10. 
1111/j. 2041- 210X. 2010. 00048.x.

 45. Brown JL, Bennett JR, French CM. SDMtoolbox 2.0: The next 
generation python-based GIS toolkit for landscape genetic, 
biogeographic and species distribution model analyses. PeerJ. 
2017;5:e4095. https:// doi. org/ 10. 7717/ peerj. 4095.

 46. Adamczyk J, Tiede D. ZonalMetrics - a python toolbox for zonal 
landscape structure analysis. Comput Geosci. 2017;99:91–9. 
https:// doi. org/ 10. 1016/j. cageo. 2016. 11. 005.

 47. Sciaini M, Fritsch M, Scherer C, Simpkins CE. NLMR and 
landscapetools: An integrated environment for simulating and 
modifying neutral landscape models in r. Methods Ecol Evol. 
2018;9:2240–8. https:// doi. org/ 10. 1111/ 2041- 210X. 13076.

 48. Justeau-Allaire D, Blanchard G, Ibanez T, Lorca X, Vieilledent 
G, Birnbaum P. Fragmented landscape generator (flsgen): A neu-
tral landscape generator with control of landscape structure and 
fragmentation indices. Methods Ecol Evol. 2022;13:1412–20. 
https:// doi. org/ 10. 1111/ 2041- 210X. 13859.

 49. Etherington TR, Holland EP, O’Sullivan D. NLMpy: A python 
software package for the creation of neutral landscape models 
within a general numerical framework. Methods Ecol Evol. 
2015;6:164–8. https:// doi. org/ 10. 1111/ 2041- 210X. 12308.

 50. Unnithan Kumar S, Kaszta Z, Cushman SA. Pathwalker: A new 
individual-based movement model for conservation science 
and connectivity modelling. ISPRS Int J Geo Inf. 2022;11:329. 
https:// doi. org/ 10. 3390/ ijgi1 10603 29.

 51. Poisot T, Borregaard MK, Catchen MD, Schouten R, Baudrot V. 
NeutralLandscapes. 2023. Julia software version 0.1.4. https:// 
github. com/ EcoJu lia/ Neutr alLan dscap es. jl.

 52. Cambui ECB, Nogueira De Vasconcelos R, Boscolo D, da Rocha 
PLB, Miranda JGV. GradientLand software: a landscape change 
gradient generator. Eco Inform. 2015;25:57–62. https:// doi. org/ 
10. 1016/j. ecoinf. 2014. 12. 001.

 53. van Strien MJ, Slager CTJ, de Vries B, Grêt-Regamey A. An 
improved neutral landscape model for recreating real landscapes 
and generating landscape series for spatial ecological simula-
tions. Ecol Evol. 2016;6:3808–21. https:// doi. org/ 10. 1002/ ece3. 
2145.

 54. Schumaker NH, Brookes A. HexSim: A modeling environment 
for ecology and conservation. Landscape Ecol. 2018;33:197–
211. https:// doi. org/ 10. 1007/ s10980- 017- 0605-9.

 55. Bocedi G, Palmer SCF, Malchow A-K, Zurell D, Watts K, Travis 
JMJ. RangeShifter 2.0: an extended and enhanced platform 
for modelling spatial eco-evolutionary dynamics and species’ 
responses to environmental changes. Ecography. 2021;44:1453–
62. https:// doi. org/ 10. 1111/ ecog. 05687.

 56. Hanson JO, Schuster R, Strimas‐Mackey M, Morrell N, Edwards 
B, Arcese P, Bennett JR, Possingham HP. Systematic conserva-
tion prioritization with the prioritizr R package. Conserv Biol. 
2024;e14376. https:// doi. org/ 10. 1111/ cobi. 14376.

 57. van Mantgem ES, Hillebrand J, Rose L, Klau GW. Coco: Con-
servation design for optimal ecological connectivity. Front Ecol 

https://doi.org/10.5281/zenodo.3946761
https://github.com/rasterio/rasterio
https://doi.org/10.1371/journal.pone.0225734
https://doi.org/10.1371/journal.pone.0225734
https://doi.org/10.1016/j.ecoinf.2015.11.006
https://doi.org/10.1016/j.ecoinf.2015.11.006
https://doi.org/10.21105/joss.00692
https://doi.org/10.21105/joss.00692
https://github.com/JuliaGeo/GeoInterface.jl
https://www.fragstats.org
https://doi.org/10.1080/22797254.2017.1330650
https://doi.org/10.1080/22797254.2017.1330650
https://doi.org/10.1111/2041-210X.12984
https://doi.org/10.1111/2041-210X.12984
https://doi.org/10.1016/j.ecolmodel.2023.110489
https://doi.org/10.1016/j.ecolmodel.2023.110489
https://doi.org/10.1111/2041-210X.13350
https://doi.org/10.21105/jcon.00058
https://doi.org/10.21105/jcon.00058
https://doi.org/10.1111/2041-210X.13850
https://doi.org/10.1111/2041-210X.13850
https://doi.org/10.21105/joss.02829
https://doi.org/10.21105/joss.02829
https://doi.org/10.1016/j.envsoft.2012.07.002
https://doi.org/10.1016/j.envsoft.2008.05.005
https://doi.org/10.1016/j.envsoft.2008.05.005
https://doi.org/10.1111/2041-210X.12750
https://doi.org/10.1111/2041-210X.12750
https://doi.org/10.1111/2041-210X.13530
https://doi.org/10.1111/2041-210X.13530
https://doi.org/10.1111/1755-0998.12381
https://doi.org/10.1111/1755-0998.12381
https://doi.org/10.1093/bioinformatics/btn129
https://doi.org/10.1093/bioinformatics/btn129
https://doi.org/10.1093/bioinformatics/bty633
https://doi.org/10.1111/j.2041-210X.2010.00048.x
https://doi.org/10.1111/j.2041-210X.2010.00048.x
https://doi.org/10.7717/peerj.4095
https://doi.org/10.1016/j.cageo.2016.11.005
https://doi.org/10.1111/2041-210X.13076
https://doi.org/10.1111/2041-210X.13859
https://doi.org/10.1111/2041-210X.12308
https://doi.org/10.3390/ijgi11060329
https://github.com/EcoJulia/NeutralLandscapes.jl
https://github.com/EcoJulia/NeutralLandscapes.jl
https://doi.org/10.1016/j.ecoinf.2014.12.001
https://doi.org/10.1016/j.ecoinf.2014.12.001
https://doi.org/10.1002/ece3.2145
https://doi.org/10.1002/ece3.2145
https://doi.org/10.1007/s10980-017-0605-9
https://doi.org/10.1111/ecog.05687
https://doi.org/10.1111/cobi.14376


Current Landscape Ecology Reports            (2025) 10:2  Page 13 of 18     2 

Evol. 2023;11:1149571. https:// doi. org/ 10. 3389/ fevo. 2023. 11495 
71.

 58. Justeau-Allaire D, Hanson JO, Lannuzel G, Vismara P, Lorca X, 
Birnbaum P. Restoptr: An r package for ecological restoration 
planning. Restor Ecol. 2023;31: e13910. https:// doi. org/ 10. 1111/ 
rec. 13910.

 59. Silvestro D, Goria S, Sterner T, Antonelli A. Improving bio-
diversity protection through artificial intelligence. Nat Sustain. 
2022;5:415–24. https:// doi. org/ 10. 1038/ s41893- 022- 00851-6.

 60. Costanza JK, Riitters K, Vogt P, Wickham J. Describing and 
analyzing landscape patterns: Where are we now, and where are 
we going? Landscape Ecol. 2019;34:2049–55. https:// doi. org/ 10. 
1007/ s10980- 019- 00889-6.

 61. Jung M, Dahal PR, Butchart SH, Donald PF, De Lamo X, Lesiv 
M, Kapos V, Rondinini C, Visconti P. A global map of terres-
trial habitat types. Scientific Data. 2020;7:256. https:// doi. org/ 
10. 1038/ s41597- 020- 00599-8.

 62. Nedd R, Light K, Owens M, James N, Johnson E, Anandhi A. A 
synthesis of land use/land cover studies: Definitions, classifica-
tion systems, meta-studies, challenges and knowledge gaps on 
a global landscape. Land. 2021;10:994. https:// doi. org/ 10. 3390/ 
land1 00909 94.

 63. Bauer-Marschallinger B, Sabel D, Wagner W. Optimisation of 
global grids for high-resolution remote sensing data. Comput 
Geosci. 2014;72:84–93. https:// doi. org/ 10. 1016/j. cageo. 2014. 07. 
005.

 64. Xu P, Tsendbazar N-E, Herold M, De Bruin S, Koopmans M, 
Birch T, Carter S, Fritz S, Lesiv M, Mazur E, Pickens A, Potapov 
P, Stolle F, Tyukavina A, van de Kerchove R, Zanaga D. Com-
parative validation of recent 10 m-resolution global land cover 
maps. Remote Sens Environ. 2024;311:114316. https:// doi. org/ 
10. 1016/j. rse. 2024. 114316.

 65. Liu L, Zhang X, Gao Y, Chen X, Shuai X, Mi J. Finer-resolution 
mapping of global land cover: Recent developments, consistency 
analysis, and prospects. J Remote Sens. 2021;2021:5289697. 
https:// doi. org/ 10. 34133/ 2021/ 52896 97.

 66. Tulbure MG, Hostert P, Kuemmerle T, Broich M. Regional mat-
ters: On the usefulness of regional land-cover datasets in times 
of global change. Remote Sens Ecol Conserv. 2022;8:272–83. 
https:// doi. org/ 10. 1002/ rse2. 248.

 67. Dale MRT. Spatial pattern analysis in plant ecology. 1st ed. Cam-
bridge University Press; 1999.

 68. Grimm V, Frank K, Jeltsch F, Brandl R, Uchanski J, Wissel C. 
Pattern-oriented modelling in population ecology. Sci Total Envi-
ron. 1996;183:151–66. https:// doi. org/ 10. 1016/ 0048- 9697(95) 
04966-5.

 69. Wiegand T, Jeltsch F, Hanski I, Grimm V. Using pattern-oriented 
modeling for revealing hidden information: A key for reconcil-
ing ecological theory and application. Oikos. 2003;100:209–22. 
https:// doi. org/ 10. 1034/j. 1600- 0706. 2003. 12027.x.

 70. Frazier AE, Kedron P (2017) Landscape metrics: Past progress 
and future directions. Current Landscape Ecology Reports 
63–72. https:// doi. org/ 10. 1007/ s40823- 017- 0026-0

 71. Dramstad WE. Spatial metrics - useful indicators for society 
or mainly fun tools for landscape ecologists? Norwegian J 
Geogr. 2009;63:246–54. https:// doi. org/ 10. 1080/ 00291 95090 
33683 59.

 72. Lausch A, Blaschke T, Haase D, Herzog F, Syrbe RU, Tischen-
dorf L, Walz U. Understanding and quantifying landscape struc-
ture - a review on relevant process characteristics, data models 
and landscape metrics. Ecol Model. 2015;295:31–41. https:// doi. 
org/ 10. 1016/j. ecolm odel. 2014. 08. 018.

 73. Li H, Wu J. Use and misuse of landscape indices. Landsc Ecol. 
2004;19:389–99. https:// doi. org/ 10. 1023/B: LAND. 00000 30441. 
15628. d6.

 74. Kupfer JA. Landscape ecology and biogeography: Rethinking 
landscape metrics in a post-FRAGSTATS landscape. Prog Phys 
Geogr. 2012;36:400–20. https:// doi. org/ 10. 1177/ 03091 33312 
439594.

 75. Riitters KH, O’Neill RV, Hunsaker CT, Wickham JD, Yankee 
DH, Timmins SP, Jones KB, Jackson BL. A factor analysis 
of landscape pattern and structure metrics. Landscape Ecol. 
1995;10:23–39. https:// doi. org/ 10. 1007/ BF001 58551.

 76. Lustig A, Stouffer DB, Roigé M, Worner SP. Towards more pre-
dictable and consistent landscape metrics across spatial scales. 
Ecol Ind. 2015;57:11–21. https:// doi. org/ 10. 1016/j. ecoli nd. 2015. 
03. 042.

 77. Cushman SA, McGarigal K, Neel MC. Parsimony in land-
scape metrics: Strength, universality, and consistency. Ecol Ind. 
2008;8:691–703. https:// doi. org/ 10. 1016/j. ecoli nd. 2007. 12. 002.

 78. Plexida SG, Sfougaris AI, Ispikoudis IP, Papanastasis VP. 
Selecting landscape metrics as indicators of spatial heterogene-
ity - a comparison among greek landscapes. Int J Appl Earth 
Obs Geoinf. 2014;26:26–35. https:// doi. org/ 10. 1016/j. jag. 2013. 
05. 001.

 79. Nowosad J, Stepinski TF. Global inventory of landscape pat-
terns and latent variables of landscape spatial configuration. 
Ecol Ind. 2018;89:159–67. https:// doi. org/ 10. 1016/j. ecoli nd. 
2018. 02. 007.

 80. Gustafson EJ. How has the state-of-the-art for quantifica-
tion of landscape pattern advanced in the twenty-first cen-
tury? Landscape Ecol. 2019;34:1–8. https:// doi. org/ 10. 1007/ 
s10980- 018- 0709-x.

 81. Riitters K. Pattern metrics for a transdisciplinary landscape 
ecology. Landscape Ecol. 2019;34:2057–63. https:// doi. org/ 10. 
1007/ s10980- 018- 0755-4.

 82. Nowosad J, Stepinski TF. Information theory as a consist-
ent framework for quantification and classification of land-
scape patterns. Landsc Ecol. 2019. https:// doi. org/ 10. 1007/ 
s10980- 019- 00830-x.

 83. Riitters KH, Wickham JD, Wade TG. An indicator of for-
est dynamics using a shifting landscape mosaic. Ecol Ind. 
2009;9:107–17. https:// doi. org/ 10. 1016/j. ecoli nd. 2008. 02. 003.

 84. Vogt P, Wickham J, Barredo JI, Riitters K. Revisiting the land-
scape mosaic model. PLoS ONE. 2024;19: e0304215. https:// 
doi. org/ 10. 1371/ journ al. pone. 03042 15.

 85. Vranken I, Baudry J, Aubinet M, Visser M, Bogaert J. A review 
on the use of entropy in landscape ecology: Heterogeneity, 
unpredictability, scale dependence and their links with ther-
modynamics. Landscape Ecol. 2015;30:51–65. https:// doi. org/ 
10. 1007/ s10980- 014- 0105-0.

 86. Zhao Y, Zhang X. Calculating spatial configurational entropy 
of a landscape mosaic based on the wasserstein metric. 
Landscape Ecol. 2019;34:1849–58. https:// doi. org/ 10. 1007/ 
s10980- 019- 00876-x.

 87. Shannon CE. A mathematical theory of communication. Bell 
Syst Tech J. 1948;27:379–423. https:// doi. org/ 10. 1002/j. 1538- 
7305. 1948. tb013 38.x.

 88. Claramunt C. Towards a spatio-temporal form of entropy. In: 
Advances in conceptual modeling. Berlin Heidelberg, Berlin, 
Heidelberg: Springer; 2012. p. 221–30.

 89. Cushman SA. Thermodynamics in landscape ecology: The 
importance of integrating measurement and modeling of land-
scape entropy. Landscape Ecol. 2015;30:7–10. https:// doi. org/ 
10. 1007/ s10980- 014- 0108-x.

 90. Gao P, Li Z. Computation of the boltzmann entropy 
of a landscape: A review and a generalization. Land-
scape Ecol. 2019;34:2183–96. https:// doi. org/ 10. 1007/ 
s10980- 019- 00814-x.

https://doi.org/10.3389/fevo.2023.1149571
https://doi.org/10.3389/fevo.2023.1149571
https://doi.org/10.1111/rec.13910
https://doi.org/10.1111/rec.13910
https://doi.org/10.1038/s41893-022-00851-6
https://doi.org/10.1007/s10980-019-00889-6
https://doi.org/10.1007/s10980-019-00889-6
https://doi.org/10.1038/s41597-020-00599-8
https://doi.org/10.1038/s41597-020-00599-8
https://doi.org/10.3390/land10090994
https://doi.org/10.3390/land10090994
https://doi.org/10.1016/j.cageo.2014.07.005
https://doi.org/10.1016/j.cageo.2014.07.005
https://doi.org/10.1016/j.rse.2024.114316
https://doi.org/10.1016/j.rse.2024.114316
https://doi.org/10.34133/2021/5289697
https://doi.org/10.1002/rse2.248
https://doi.org/10.1016/0048-9697(95)04966-5
https://doi.org/10.1016/0048-9697(95)04966-5
https://doi.org/10.1034/j.1600-0706.2003.12027.x
https://doi.org/10.1007/s40823-017-0026-0
https://doi.org/10.1080/00291950903368359
https://doi.org/10.1080/00291950903368359
https://doi.org/10.1016/j.ecolmodel.2014.08.018
https://doi.org/10.1016/j.ecolmodel.2014.08.018
https://doi.org/10.1023/B:LAND.0000030441.15628.d6
https://doi.org/10.1023/B:LAND.0000030441.15628.d6
https://doi.org/10.1177/0309133312439594
https://doi.org/10.1177/0309133312439594
https://doi.org/10.1007/BF00158551
https://doi.org/10.1016/j.ecolind.2015.03.042
https://doi.org/10.1016/j.ecolind.2015.03.042
https://doi.org/10.1016/j.ecolind.2007.12.002
https://doi.org/10.1016/j.jag.2013.05.001
https://doi.org/10.1016/j.jag.2013.05.001
https://doi.org/10.1016/j.ecolind.2018.02.007
https://doi.org/10.1016/j.ecolind.2018.02.007
https://doi.org/10.1007/s10980-018-0709-x
https://doi.org/10.1007/s10980-018-0709-x
https://doi.org/10.1007/s10980-018-0755-4
https://doi.org/10.1007/s10980-018-0755-4
https://doi.org/10.1007/s10980-019-00830-x
https://doi.org/10.1007/s10980-019-00830-x
https://doi.org/10.1016/j.ecolind.2008.02.003
https://doi.org/10.1371/journal.pone.0304215
https://doi.org/10.1371/journal.pone.0304215
https://doi.org/10.1007/s10980-014-0105-0
https://doi.org/10.1007/s10980-014-0105-0
https://doi.org/10.1007/s10980-019-00876-x
https://doi.org/10.1007/s10980-019-00876-x
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.1007/s10980-014-0108-x
https://doi.org/10.1007/s10980-014-0108-x
https://doi.org/10.1007/s10980-019-00814-x
https://doi.org/10.1007/s10980-019-00814-x


 Current Landscape Ecology Reports            (2025) 10:2     2  Page 14 of 18

 91. Cushman SA. Calculating the configurational entropy of a land-
scape mosaic. Landscape Ecol. 2016;31:481–9. https:// doi. org/ 
10. 1007/ s10980- 015- 0305-2.

 92. Cushman SA. Entropy in landscape ecology: A quantitative tex-
tual multivariate review. Entropy. 2021;23:1425. https:// doi. org/ 
10. 3390/ e2311 1425.

 93. Gao P, Zhang H, Li Z. A hierarchy-based solution to calculate the 
configurational entropy of landscape gradients. Landscape Ecol. 
2017. https:// doi. org/ 10. 1007/ s10980- 017- 0515-x.

 94. Zhang H, Wu Z, Lan T, Chen Y, Gao P. Calculating the was-
serstein metric-based boltzmann entropy of a landscape mosaic. 
Entropy. 2020;22:381. https:// doi. org/ 10. 3390/ e2204 0381.

 95. Stepinski TF. Curb your enthusiasm for explaining the com-
plexity of landscape configurations in terms of thermodynam-
ics. Landscape Ecol. 2022;37:2735–41. https:// doi. org/ 10. 1007/ 
s10980- 022- 01513-w.

 96. Huckeba G, Andresen B, Roach TNF. Multi-scale spatial ecol-
ogy analyses: A kullback information approach. Landscape Ecol. 
2023;38:645–57. https:// doi. org/ 10. 1007/ s10980- 022- 01514-9.

 97. Rényi A. On measures of entropy and information. In: Proceed-
ings of the fourth berkeley symposium on mathematical statistics 
and probability, volume 1: Contributions to the theory of statis-
tics. University of California Press; 1961. pp. 547–562.

 98. Rao CR. Diversity and dissimilarity coefficients: A unified 
approach. Theor Popul Biol. 1982;21:24–43. https:// doi. org/ 10. 
1016/ 0040- 5809(82) 90004-1.

 99. Rocchini D, Marcantonio M, Ricotta C. Measuring rao’s q 
diversity index from remote sensing: An open source solu-
tion. Ecol Ind. 2017;72:234–8. https:// doi. org/ 10. 1016/j. ecoli 
nd. 2016. 07. 039.

 100. McGarigal K, Tagil S, Cushman SA. Surface metrics: an 
alternative to patch metrics for the quantification of landscape 
structure. Landsc Ecol. 2009;24:433–50. https:// doi. org/ 10. 
1007/ s10980- 009- 9327-y.

 101. Cushman SA, Gutzweiler K, Evans JS, McGarigal K. The 
gradient paradigm: a conceptual and analytical framework 
for landscape ecology. In: Cushman SA, Huettmann F, edi-
tors. Spatial complexity informatics and wildlife conserva-
tion. Basel, CH: Springer International Publishing; 2010. pp. 
83–108.

 102. Kedron PJ, Frazier AE, Ovando-Montejo GA, Wang J. 
Surface metrics for landscape ecology: A comparison of 
landscape models across ecoregions and scales. Land-
scape Ecol. 2018;33:1489–504. https:// doi. org/ 10. 1007/ 
s10980- 018- 0685-1.

 103. Borthwick R, de Flamingh A, Hesselbarth MHK, Parandha-
man A, Wagner HH, Abdel Moniem HEM. Alternative quan-
tifications of landscape complementation to model gene flow 
in banded longhorn beetles [typocerus v. Velutinus (olivier)]. 
Front Gen. 2020;11:307. https:// doi. org/ 10. 3389/ fgene. 2020. 
00307.

 104. Frazier AE. Surface metrics: Scaling relationships and downscal-
ing behavior. Landscape Ecol. 2016;31:351–63. https:// doi. org/ 
10. 1007/ s10980- 015- 0248-7.

 105. Frazier AE. Emerging trajectories for spatial pattern analysis in 
landscape ecology. Landscape Ecol. 2019;34:2073–82. https:// 
doi. org/ 10. 1007/ s10980- 019- 00880-1.

 106. Riitters K, Vogt P. Mapping landscape ecological patterns using 
numeric and categorical maps. PLoS ONE. 2023;18: e0291697. 
https:// doi. org/ 10. 1371/ journ al. pone. 02916 97.

 107. Yao Y, Cheng T, Sun Z, Li L, Chen D, Chen Z, Wei J, Guan Q. 
VecLI: A framework for calculating vector landscape indices 
considering landscape fragmentation. Environ Model Softw. 
2022;149: 105325. https:// doi. org/ 10. 1016/j. envso ft. 2022. 
105325.

 108. Basaraner M, Cetinkaya S. Performance of shape indices and 
classification schemes for characterising perceptual shape 
complexity of building footprints in GIS. Int J Geogr Inf Sci. 
2017;31:1952–77. https:// doi. org/ 10. 1080/ 13658 816. 2017. 13462 
57.

 109. Maceachren AM. Compactness of geographic shape: compari-
son and evaluation of measures. Geogr Ann Ser B Hum Geogr. 
1985;67:53–67. https:// doi. org/ 10. 1080/ 04353 684. 1985. 11879 
515.

 110. Angel S, Parent J, Civco DL. Ten compactness properties of cir-
cles: measuring shape in geography. Can Geogr/Le Géogr Can. 
2010;54:441–61. https:// doi. org/ 10. 1111/j. 1541- 0064. 2009. 
00304.x.

 111. Duncan JMA, Boruff B. Monitoring spatial patterns of urban veg-
etation: a comparison of contemporary high-resolution datasets. 
Landsc Urban Plan. 2023;233:104671. https:// doi. org/ 10. 1016/j. 
landu rbplan. 2022. 104671.

 112. Jasiewicz J, Netzel P, Stepinski TF. Landscape similarity, 
retrieval, and machine mapping of physiographic units. Geomor-
phology. 2014;221:104–12. https:// doi. org/ 10. 1016/j. geomo rph. 
2014. 06. 011.

 113. Nowosad J, Stepinski TF. Pattern-based identification and map-
ping of landscape types using multi-thematic data. Int J Geogr 
Inf Sci. 2021;35:1634–49. https:// doi. org/ 10. 1080/ 13658 816. 
2021. 18933 24.

 114. Correa Ayram CA, Mendoza ME, Etter A, Salicrup DRP. Habi-
tat connectivity in biodiversity conservation: a review of recent 
studies and applications. Progr Phys Geogr Earth Environ. 
2016;40:7–37. https:// doi. org/ 10. 1177/ 03091 33315 598713.

 115. Taylor PD, Fahrig L, With KA. Landscape connectivity: A return 
to the basics. In: Crooks KR, Sanjayan M, editors. Connectivity 
conservation. Cambridge: Cambridge University Press; 2006. p. 
29–43.

 116. Tischendorf L, Fahrig L. On the usage and measurement of 
landscape connectivity. Oikos. 2000;90:7–19. https:// doi. org/ 
10. 1034/j. 1600- 0706. 2000. 900102.x.

 117. Spanowicz AG, Jaeger JAG. Measuring landscape connectivity: 
On the importance of within-patch connectivity. Landscape Ecol. 
2019;34:2261–78. https:// doi. org/ 10. 1007/ s10980- 019- 00881-0.

 118. Adriaensen F, Chardon JP, de Blust G, Swinnen E, Villalba S, 
Gulinck H, Matthysen E. The application of “least-cost” mod-
elling as a functional landscape model. Landsc Urban Plan. 
2003;64:233–47. https:// doi. org/ 10. 1016/ S0169- 2046(02) 
00242-6.

 119. Simpkins CE, Dennis TE, Etherington TR, Perry GLW. Assess-
ing the performance of common landscape connectivity metrics 
using a virtual ecologist approach. Ecol Model. 2018;367:13–23. 
https:// doi. org/ 10. 1016/j. ecolm odel. 2017. 11. 001.

 120. Keeley ATH, Beier P, Jenness JS. Connectivity metrics for 
conservation planning and monitoring. Biol Cons. 2021;255: 
109008. https:// doi. org/ 10. 1016/j. biocon. 2021. 109008.

 121. Calabrese JM, Fagan WF. A comparison-shopper’s guide to con-
nectivity metrics. Front Ecol Environ. 2004;2:529–36. https:// 
doi. org/ 10. 1890/ 1540- 9295(2004) 002[0529: ACGTCM] 2.0. 
CO;2.

 122. Kays R, Crofoot MC, Jetz W, Wikelski M. Terrestrial animal 
tracking as an eye on life and planet. Science. 2015;348:aaa2478. 
https:// doi. org/ 10. 1126/ scien ce. aaa24 78.

 123. Nathan R, Monk CT, Arlinghaus R, Adam T, Alós J, Assaf M, 
Baktoft H, Beardsworth CE, Bertram MG, Bijleveld AI, Bro-
din T, Brooks JL, Campos-Candela A, Cooke SJ, Gjelland KØ, 
Gupte PR, Harel R, Hellström G, Jeltsch F, Killen SS, Klefoth T, 
Langrock R, Lennox RJ, Lourie E, Madden JR, Orchan Y, Pau-
wels IS, Říha M, Roeleke M, Schlägel UE, Shohami D, Signer J, 
Toledo S, Vilk O, Westrelin S, Whiteside MA, Jarić I. Big-data 
approaches lead to an increased understanding of the ecology of 

https://doi.org/10.1007/s10980-015-0305-2
https://doi.org/10.1007/s10980-015-0305-2
https://doi.org/10.3390/e23111425
https://doi.org/10.3390/e23111425
https://doi.org/10.1007/s10980-017-0515-x
https://doi.org/10.3390/e22040381
https://doi.org/10.1007/s10980-022-01513-w
https://doi.org/10.1007/s10980-022-01513-w
https://doi.org/10.1007/s10980-022-01514-9
https://doi.org/10.1016/0040-5809(82)90004-1
https://doi.org/10.1016/0040-5809(82)90004-1
https://doi.org/10.1016/j.ecolind.2016.07.039
https://doi.org/10.1016/j.ecolind.2016.07.039
https://doi.org/10.1007/s10980-009-9327-y
https://doi.org/10.1007/s10980-009-9327-y
https://doi.org/10.1007/s10980-018-0685-1
https://doi.org/10.1007/s10980-018-0685-1
https://doi.org/10.3389/fgene.2020.00307
https://doi.org/10.3389/fgene.2020.00307
https://doi.org/10.1007/s10980-015-0248-7
https://doi.org/10.1007/s10980-015-0248-7
https://doi.org/10.1007/s10980-019-00880-1
https://doi.org/10.1007/s10980-019-00880-1
https://doi.org/10.1371/journal.pone.0291697
https://doi.org/10.1016/j.envsoft.2022.105325
https://doi.org/10.1016/j.envsoft.2022.105325
https://doi.org/10.1080/13658816.2017.1346257
https://doi.org/10.1080/13658816.2017.1346257
https://doi.org/10.1080/04353684.1985.11879515
https://doi.org/10.1080/04353684.1985.11879515
https://doi.org/10.1111/j.1541-0064.2009.00304.x
https://doi.org/10.1111/j.1541-0064.2009.00304.x
https://doi.org/10.1016/j.landurbplan.2022.104671
https://doi.org/10.1016/j.landurbplan.2022.104671
https://doi.org/10.1016/j.geomorph.2014.06.011
https://doi.org/10.1016/j.geomorph.2014.06.011
https://doi.org/10.1080/13658816.2021.1893324
https://doi.org/10.1080/13658816.2021.1893324
https://doi.org/10.1177/0309133315598713
https://doi.org/10.1034/j.1600-0706.2000.900102.x
https://doi.org/10.1034/j.1600-0706.2000.900102.x
https://doi.org/10.1007/s10980-019-00881-0
https://doi.org/10.1016/S0169-2046(02)00242-6
https://doi.org/10.1016/S0169-2046(02)00242-6
https://doi.org/10.1016/j.ecolmodel.2017.11.001
https://doi.org/10.1016/j.biocon.2021.109008
https://doi.org/10.1890/1540-9295(2004)002[0529:ACGTCM]2.0.CO;2
https://doi.org/10.1890/1540-9295(2004)002[0529:ACGTCM]2.0.CO;2
https://doi.org/10.1890/1540-9295(2004)002[0529:ACGTCM]2.0.CO;2
https://doi.org/10.1126/science.aaa2478


Current Landscape Ecology Reports            (2025) 10:2  Page 15 of 18     2 

animal movement. Science. 2022;375:eabg1780. https:// doi. org/ 
10. 1126/ scien ce. abg17 80.

 124. Zeller KA, McGarigal K, Whiteley AR. Estimating land-
scape resistance to movement: A review. Landscape Ecol. 
2012;27:777–97. https:// doi. org/ 10. 1007/ s10980- 012- 9737-0.

 125. Etherington TR. Least-cost modelling and landscape ecology: 
concepts, applications, and opportunities. Curr Landsc Ecol Rep. 
2016;1:40–53. https:// doi. org/ 10. 1007/ s40823- 016- 0006-9.

 126. Dutta T, Sharma S, Meyer NFV, Larroque J, Balkenhol N. 
An overview of computational tools for preparing, construct-
ing and using resistance surfaces in connectivity research. 
Landscape Ecol. 2022;37:2195–224. https:// doi. org/ 10. 1007/ 
s10980- 022- 01469-x.

 127. Krueger T, Page T, Hubacek K, Smith L, Hiscock K. The role 
of expert opinion in environmental modelling. Environ Model 
Softw. 2012;36:4–18. https:// doi. org/ 10. 1016/j. envso ft. 2012. 01. 
011.

 128. McRae B, Dickson BG, Keitt TH, Shah VB. Using circuit theory 
to model connectivity in ecology, evolution, and conservation. 
Ecology. 2008;89:2712–24. https:// doi. org/ 10. 1890/ 07- 1861.1.

 129. Cushman SA, McRae B, Adriaensen F, Beier P, Shirley M, Zel-
ler K. Biological corridors and connectivity. In: Macdonald DW, 
Willis KJ, editors. Key topics in conservation biology 2. 1st ed. 
Wiley; 2013. pp. 384–404.

 130. Unnithan Kumar S, Cushman SA. Connectivity modelling 
in conservation science: A comparative evaluation. Sci Rep. 
2022;12:16680. https:// doi. org/ 10. 1038/ s41598- 022- 20370-w.

 131. Unnithan Kumar S, Turnbull J, Hartman Davies O, Hodgetts T, 
Cushman SA. Moving beyond landscape resistance: considera-
tions for the future of connectivity modelling and conserva-
tion science. Landsc Ecol. 2022;37:2465–80. https:// doi. org/ 
10. 1007/ s10980- 022- 01504-x.

 132. Zeller K, Lewison R, Fletcher R, Tulbure M, Jennings M. 
Understanding the importance of dynamic landscape connec-
tivity. Land. 2020;9:303. https:// doi. org/ 10. 3390/ land9 090303.

 133. Leonard PB, Duffy EB, Baldwin RF, McRae BH, Shah VB, 
Mohapatra TK. Glow: Software for modelling circuit the-
ory-based connectivity at any scale. Methods Ecol Evol. 
2017;8:519–26. https:// doi. org/ 10. 1111/ 2041- 210X. 12689.

 134. Urban D, Keitt T. Landscape connectivity: A graph-theoretic 
perspective. Ecology. 2001;82:1205–18. https:// doi. org/ 10. 
1890/ 0012- 9658(2001) 082[1205: LCAGTP] 2.0. CO;2.

 135. Foltête J-C, Savary P, Clauzel C, Bourgeois M, Girardet X, 
Sahraoui Y, Vuidel G, Garnier S. Coupling landscape graph 
modeling and biological data: A review. Landscape Ecol. 
2020;35:1035–52. https:// doi. org/ 10. 1007/ s10980- 020- 00998-7.

 136. Godet C, Clauzel C. Comparison of landscape graph mod-
elling methods for analysing pond network connectivity. 
Landscape Ecol. 2021;36:735–48. https:// doi. org/ 10. 1007/ 
s10980- 020- 01164-9.

 137. Wang Y, Qin P, Li S, Önal H. Optimal configuration of a wildlife 
corridor system. Global Ecol Conserv. 2023;46: e02560. https:// 
doi. org/ 10. 1016/j. gecco. 2023. e02560.

 138. Pietsch M. Contribution of connectivity metrics to the assessment 
of biodiversity – some methodological considerations to improve 
landscape planning. Ecol Ind. 2018;94:116–27. https:// doi. org/ 
10. 1016/j. ecoli nd. 2017. 05. 052.

 139. Liu W, Hughes AC, Bai Y, Li Z, Mei C, Ma Y. Using landscape 
connectivity tools to identify conservation priorities in forested 
areas and potential restoration priorities in rubber plantation in 
xishuangbanna, southwest china. Landsc Ecol. 2020;35:389–402. 
https:// doi. org/ 10. 1007/ s10980- 019- 00952-2.

 140. Petsas P, Almpanidou V, Mazaris AD. Landscape connectivity 
analysis: New metrics that account for patch quality, neighbors’ 
attributes and robust connections. Landsc Ecol. 2021;36:3153–
68. https:// doi. org/ 10. 1007/ s10980- 021- 01319-2.

 141. Saura S, Pascual-Hortal L. A new habitat availability index to 
integrate connectivity in landscape conservation planning: Com-
parison with existing indices and application to a case study. 
Landsc Urban Plan. 2007;83:91–103. https:// doi. org/ 10. 1016/j. 
landu rbplan. 2007. 03. 005.

 142. Saura S, Rubio L. A common currency for the different ways 
in which patches and links can contribute to habitat availability 
and connectivity in the landscape. Ecography. 2010;33:523–37. 
https:// doi. org/ 10. 1111/j. 1600- 0587. 2009. 05760.x.

 143. Pascual-Hortal L, Saura S. Comparison and development of 
new graph-based landscape connectivity indices: Towards the 
priorization of habitat patches and corridors for conservation. 
Landscape Ecol. 2006;21:959–67. https:// doi. org/ 10. 1007/ 
s10980- 006- 0013-z.

 144. Hashemi R, Darabi H. The review of ecological network indi-
cators in graph theory context: 2014–2021. Int J Environ Res. 
2022;16:24. https:// doi. org/ 10. 1007/ s41742- 022- 00404-x.

 145. Clauzel C, Jeliazkov A, Mimet A. Coupling a landscape-based 
approach and graph theory to maximize multispecific connec-
tivity in bird communities. Landsc Urban Plan. 2018;179:1–16. 
https:// doi. org/ 10. 1016/j. landu rbplan. 2018. 07. 002.

 146. Modica G, Praticò S, Laudari L, Ledda A, Di Fazio S, De Montis 
A. Implementation of multispecies ecological networks at the 
regional scale: Analysis and multi-temporal assessment. J Envi-
ron Manage. 2021;289: 112494. https:// doi. org/ 10. 1016/j. jenvm 
an. 2021. 112494.

 147. Liang G, Niu H, Li Y. A multi-species approach for protected 
areas ecological network construction based on landscape con-
nectivity. Glob Ecol Conserv. 2023;46:e02569. https:// doi. org/ 
10. 1016/j. gecco. 2023. e02569.

 148. Dale MRT. Spatio-temporal graphs. In: Applying graph theory 
in ecological research. Cambridge: Cambridge University Press; 
2017. p. 222–51.

 149. Uroy L, Alignier A, Mony C, Foltête J-C, Ernoult A. How to 
assess the temporal dynamics of landscape connectivity in 
ever-changing landscapes: a literature review. Landsc Ecol. 
2021;36:2487–504. https:// doi. org/ 10. 1007/ s10980- 021- 01277-9.

 150. Holderegger R, Wagner HH. Landscape genetics. Bioscience. 
2008;58:199–207. https:// doi. org/ 10. 1641/ B5803 06.

 151. Manel S, Schwartz MK, Luikart G, Taberlet P. Landscape 
genetics: combining landscape ecology and population genet-
ics. Trends Ecol Evol. 2003;18:189–97. https:// doi. org/ 10. 1016/ 
S0169- 5347(03) 00008-9.

 152. Balkenhol N, Dudaniec RY, Krutovsky KV, Johnson JS, Cairns 
DM, Segelbacher G, Selkoe KA, von Der Heyden S, Wang IJ, 
Selmoni O, Joost S. Landscape genomics: Understanding rela-
tionships between environmental heterogeneity and genomic 
characteristics of populations. In: Rajora OP, editor. Population 
genomics. Cham: Springer International Publishing; 2017. p. 
261–322.

 153. Manel S, Holderegger R. Ten years of landscape genetics. Trends 
Ecol Evol. 2013;28:614–21. https:// doi. org/ 10. 1016/j. tree. 2013. 
05. 012.

 154. Bolliger J, Lander T, Balkenhol N. Landscape genetics since 
2003: Status, challenges and future directions. Landscape Ecol. 
2014;29:361–6. https:// doi. org/ 10. 1007/ s10980- 013- 9982-x.

 155. Aguirre-Liguori JA, Ramírez-Barahona S, Gaut BS. The evo-
lutionary genomics of species’ responses to climate change. 
Nat Ecol Evol. 2021;5:1350–60. https:// doi. org/ 10. 1038/ 
s41559- 021- 01526-9.

 156. Homola JJ, Loftin CS, Kinnison MT. Landscape genetics reveals 
unique and shared effects of urbanization for two sympatric pool-
breeding amphibians. Ecol Evol. 2019;9:11799–823. https:// doi. 
org/ 10. 1002/ ece3. 5685.

 157. de Flamingh A, Alexander N, Perrin-Stowe TIN, Cc D, Gulde-
mond RAR, Schooley RL, Van Aarde RJ, Roca AL. Integrating 

https://doi.org/10.1126/science.abg1780
https://doi.org/10.1126/science.abg1780
https://doi.org/10.1007/s10980-012-9737-0
https://doi.org/10.1007/s40823-016-0006-9
https://doi.org/10.1007/s10980-022-01469-x
https://doi.org/10.1007/s10980-022-01469-x
https://doi.org/10.1016/j.envsoft.2012.01.011
https://doi.org/10.1016/j.envsoft.2012.01.011
https://doi.org/10.1890/07-1861.1
https://doi.org/10.1038/s41598-022-20370-w
https://doi.org/10.1007/s10980-022-01504-x
https://doi.org/10.1007/s10980-022-01504-x
https://doi.org/10.3390/land9090303
https://doi.org/10.1111/2041-210X.12689
https://doi.org/10.1890/0012-9658(2001)082[1205:LCAGTP]2.0.CO;2
https://doi.org/10.1890/0012-9658(2001)082[1205:LCAGTP]2.0.CO;2
https://doi.org/10.1007/s10980-020-00998-7
https://doi.org/10.1007/s10980-020-01164-9
https://doi.org/10.1007/s10980-020-01164-9
https://doi.org/10.1016/j.gecco.2023.e02560
https://doi.org/10.1016/j.gecco.2023.e02560
https://doi.org/10.1016/j.ecolind.2017.05.052
https://doi.org/10.1016/j.ecolind.2017.05.052
https://doi.org/10.1007/s10980-019-00952-2
https://doi.org/10.1007/s10980-021-01319-2
https://doi.org/10.1016/j.landurbplan.2007.03.005
https://doi.org/10.1016/j.landurbplan.2007.03.005
https://doi.org/10.1111/j.1600-0587.2009.05760.x
https://doi.org/10.1007/s10980-006-0013-z
https://doi.org/10.1007/s10980-006-0013-z
https://doi.org/10.1007/s41742-022-00404-x
https://doi.org/10.1016/j.landurbplan.2018.07.002
https://doi.org/10.1016/j.jenvman.2021.112494
https://doi.org/10.1016/j.jenvman.2021.112494
https://doi.org/10.1016/j.gecco.2023.e02569
https://doi.org/10.1016/j.gecco.2023.e02569
https://doi.org/10.1007/s10980-021-01277-9
https://doi.org/10.1641/B580306
https://doi.org/10.1016/S0169-5347(03)00008-9
https://doi.org/10.1016/S0169-5347(03)00008-9
https://doi.org/10.1016/j.tree.2013.05.012
https://doi.org/10.1016/j.tree.2013.05.012
https://doi.org/10.1007/s10980-013-9982-x
https://doi.org/10.1038/s41559-021-01526-9
https://doi.org/10.1038/s41559-021-01526-9
https://doi.org/10.1002/ece3.5685
https://doi.org/10.1002/ece3.5685


 Current Landscape Ecology Reports            (2025) 10:2     2  Page 16 of 18

habitat suitability modeling with gene flow improves deline-
ation of landscape connections among african savanna ele-
phants. Biodivers Conserv. 2024. https:// doi. org/ 10. 1007/ 
s10531- 024- 02910-0.

 158. Henson LH, Balkenhol N, Gustas R, Adams M, Walkus J, Housty 
WG, Stronen AV, Moody J, Service C, Reece D, von Holdt BM, 
McKechnie I, Koop BF, Darimont CT. Convergent geographic 
patterns between grizzly bear population genetic structure and 
indigenous language groups in coastal british columbia Canada. 
Ecol Soc. 2021;26:7. https:// doi. org/ 10. 5751/ ES- 12443- 260307.

 159. Sork VL, Aitken SN, Dyer RJ, Eckert AJ, Legendre P, Neale DB. 
Putting the landscape into the genomics of trees: Approaches 
for understanding local adaptation and population responses to 
changing climate. Tree Genet Genomes. 2013;9:901–11. https:// 
doi. org/ 10. 1007/ s11295- 013- 0596-x.

 160. Rolland J, Lavergne S, Manel S. Combining niche modelling and 
landscape genetics to study local adaptation: A novel approach 
illustrated using alpine plants. Perspect Plant Ecol Evol Syst. 
2015;17:491–9. https:// doi. org/ 10. 1016/j. ppees. 2015. 07. 005.

 161. Cushman SA, Shirk AJ, Howe GT, Murphy MA, Dyer RJ, Joost 
S. Editorial: The least cost path from landscape genetics to land-
scape genomics: Challenges and opportunities to explore NGS 
data in a spatially explicit context. Front Genet. 2018;9:215. 
https:// doi. org/ 10. 3389/ fgene. 2018. 00215.

 162. Storfer A, Patton A, Fraik AK. Navigating the interface between 
landscape genetics and landscape genomics. Front Genet. 
2018;9:68. https:// doi. org/ 10. 3389/ fgene. 2018. 00068.

 163. Fenderson LE, Kovach AI, Llamas B. Spatiotemporal landscape 
genetics: Investigating ecology and evolution through space and 
time. Mol Ecol. 2020;29:218–46. https:// doi. org/ 10. 1111/ mec. 
15315.

 164. House GL, Hahn MW. Evaluating methods to visualize pat-
terns of genetic differentiation on a landscape. Mol Ecol Resour. 
2018;18:448–60. https:// doi. org/ 10. 1111/ 1755- 0998. 12747.

 165. Chevy ET, Min J, Caudill V, Champer SE, Haller BC, Rehmann 
CT, Smith CCR, Tittes S, Messer PW, Kern AD, Ramachan-
dran S, Ralph PL. Population genetics meets ecology: a guide 
to individual-based simulations in continuous landscapes. 2024. 
bioRxiv. https:// doi. org/ 10. 1101/ 2024. 07. 24. 604988.

 166. Capblancq T, Forester BR. Redundancy analysis: A swiss 
army knife for landscape genomics. Methods Ecol Evol. 
2021;12:2298–309. https:// doi. org/ 10. 1111/ 2041- 210X. 13722.

 167. Marcus J, Ha W, Barber RF, Novembre J. Fast and flexible esti-
mation of effective migration surfaces. eLife. 2021;10:e61927. 
https:// doi. org/ 10. 7554/ eLife. 61927.

 168. Pasher J, Mitchell SW, King DJ, Fahrig L, Smith AC, Lind-
say KE. Optimizing landscape selection for estimating rela-
tive effects of landscape variables on ecological responses. 
Landscape Ecol. 2013;28:371–83. https:// doi. org/ 10. 1007/ 
s10980- 013- 9852-6.

 169. Zuckerberg B, Cohen JM, Nunes LA, Bernath-Plaisted J, Clare 
JDJ, Gilbert NA, Kozidis SS, Maresh Nelson SB, Shipley AA, 
Thompson KL, Desrochers A. A review of overlapping land-
scapes: pseudoreplication or a red herring in landscape ecology? 
Curr Landsc Ecol Rep. 2020;5:140–8. https:// doi. org/ 10. 1007/ 
s40823- 020- 00059-4.

 170. Jackson HB, Fahrig L. Are ecologists conducting research at the 
optimal scale? Glob Ecol Biogeogr. 2015;24:52–63. https:// doi. 
org/ 10. 1111/ geb. 12233.

 171. Miguet P, Jackson HB, Jackson ND, Martin AE, Fahrig L. What 
determines the spatial extent of landscape effects on species? 
Landscape Ecol. 2016;31:1177–94. https:// doi. org/ 10. 1007/ 
s10980- 015- 0314-1.

 172. Hurlbert SH. Pseudoreplication and the design of ecological field 
experiments. Ecol Monogr. 1984;54:187–211. https:// doi. org/ 10. 
2307/ 19426 61.

 173. Dormann CF, McPherson JM, Araújo MB, Bivand R, Bolliger 
J, Carl G, Davies RG, Hirzel A, Jetz W, Kissling WD, Kühn I, 
Ohlemüller R, Peres-Neto PR, Reineking B, Schröder B, Schurr 
FM, Wilson R. Methods to account for spatial autocorrelation 
in the analysis of species distributional data: A review. Ecogra-
phy. 2007;30:609–28. https:// doi. org/ 10. 1111/j. 2007. 0906- 7590. 
05171.x.

 174. Heaton MJ, Gelfand AE. Spatial regression using kernel averaged 
predictors. J Agric Biol Environ Stat. 2011;16:233–52. https:// 
doi. org/ 10. 1007/ s13253- 010- 0050-6.

 175. Peck SL. Simulation as experiment: A philosophical reassess-
ment for biological modeling. Trends Ecol Evol. 2004;19:530–4. 
https:// doi. org/ 10. 1016/j. tree. 2004. 07. 019.

 176. Schröder B, Seppelt R. Analysis of pattern–process interactions 
based on landscape models - overview, general concepts, and 
methodological issues. Ecol Model. 2006;199:505–16. https:// 
doi. org/ 10. 1016/j. ecolm odel. 2006. 05. 036.

 177. Synes NW, Brown C, Watts K, White SM, Gilbert MA, Travis 
JMJ. Emerging opportunities for landscape ecological modelling. 
Curr Landsc Ecol Rep. 2016;1:146–67. https:// doi. org/ 10. 1007/ 
s40823- 016- 0016-7.

 178. Li X, He HS, Wang X, Bu R, Hu Y, Chang Y. Evaluating the 
effectiveness of neutral landscape models to represent a real land-
scape. Landsc Urban Plan. 2004;69:137–48. https:// doi. org/ 10. 
1016/j. landu rbplan. 2003. 10. 037.

 179. Wang Q, Malanson GP. Neutral landscapes: Bases for exploration 
in landscape ecology. Geogr Compass. 2008;2:319–39. https:// 
doi. org/ 10. 1111/j. 1749- 8198. 2008. 00090.x.

 180. Hess B, Dreber N, Liu Y, Wiegand K, Ludwig M, Meyer H, 
Meyer KM. PioLaG: A piosphere landscape generator for 
savanna rangeland modelling. Landscape Ecol. 2020;35:2061–
82. https:// doi. org/ 10. 1007/ s10980- 020- 01066-w.

 181. Pe’er G, Zurita GA, Schober L, Bellocq MI, Strer M, Müller M, 
Pütz S. Simple process-based simulators for generating spatial 
patterns of habitat loss and fragmentation: A review and intro-
duction to the g-RaFFe model. PLoS ONE. 2013;8:e64968. 
https:// doi. org/ 10. 1371/ journ al. pone. 00649 68.

 182. Langhammer M, Thober J, Lange M, Frank K, Grimm V. Agri-
cultural landscape generators for simulation models: a review of 
existing solutions and an outline of future directions. Ecol Model. 
2019;393:135–51. https:// doi. org/ 10. 1016/j. ecolm odel. 2018. 12. 010.

 183. Gardner RH, Milne BT, Turnei MG, O’Neill RV. Neutral models 
for the analysis of broad-scale landscape pattern. Landsc Ecol. 
1987;1:19–28. https:// doi. org/ 10. 1007/ BF022 75262.

 184. O’Neill RV, Gardner RH, Turner MG. A hierarchical neutral 
model for landscape analysis. Landscape Ecol. 1992;7:55–61. 
https:// doi. org/ 10. 1007/ BF025 73957.

 185. Palmer MW. The coexistence of species in fractal landscapes. 
Am Nat. 1992;139:375–97. https:// doi. org/ 10. 1086/ 285332.

 186. Etherington TR. Perlin noise as a hierarchical neutral land-
scape model. Web Ecol. 2022;22:1–6. https:// doi. org/ 10. 5194/ 
we- 22-1- 2022.

 187. Etherington TR, Morgan FJ, O’Sullivan D. Binary space 
partitioning generates hierarchical and rectilinear neutral 
landscape models suitable for human-dominated landscapes. 
Landsc Ecol. 2022;37:1761–9. https:// doi. org/ 10. 1007/ 
s10980- 022- 01452-6.

 188. Etherington TR, O’Sullivan D, Perry GLW, Richards DR, Wain-
wright J. A least-cost network neutral landscape model of human 
sites and routes. Landscape Ecol. 2024;39:52. https:// doi. org/ 10. 
1007/ s10980- 024- 01836-w.

 189. Inkoom JN, Frank S, Greve K, Fürst C. Designing neutral 
landscapes for data scarce regions in west africa. Eco Inform. 
2017;42:1–13. https:// doi. org/ 10. 1016/j. ecoinf. 2017. 08. 003.

 190. Salecker J, Dislich C, Wiegand K, Meyer KM, Peer G. EFForTS-
LGraf: a landscape generator for creating smallholder-driven 

https://doi.org/10.1007/s10531-024-02910-0
https://doi.org/10.1007/s10531-024-02910-0
https://doi.org/10.5751/ES-12443-260307
https://doi.org/10.1007/s11295-013-0596-x
https://doi.org/10.1007/s11295-013-0596-x
https://doi.org/10.1016/j.ppees.2015.07.005
https://doi.org/10.3389/fgene.2018.00215
https://doi.org/10.3389/fgene.2018.00068
https://doi.org/10.1111/mec.15315
https://doi.org/10.1111/mec.15315
https://doi.org/10.1111/1755-0998.12747
https://doi.org/10.1101/2024.07.24.604988
https://doi.org/10.1111/2041-210X.13722
https://doi.org/10.7554/eLife.61927
https://doi.org/10.1007/s10980-013-9852-6
https://doi.org/10.1007/s10980-013-9852-6
https://doi.org/10.1007/s40823-020-00059-4
https://doi.org/10.1007/s40823-020-00059-4
https://doi.org/10.1111/geb.12233
https://doi.org/10.1111/geb.12233
https://doi.org/10.1007/s10980-015-0314-1
https://doi.org/10.1007/s10980-015-0314-1
https://doi.org/10.2307/1942661
https://doi.org/10.2307/1942661
https://doi.org/10.1111/j.2007.0906-7590.05171.x
https://doi.org/10.1111/j.2007.0906-7590.05171.x
https://doi.org/10.1007/s13253-010-0050-6
https://doi.org/10.1007/s13253-010-0050-6
https://doi.org/10.1016/j.tree.2004.07.019
https://doi.org/10.1016/j.ecolmodel.2006.05.036
https://doi.org/10.1016/j.ecolmodel.2006.05.036
https://doi.org/10.1007/s40823-016-0016-7
https://doi.org/10.1007/s40823-016-0016-7
https://doi.org/10.1016/j.landurbplan.2003.10.037
https://doi.org/10.1016/j.landurbplan.2003.10.037
https://doi.org/10.1111/j.1749-8198.2008.00090.x
https://doi.org/10.1111/j.1749-8198.2008.00090.x
https://doi.org/10.1007/s10980-020-01066-w
https://doi.org/10.1371/journal.pone.0064968
https://doi.org/10.1016/j.ecolmodel.2018.12.010
https://doi.org/10.1007/BF02275262
https://doi.org/10.1007/BF02573957
https://doi.org/10.1086/285332
https://doi.org/10.5194/we-22-1-2022
https://doi.org/10.5194/we-22-1-2022
https://doi.org/10.1007/s10980-022-01452-6
https://doi.org/10.1007/s10980-022-01452-6
https://doi.org/10.1007/s10980-024-01836-w
https://doi.org/10.1007/s10980-024-01836-w
https://doi.org/10.1016/j.ecoinf.2017.08.003


Current Landscape Ecology Reports            (2025) 10:2  Page 17 of 18     2 

land-use mosaics. PLoS ONE. 2019;14:e0222949. https:// doi. 
org/ 10. 1371/ journ al. pone. 02229 49.

 191. Clarke KC, Gaydos LJ. Loose-coupling a cellular automa-
ton model and GIS: Long-term urban growth prediction for 
san francisco and washington/baltimore. Int J Geogr Inf Sci. 
1998;12:699–714. https:// doi. org/ 10. 1080/ 13658 81982 41617.

 192. Soares-Filho BS, Coutinho Cerqueira G, Lopes Pennachin C. 
Dinamica—a stochastic cellular automata model designed to 
simulate the landscape dynamics in an amazonian colonization 
frontier. Ecol Model. 2002;154:217–35. https:// doi. org/ 10. 1016/ 
S0304- 3800(02) 00059-5.

 193. Gaucherel C, Fleury D, Auclair D, Dreyfus P. Neutral models 
for patchy landscapes. Ecol Model. 2006;197:159–70. https:// 
doi. org/ 10. 1016/j. ecolm odel. 2006. 02. 044.

 194. Stepinski TF, Nowosad J. The kinetic ising model encapsulates 
essential dynamics of land pattern change. Royal Soc Open Sci. 
2023;10: 231005. https:// doi. org/ 10. 1098/ rsos. 231005.

 195. Deangelis DL, Grimm V. Individual-based models in ecology 
after four decades. F1000Prime Rep. (2014) 6:1-6. https:// doi. 
org/ 10. 12703/ P6- 39

 196. Carauta M, Latynskiy E, Mössinger J, Gil J, Libera A, Hampf 
A, Monteiro L, Siebold M, Berger T. Can preferential credit pro-
grams speed up the adoption of low-carbon agricultural systems 
in mato grosso, brazil? Results from bioeconomic microsimula-
tion. Reg Environ Change. 2018;18:117–28. https:// doi. org/ 10. 
1007/ s10113- 017- 1104-x.

 197. Dislich C, Hettig E, Salecker J, Heinonen J, Lay J, Meyer KM, 
Wiegand K, Tarigan S. Land-use change in oil palm dominated 
tropical landscapes - an agent-based model to explore ecological 
and socio-economic trade-offs. PLoS ONE. 2018;13: e0190506. 
https:// doi. org/ 10. 1371/ journ al. pone. 01905 06.

 198. Gonzalez-Redin J, Gordon IJ, Hill R, Polhill JG, Dawson TP. 
Exploring sustainable land use in forested tropical social-ecolog-
ical systems: A case-study in the wet tropics. J Environ Manage. 
2019;231:940–52. https:// doi. org/ 10. 1016/j. jenvm an. 2018. 10. 079.

 199. Seidl R, Rammer W. Climate change amplifies the interac-
tions between wind and bark beetle disturbances in forest land-
scapes. Landsc Ecol. 2017;32:1485–98. https:// doi. org/ 10. 1007/ 
s10980- 016- 0396-4.

 200. Spies TA, White E, Ager A, Kline JD, Bolte JP, Platt EK, Olsen 
KA, Pabst RJ, Barros AMG, Bailey JD, Charnley S, Mor-
zillo AT, Koch J, Steen-Adams MM, Singleton PH, Sulzman 
J, Schwartz C, Csuti B. Using an agent-based model to exam-
ine forest management outcomes in a fire-prone landscape in 
oregon, USA. Ecol Soc. 2017;22:art25. https:// doi. org/ 10. 5751/ 
ES- 08841- 220125.

 201. Kamimura K, Gardiner B, Dupont S, Finnigan J. Agent-based 
modelling of wind damage processes and patterns in forests. 
Agric For Meteorol. 2019;268:279–88. https:// doi. org/ 10. 1016/j. 
agrfo rmet. 2019. 01. 020.

 202. Day CC, Zollner PA, Gilbert JH, McCann NP. Individual-
based modeling highlights the importance of mortality and 
landscape structure in measures of functional connectivity. 
Landscape Ecol. 2020;35:2191–208. https:// doi. org/ 10. 1007/ 
s10980- 020- 01095-5.

 203. Murray-Rust D, Brown C, Van Vliet J, Alam SJ, Robinson DT, 
Verburg PH, Rounsevell M. Combining agent functional types, 
capitals and services to model land use dynamics. Environ Model 
Softw. 2014;59:187–201. https:// doi. org/ 10. 1016/j. envso ft. 2014. 
05. 019.

 204. Berger U, Bell A, Barton CM, Chappin E, Dreßler G, Filatova 
T, Fronville T, Lee A, van Loon E, Lorscheid I, Meyer M, Mül-
ler B, Piou C, Radchuk V, Roxburgh N, Schüler L, Troost C, 
Wijermans N, Williams TG, Wimmler M-C, Grimm V. Towards 
reusable building blocks for agent-based modelling and theory 

development. Environ Model Softw. 2024;175:106003. https:// 
doi. org/ 10. 1016/j. envso ft. 2024. 106003.

 205. O’Sullivan D, Evans T, Manson S, Metcalf S, Ligmann-Zielinska 
A, Bone C. Strategic directions for agent-based modeling: Avoid-
ing the YAAWN syndrome. J Land Use Sci. 2016;11:177–87. 
https:// doi. org/ 10. 1080/ 17474 23X. 2015. 10304 63.

 206. Polhill JG, Gimona A, Aspinall RJ. Agent-based modelling of 
land use effects on ecosystem processes and services. J Land 
Use Sci. 2011;6:75–81. https:// doi. org/ 10. 1080/ 17474 23X. 2011. 
558603.

 207. Jones D, Snider C, Nassehi A, Yon J, Hicks B. Characterising 
the digital twin: a systematic literature review. CIRP J Manuf Sci 
Technol. 2020;29:36–52. https:// doi. org/ 10. 1016/j. cirpj. 2020. 02. 
002.

 208. de Koning K, Broekhuijsen J, Kühn I, Ovaskainen O, Taubert 
F, Endresen D, Schigel D, Grimm V. Digital twins: Dynamic 
model-data fusion for ecology. Trends Ecol Evol. 2023;38:916–
26. https:// doi. org/ 10. 1016/j. tree. 2023. 04. 010.

 209. Farley SS, Dawson A, Goring SJ, Williams JW. Situating ecology 
as a big-data science: Current advances, challenges, and solu-
tions. Bioscience. 2018;68:563–76. https:// doi. org/ 10. 1093/ 
biosci/ biy068.

 210. Cesco S, Sambo P, Borin M, Basso B, Orzes G, Mazzetto F. 
Smart agriculture and digital twins: Applications and challenges 
in a vision of sustainability. Eur J Agron. 2023;146: 126809. 
https:// doi. org/ 10. 1016/j. eja. 2023. 126809.

 211. Purcell W, Neubauer T, Mallinger K. Digital twins in agricul-
ture: challenges and opportunities for environmental sustain-
ability. Curr Opin Environ Sustain. 2023;61:101252. https:// 
doi. org/ 10. 1016/j. cosust. 2022. 101252.

 212. Tan F, Cheng Y. A digital twin framework for innovating rural 
ecological landscape control. Environ Sci Eur. 2024;36:59. 
https:// doi. org/ 10. 1186/ s12302- 024- 00888-8.

 213. Zhao D, Li X, Wang X, Shen X, Gao W. Applying digital 
twins to research the relationship between urban expansion and 
vegetation coverage: A case study of natural preserve. Front 
Plant Sci. 2022;13: 840471. https:// doi. org/ 10. 3389/ fpls. 2022. 
840471.

 214. Margules CR, Pressey RL. Systematic conservation planning. 
Nature. 2000;405:243–53. https:// doi. org/ 10. 1038/ 35012 251.

 215. Kukkala AS, Moilanen A. Core concepts of spatial prioritisation 
in systematic conservation planning. Biol Rev. 2013;88:443–64. 
https:// doi. org/ 10. 1111/ brv. 12008.

 216. Jung M, Alagador D, Chapman M, Hermoso V, Kujala H, 
O’Connor L, Schinegger R, Verburg PH, Visconti P. An assess-
ment of the state of conservation planning in europe. Philos 
Trans R Soc B. 2024;379:20230015. https:// doi. org/ 10. 1098/ 
rstb. 2023. 0015.

 217. Hanson JO, Schuster R, Strimas-Mackey M, Morrell N, Edwards 
B, Arcese P, Bennett JR, Possingham HP. Systematic conserva-
tion prioritization with the prioritizr r package. Conserv Biol. 
(2024) e14376. https:// doi. org/ 10. 1111/ cobi. 14376

 218. Hersperger AM, Grădinaru SR, Pierri Daunt AB, Imhof CS, Fan 
P. Landscape ecological concepts in planning: Review of recent 
developments. Landscape Ecol. 2021;36:2329–45. https:// doi. 
org/ 10. 1007/ s10980- 021- 01193-y.

 219. Daigle RM, Metaxas A, Balbar AC, McGowan J, Treml EA, 
Kuempel CD, Possingham HP, Beger M. Operationalizing eco-
logical connectivity in spatial conservation planning with marxan 
connect. Methods Ecol Evol. 2020;11:570–9. https:// doi. org/ 10. 
1111/ 2041- 210X. 13349.

 220. Smith RJ, Di Minin E, Linke S, Segan DB, Possingham HP. An 
approach for ensuring minimum protected area size in systematic 
conservation planning. Biol Cons. 2010;143:2525–31. https:// 
doi. org/ 10. 1016/j. biocon. 2010. 06. 019.

https://doi.org/10.1371/journal.pone.0222949
https://doi.org/10.1371/journal.pone.0222949
https://doi.org/10.1080/136588198241617
https://doi.org/10.1016/S0304-3800(02)00059-5
https://doi.org/10.1016/S0304-3800(02)00059-5
https://doi.org/10.1016/j.ecolmodel.2006.02.044
https://doi.org/10.1016/j.ecolmodel.2006.02.044
https://doi.org/10.1098/rsos.231005
https://doi.org/10.12703/P6-39
https://doi.org/10.12703/P6-39
https://doi.org/10.1007/s10113-017-1104-x
https://doi.org/10.1007/s10113-017-1104-x
https://doi.org/10.1371/journal.pone.0190506
https://doi.org/10.1016/j.jenvman.2018.10.079
https://doi.org/10.1007/s10980-016-0396-4
https://doi.org/10.1007/s10980-016-0396-4
https://doi.org/10.5751/ES-08841-220125
https://doi.org/10.5751/ES-08841-220125
https://doi.org/10.1016/j.agrformet.2019.01.020
https://doi.org/10.1016/j.agrformet.2019.01.020
https://doi.org/10.1007/s10980-020-01095-5
https://doi.org/10.1007/s10980-020-01095-5
https://doi.org/10.1016/j.envsoft.2014.05.019
https://doi.org/10.1016/j.envsoft.2014.05.019
https://doi.org/10.1016/j.envsoft.2024.106003
https://doi.org/10.1016/j.envsoft.2024.106003
https://doi.org/10.1080/1747423X.2015.1030463
https://doi.org/10.1080/1747423X.2011.558603
https://doi.org/10.1080/1747423X.2011.558603
https://doi.org/10.1016/j.cirpj.2020.02.002
https://doi.org/10.1016/j.cirpj.2020.02.002
https://doi.org/10.1016/j.tree.2023.04.010
https://doi.org/10.1093/biosci/biy068
https://doi.org/10.1093/biosci/biy068
https://doi.org/10.1016/j.eja.2023.126809
https://doi.org/10.1016/j.cosust.2022.101252
https://doi.org/10.1016/j.cosust.2022.101252
https://doi.org/10.1186/s12302-024-00888-8
https://doi.org/10.3389/fpls.2022.840471
https://doi.org/10.3389/fpls.2022.840471
https://doi.org/10.1038/35012251
https://doi.org/10.1111/brv.12008
https://doi.org/10.1098/rstb.2023.0015
https://doi.org/10.1098/rstb.2023.0015
https://doi.org/10.1111/cobi.14376
https://doi.org/10.1007/s10980-021-01193-y
https://doi.org/10.1007/s10980-021-01193-y
https://doi.org/10.1111/2041-210X.13349
https://doi.org/10.1111/2041-210X.13349
https://doi.org/10.1016/j.biocon.2010.06.019
https://doi.org/10.1016/j.biocon.2010.06.019


 Current Landscape Ecology Reports            (2025) 10:2     2  Page 18 of 18

 221. Justeau-Allaire D, Vieilledent G, Rinck N, Vismara P, Lorca X, 
Birnbaum P. Constrained optimization of landscape indices in 
conservation planning to support ecological restoration in new 
caledonia. J Appl Ecol. 2021;58:744–54. https:// doi. org/ 10. 1111/ 
1365- 2664. 13803.

 222. Weerasena L, Shier D, Tonkyn D, McFeaters M, Collins C. A 
sequential approach to reserve design with compactness and con-
tiguity considerations. Ecol Model. 2023;478:110281. https:// 
doi. org/ 10. 1016/j. ecolm odel. 2023. 110281.

 223. Beger M, Linke S, Watts M, Game E, Treml E, Ball I, Poss-
ingham HP. Incorporating asymmetric connectivity into spatial 
decision making for conservation. Conserv Lett. 2010;3:359–68. 
https:// doi. org/ 10. 1111/j. 1755- 263X. 2010. 00123.x.

 224. Hanson JO, Fuller RA, Rhodes JR. Conventional methods for 
enhancing connectivity in conservation planning do not always 
maintain gene flow. J Appl Ecol. 2019;56:913–22. https:// doi. 
org/ 10. 1111/ 1365- 2664. 13315.

 225. Hanson JO, Vincent J, Schuster R, Fahrig L, Brennan A, Mar-
tin AE, Hughes JS, Pither R, Bennett JR. A comparison of 
approaches for including connectivity in systematic conserva-
tion planning. J Appl Ecol. 2022;59:2507–19. https:// doi. org/ 10. 
1111/ 1365- 2664. 14251.

 226. Beger M, Metaxas A, Balbar AC, McGowan JA, Daigle R, Kue-
mpel CD, Treml EA, Possingham HP. Demystifying ecological 
connectivity for actionable spatial conservation planning. Trends 
Ecol Evol. 2022;37:1079–91. https:// doi. org/ 10. 1016/j. tree. 2022. 
09. 002.

 227. Hamonic F, Couëtoux B, Vaxès Y, Albert CH. Cumulative 
effects on habitat networks: How greedy should we be? Biol 
Cons. 2023;282: 110066. https:// doi. org/ 10. 1016/j. biocon. 2023. 
110066.

 228. Equihua J, Beckmann M, Seppelt R. Connectivity conservation 
planning through deep reinforcement learning. Methods Ecol 
Evol. 2024;15:779–90. https:// doi. org/ 10. 1111/ 2041- 210X. 
14300.

 229. Hanson JO, Schuster R, Strimas-Mackey M, Bennett JR. Opti-
mality in prioritizing conservation projects. Methods Ecol 
Evol. 2019;10:1655–63. https:// doi. org/ 10. 1111/ 2041- 210X. 
13264.

 230. Powers SM, Hampton SE. Open science, reproducibility, and 
transparency in ecology. Ecol Appl. 2019;29: e01822. https:// 
doi. org/ 10. 1002/ eap. 1822.

 231. Vogt P. Patterns in software design. Landscape Ecol. 
2019;34:2083–9. https:// doi. org/ 10. 1007/ s10980- 019- 00797-9.

 232. Yu H, Liu X, Kong B, Li R, Wang G. Landscape ecology devel-
opment supported by geospatial technologies: a review. Eco 
Inform. 2019;51:185–92. https:// doi. org/ 10. 1016/j. ecoinf. 2019. 
03. 006.

 233. Crowley MA, Cardille JA. Remote sensing’s recent and future 
contributions to landscape ecology. Curr Landsc Ecol Rep. 
2020;5:45–57. https:// doi. org/ 10. 1007/ s40823- 020- 00054-9.

 234. Markham K, Frazier AE, Singh KK, Madden M. A review of 
methods for scaling remotely sensed data for spatial pattern 
analysis. Landscape Ecol. 2023;38:619–35. https:// doi. org/ 10. 
1007/ s10980- 022- 01449-1.

 235. Christin S, Hervet E, Lecomte N. Applications for deep learning 
in ecology. Methods Ecol Evol. 2019;10:1632–44. https:// doi. 
org/ 10. 1111/ 2041- 210X. 13256.

 236. Stupariu M-S, Cushman SA, Pleşoianu A-I, Pătru-Stupariu I, 
Fürst C. Machine learning in landscape ecological analysis: A 
review of recent approaches. Landscape Ecol. 2022;37:1227–50. 
https:// doi. org/ 10. 1007/ s10980- 021- 01366-9.

 237. Pichler M, Hartig F. Machine learning and deep learning—a 
review for ecologists. Methods Ecol Evol. 2023;14:994–1016. 
https:// doi. org/ 10. 1111/ 2041- 210X. 14061.

 238. Frazier AE, Song L. Artificial intelligence in landscape 
ecology: recent advances, perspectives, and opportunities. 
Curr Landsc Ecol Rep. 2025;10:1. https:// doi. org/ 10. 1007/ 
s40823- 024- 00103-7.

 239. Woolnough AP, Hollenberg LCL, Cassey P, Prowse TAA. Quan-
tum computing: A new paradigm for ecology. Trends Ecol Evol. 
2023;38:727–35. https:// doi. org/ 10. 1016/j. tree. 2023. 04. 001.

 240. Tenopir C, Rice NM, Allard S, Baird L, Borycz J, Christian L, 
Grant B, Olendorf R, Sandusky RJ. Data sharing, management, 
use, and reuse: Practices and perceptions of scientists worldwide. 
PLoS ONE. 2020;15: e0229003. https:// doi. org/ 10. 1371/ journ al. 
pone. 02290 03.

 241. Pettorelli N, Graham NAJ, Seddon N, Da Cunha M, Bustamante 
M, Lowton MJ, Sutherland WJ, Koldewey HJ, Prentice HC, Bar-
low J. Time to integrate global climate change and biodiversity 
science-policy agendas. J Appl Ecol. 2021;58:2384–93. https:// 
doi. org/ 10. 1111/ 1365- 2664. 13985.

 242. Pörtner H-O, Scholes RJ, Arneth A, Barnes DKA, Burrows 
MT, Diamond SE, Duarte CM, Kiessling W, Leadley P, Man-
agi S, McElwee P, Midgley G, Ngo HT, Obura D, Pascual U, 
Sankaran M, Shin YJ, Val AL. Overcoming the coupled cli-
mate and biodiversity crises and their societal impacts. Science. 
2023;380:eabl4881. https:// doi. org/ 10. 1126/ scien ce. abl48 81.

Publisher's Note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1111/1365-2664.13803
https://doi.org/10.1111/1365-2664.13803
https://doi.org/10.1016/j.ecolmodel.2023.110281
https://doi.org/10.1016/j.ecolmodel.2023.110281
https://doi.org/10.1111/j.1755-263X.2010.00123.x
https://doi.org/10.1111/1365-2664.13315
https://doi.org/10.1111/1365-2664.13315
https://doi.org/10.1111/1365-2664.14251
https://doi.org/10.1111/1365-2664.14251
https://doi.org/10.1016/j.tree.2022.09.002
https://doi.org/10.1016/j.tree.2022.09.002
https://doi.org/10.1016/j.biocon.2023.110066
https://doi.org/10.1016/j.biocon.2023.110066
https://doi.org/10.1111/2041-210X.14300
https://doi.org/10.1111/2041-210X.14300
https://doi.org/10.1111/2041-210X.13264
https://doi.org/10.1111/2041-210X.13264
https://doi.org/10.1002/eap.1822
https://doi.org/10.1002/eap.1822
https://doi.org/10.1007/s10980-019-00797-9
https://doi.org/10.1016/j.ecoinf.2019.03.006
https://doi.org/10.1016/j.ecoinf.2019.03.006
https://doi.org/10.1007/s40823-020-00054-9
https://doi.org/10.1007/s10980-022-01449-1
https://doi.org/10.1007/s10980-022-01449-1
https://doi.org/10.1111/2041-210X.13256
https://doi.org/10.1111/2041-210X.13256
https://doi.org/10.1007/s10980-021-01366-9
https://doi.org/10.1111/2041-210X.14061
https://doi.org/10.1007/s40823-024-00103-7
https://doi.org/10.1007/s40823-024-00103-7
https://doi.org/10.1016/j.tree.2023.04.001
https://doi.org/10.1371/journal.pone.0229003
https://doi.org/10.1371/journal.pone.0229003
https://doi.org/10.1111/1365-2664.13985
https://doi.org/10.1111/1365-2664.13985
https://doi.org/10.1126/science.abl4881

	Computational Methods in Landscape Ecology
	Abstract
	Purpose of Review 
	Recent Findings 
	Summary 

	Introduction
	Data Models
	Spatial Patterns
	Landscape Metrics
	Landscape Mosaic Method
	Entropy
	Surface Metric
	Vector-based Metrics
	Operations on Spatial Patterns

	Connectivity
	Resistance Surfaces
	Graph Theory

	Landscape Genetics
	Sampling in Landscape Ecology
	Simulation Models
	Landscapes Simulators
	Individual-based Models
	Digital Twins

	Spatial Planning
	Conclusion
	Key References
	Acknowledgements 
	References


