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A dataset of income distribution on 
provincial, urban, and rural levels 
for China from 2020 to 2100
Mingyu Lei1,2, Setu Pelz   3, Shonali Pachauri   3 & Wenjia Cai   1,2 ✉

Projections of future income distributions at subnational levels are becoming increasingly important 
for a variety of analyses and evaluations. However, relevant datasets are currently limited. This study 
presents a methodological framework that introduces machine learning algorithms to a top-down 
approach used for generating income distribution datasets. We project per capita disposable income 
and income inequality for 31 Chinese provinces from 2020 to 2100, considering different scenarios 
based on China’s local circumstances, and then estimate income distributions based on these. After 
accounting for necessary consistency between provincial, urban, and rural income datasets, we 
further generate the same data products at the urban and rural level for each province. We validate our 
projection results drawing on data from 2007–2023 for China’s disposable income, data from 2007 to 
2019 for provincial income inequality in China, as well as national income inequality data for the past 20 
to 60 years from select developed countries. The proposed methodology provides flexibility to generate 
similar data products according to a user’s specific needs. Our resulting datasets have several potential 
applications and can serve as inputs for research on drivers and impacts across social, economic, and 
environmental domains.

Background & Summary
Projections of income distribution are becoming increasingly important for various research purposes. Income 
distribution is a significant factor in determining consumption and social wellbeing, as well as their uneven 
distribution among populations. It also closely relates to the ability of diverse populations to cope and adapt to 
anticipated or unexpected stressors. Scientific projections of income distribution are firstly, essential for con-
ducting scenario analyses relevant to many important societal, economic, and environmental issues, including, 
but not limited to, demand assessments for a variety of commodities such as energy, water, food, and land use1,2, 
estimating environmental footprints3,4, cost-benefit evaluation of policies5,6, and impacts, adaptation, and vul-
nerability (IAV) related to climate change and other disasters7,8. In addition, income distribution projections 
provide an opportunity to reveal the considerable differences among populations hidden in the current aggre-
gated national results. The use of such projections is gaining importance in multi-objectives scenario studies9,10, 
particularly in aligning across multiple Sustainable Development Goals (SDGs) such as poverty eradication and 
climate mitigation11,12.

The need for income projections is becoming more prominent, but current research and methodologies to 
support this are limited. Previous literature includes attempts to project future income distribution considering 
specific metrics such as GDP13, income inequality14, poverty rate15, or income level by deciles16. Our interest, 
however, is to project full income distributions. To this end, two broad approaches might be feasible, as outlined 
in Table 1. The top-down approach is the most commonly used method, which relies on existing projections 
of per capita disposable income, income inequality (measured by Gini coefficients)14 and a specific assumed 
form of income distribution, such as the log-normal distribution17,18, Weibull distribution, or an emerging 
non-parametric distribution16,19. An alternative approach is microsimulation, a bottom-up method that uses a 
large amount of individual/household survey data and assumptions about the dynamics of socio-demographic 
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characteristics for a set of representative households7,20. The bottom-up approach has limitations in its applica-
tion to nations and regions where access to the required survey data is less possible. In contrast, the top-down 
approach’s ability to generalize makes it easier to adopt at different spatial levels, as demonstrated by previous 
literature referenced in Table 1.

Despite the viability of the methodology for performing subnational projections, previous work on pro-
jecting income distributions is still heavily limited to the national-level, which does not fully support detailed 
sub-national analyses21. The foremost reason is the absence of income inequality datasets at sub-national levels, 
which has resulted in reliance on a published national-level dataset of Gini coefficient projections14. A recent 
study attempted to generate income distribution projections at the U.S. state-level based on this dataset19, but 
it assumed that the state-level Gini coefficients would follow the same growth rate as at the national level. This 
assumption undermines the heterogeneity in income distributions across states, even after accounting for the 
varying base year Gini coefficients of states. Additionally, previous studies usually use projections of GDP per 
capita as a proxy for future disposable income16,19, which inevitably leads to an overestimation of income, as 
GDP per capita is typically higher than household disposable income. Robust projections of disposable income 
and income inequality are indispensable to forecast income distribution at sub-national levels. Traditional 
econometric methods often used in previous studies, however, are not always reliable for making such long-term 
projections14. Machine learning (ML) algorithms offer an alternative to traditional econometric methods22, and 
have been applied to predict future socioeconomic conditions using indicators such as population23, energy 
demand24,25, price indices26, and consumption behaviours27.

Previous research has shown that the lack of subnational projections on income distributions is mainly due 
to the absence of scientific long-term projections for disposable income and income inequality, as well as a sys-
tematic framework for projecting them. Therefore, this study aims to address two sub-tasks. First, following the 
top-down approach, we develop a methodological framework using ML algorithms to generate income datasets 
of provinces based on their diverse characteristics. Then, using this approach, we project per capita disposable 
income, income inequality (measured by Gini coefficients), and income distributions for 31 Chinese provinces 
from 2020 to 2100, considering different scenarios based on China’s local circumstances. The primary data prod-
uct we generate is provincial projections. Additionally, considering necessary consistency constraints between 
provincial, urban, and rural income datasets, for each province, we also provide results at urban and rural level 
as a subsidiary dataset. The focus is on China due to its growing global significance and the huge diversity among 
Chinese provinces, that allows for assessing the methodology’s effectiveness in capturing heterogeneities across 
provinces.

Methods
Model design under consistency constraints.  Our methodological framework mainly consists of a pro-
vincial model and urban (rural) model, as shown in Fig. 1. Each model is composed of a training and simulating 
module and is expected to deliver three datasets at corresponding spatial level, including per capita disposable 
income (PD1, SD1-1, 1-2), income inequality measured by Gini coefficient (PD2, SD2-1, 2-2), and income distribution 
(PD3, SD3-1,3-2). These datasets cannot be generated separately because they are not independent of each other but 
subject to a number of qualitative or quantitative consistency constraints.

For disposable income, projections of provincial income are expected to keep consistent with future eco-
nomic development (see e.g. this published GDP dataset13). Meanwhile, provincial, urban, and rural income 
need to be consistent (Eq. 1), such that the projected provincial income should equal population-weighted aver-
ages of urban and rural income. In terms of Gini coefficients, a proxy of income inequality, the consistency 
constraint for projections of provincial, urban, and rural Gini coefficients is described as Eq. 228. The income 
distributions at provincial, urban, and rural level are then generated based on the predicted per capita dispos-
able income and Gini coefficients. The relationships between disposable income, Gini coefficients, and income 
distributions suggest that the factors considered for training and simulating should be derived keeping the rela-
tionships in mind and can bridge the three outcomes we require, so that we can solve for outcomes by combining 
the constraints and the response factors, rather than predicting them separately.

= × + ×I PS I PS I (1)ur ur ru ru

Methodology Literature Spatial level Future inequality Functional form

Top-down: Income 
inequality + particular 
functional form

Calzadilla51 Global Constant Lognormal

Rao et al.14 Country Regression-based

Fujimori et al.17 Country Rao et al.14 Lognormal

Soergel et al.18 Country Rao et al.14 Lognormal

Narayan et al.16 Country Rao et al.14 Non-parametric

Casper et al.19 U.S. State Rao et al.14 Non-parametric

Bottom-up: Microsimulation
Hallegatte and Mauro20 Global

Hallegatte and Rozenberg7 Country

Table 1.  Overview of key previous studies on income distribution projections.
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Where PSur and PSru represent the urban and rural population share, respectively, while Iur, Iru, and I are the per 
capita disposable income of urban, rural, and the whole province.

For the provincial model, the share of disposable income in GDP (Y1) and provincial Gini coefficients (Y2) 
are selected as factors, and the ratio between urban and rural income (Y3) and between urban and rural Gini 
coefficients (Y4) are chosen for the urban (rural) model. The consistency between projected provincial income 
and GDP is ensured by combining the factors of the provincial model with the published GDP dataset13, while 
the consistency between provincial, urban, and rural results is guaranteed by solving the corresponding consist-
ency constraint for predicted urban to rural income ratio or Gini ratio.

Data acquisition and processing.  Constructing and predicting the selected response factors for provincial 
and urban (rural) model of 31 Chinese provinces requires a range of datasets at different spatial scales (details can 
be found in Table 2).

Household disposable income and income inequality.  For the period 2007–2019, we first collect the provincial, 
urban, and rural per capita disposable income and GDP of 31 Chinese provinces from China’s Provincial statis-
tical yearbooks. Then, we estimate income Gini coefficients29 of 31 Chinese provinces at provincial, urban, and 
rural level.

To this end, we first collected grouped household-survey data at urban and rural level from China’s Provincial 
statistical yearbooks. For each urban and rural income group, we used the following indicators to compute Gini 
coefficients - households surveyed (HN), average household size (HS), average annual per capita disposable 
income (PCDI). For province i at year t, the income Gini coefficients of urban (UrGini) and rural (RuGini) 
populations are calculated using Eq. 3. Based on UrGini and RuGini of each province, provincial income Gini 
coefficients (ProGini) for province i at year t are calculated using Eq. 2.

∑= − × + ×
=

−Gini P W W W P1 1/ ( ) [( ) ]
(3)j

n

j j j
1

1

Fig. 1  Methodology of projecting disposable income, income inequality and income distribution.
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Pj represents the population of urban or rural income-group j, which was obtained by multiplying HN and 
HS of income-group j, and P is the sum of Pj. W is the cumulative income of P, as measured by the sum of the 
products of Pj and PCDI of all income-groups, while Wj is the total income accumulated to income-group j.

Due to incomplete or missing data for some provinces for certain years, we also performed a series of data 
cleaning processes, as detailed in Tables S1–2. For example, for a few provinces, such as Guangxi between 2014 
and 2019 and Chongqing between 2013 and 2015, HS data for each income group was missing, so we assumed 
the same HS across all income groups. Some provinces reported neither HN data nor the criteria used for divid-
ing income groups. In this case, we set the HN of these provinces based on data for years with complete data 
records.

Socioeconomic and demographic variable selection.  Changes in socioeconomic and demographic characteris-
tics are understood to be related to changes in income distributions. Regarding socioeconomic features, several 
studies indicate that industrial structure30,31, technological progress32, employment rate33,34, and government 
expenditure35,36 are related to household income. For demographic features, urbanization rate, education attain-
ment, household size, and dependency rates are shown to be related to household income37,38.

To capture changes in historical response factors, we selected a wide range of predictive variables (details 
in Table 2). Specifically, to reflect socioeconomic status of 31 Chinese provinces, we selected the share of 
value-added of industries in GDP, employment rate, and government spending on various items (including 
health, education, social protection, and technology), which were collected from China Statistical yearbooks. 
For demographic factors, we selected educational attainment (four categories: illiterate, primary, secondary, 
and high level), juvenile and child (J&C) dependency ratio, aged dependency ratio, average household size, 
and urbanization, which we retrieved from China’s Provincial statistical yearbooks and China Population and 
Employment Statistical Yearbooks. Notably, employment rate, household size, educational attainment, and 
dependency structure were collected at both provincial, urban, and rural level, while the data on other variables, 
was only available at the provincial level.

Modelling framework for disposable income and income inequality.  This module attempted to 
build a general modelling framework suitable for both balanced and unbalanced panel data. Using a machine 
learning framework, we utilized the random forest (RF) regression algorithm to create a data-driven workflow, as 
shown in Fig. 2. The workflow comprised five steps, including data splitting, key feature selection, hyperparame-
ters optimization, model comparison and baseline validation, and an additional robust validation for unbalanced 
data.

Dataset construction and splitting.  Changes in Gini coefficients might be captured by socioeconomic and 
demographic variables relating to both current and past years14. Therefore, for both the provincial, and the 
urban, and rural level, three datasets were constructed, namely No lags (NL), First-order lag (FL), and 
First-order lag only (FLO) that contained information on variables considering different time periods.

To apply the RF algorithm, we need to split the dataset into a training and test set. This helps to avoid over-
fitting and allows us to test the predictive capability of the model. The traditional method of data splitting is 
sufficiently well suited for balanced panel data such as the dataset of per capital disposable income at both pro-
vincial, urban, and rural level. However, the Gini coefficient datasets for provinces, urban and rural areas were 

Usage Data Source Spatial level

Gini coefficients

Households surveyed China’s Provincial statistical yearbooks
China Population and Employment 
Statistical Yearbooks

Urban/RuralHousehold size

Per capita disposable income

Predictive variables

Value-added of industries
Secondary

China Statistical yearbooks Provincial

Tertiary

Government spending

Technology

Social protection

Health

Education

Employment rate

China’s Provincial statistical yearbooks
China Population and Employment 
Statistical Yearbooks

Provincial/Urban/Rural/

Educational attainment

Primary (aged 6–12)

Secondary (aged 
13–18)

High (aged 19+)

Dependency structure
Juvenile and children 
(aged 0–14)

Aged (aged 65+)

Household size

Urbanization

Table 2.  Dataset and variables used for establishing provincial and urban (rural) model.
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unbalanced panel data due to some provinces having incomplete or undisclosed records in certain years. This 
meant we had random missing datapoints, and as a result, we had to predict the Gini coefficient of province i at 
year t based on data from other provinces. This required the model to generalize well. So, the RF model needed 
to perform well both over time and across different locations. For this purpose, we split the Gini coefficients 
dataset into two separate sections, including a baseline set and a robust test set, as shown in Fig. 2. To build the 
robust set, we selected a small number of provinces, which were not used to train and test the model, while the 
remaining provinces were assigned to the baseline set.

For both income dataset and Gini coefficient dataset, we used the data from 2018 and 2019 for the test dataset 
and data from 2007 to 2017 as the training dataset. The model was first trained on the training set and tested 
on the test set, to ensure satisfactory performance on the time dimension. Subsequently, for the RF model of 
Gini coefficients, a more rigorous validation based on the spatial dimension was conducted on the robust set to 
evaluate the predictive capability of the trained model in predicting the Gini coefficients of provinces that it had 
not been trained on previously.

During the training process, a time series resampling method was used on the training dataset to create mul-
tiple resamples. Each sample was generated by splitting the data into 5-year intervals and then moving forward 
in 1-year steps, as shown in Fig. 2. In each resample, the first four years of data were used for training the model, 
and the model was then evaluated using the data from the last year. This approach assured that the model was 
not trained on later data and then used for predicting earlier data, and it also enhanced the model’s ability to 
generalize across the temporal dimension.

Key features selection.  This study used the literature review to inform the selection of several socioeconomic 
and demographic predictors that are considered closely related to income metrics. However, it is important to 
empirically determine the optimal subset of predictive factors. Specifically, excluding irrelevant or redundant 
predictive factors through key features selection is useful not only for preventing overfitting but also for improv-
ing the generalizability of the model. This can help in achieving a better prediction performance, as detailed in 
Fig. 2.

Under the RF framework, we first calculated the importance of each variable, measured by the percentage 
increase in mean square error (%MSE), on every resample. This helped us to test the capacity of each feature 
in predicting response factors across multiple time windows. Then, we calculated the average %MSE of each 
feature across all resamples. We used a forward search approach to explore all feature combinations from the 
most to least important. For each combination, we fitted the RF model on every resample and calculated the 
resample-average of the mean absolute percentage error (MAPE) to evaluate the model’s performance. This 
process helped us to identify the optimal feature subset.

Hyperparameters optimization.  We used two hyperparameters of the RF model, i.e., ntree and mtry, for the 
model training process. We performed a grid search cross-validation. Specifically, we built a hyperparameter 
basket and applied it to each resample. We then ran the RF model iteratively on every resample using each 
parameter combination in the basket. Similar to the method applied for the features selection, we chose MAPE 
as the performance index and calculated an average of it across all resamples to evaluate the parameter combi-
nation and the optimal parameters.

Fig. 2  Workflow of modelling disposable income and income inequality.

https://doi.org/10.1038/s41597-024-04304-x


6Scientific Data |         (2024) 11:1436  | https://doi.org/10.1038/s41597-024-04304-x

www.nature.com/scientificdatawww.nature.com/scientificdata/

Model comparison and baseline validation.  After training the model using the optimal feature subset and 
parameters, we used the test dataset to validate the model’s predictive capacity. In addition to the MAPE, we 
also calculated the root mean square error (RMSE) to assess the model’s performance in predicting future Gini 
coefficients. The MAPE and RMSE were estimated using Eq. 4a,b.

MAPE
n

Pred Real
Real

100%
(4a)k

n
k k

k1
∑= ×

−

=

RMSE
n

Pred Real1 ( )
(4b)k

n

k k
1

2∑= × −
=

Where k represents the number of datapoints included in the test dataset, and Predk and Realk are prediction and 
real value of response factors for datapoint k (province i, year t) respectively, while Real denotes the average real 
value of response factors of all datapoints.

For the provincial, urban, and rural level, we trained three RF models on the three datasets (i.e., NL, FL, FLO) 
and these were evaluated and compared based on MAPE and RMSE to select the model with the best predictive 
capacity.

Robust validation.  For the optimal model of Gini coefficients selected at provincial, urban, and rural level, we 
then carried out a robust test to assess the generalizability of the model on the spatial dimension. Specifically, 
we fitted a RF model on the baseline set using the optimal feature subset and parameters trained before, and 
then tested this on the robust set. The robust test guaranteed the RF model with satisfactory performance in the 
temporal dimension (predicting a province’s future via its historical data) can also perform well on the spatial 
dimension (predict a province’s future via other provinces’ historical data).

Future assumptions under different scenarios.  Description of different development scenarios.  We 
developed four scenarios to describe future development of the 31 Chinese provinces with consideration of their 
local context, namely the high-speed development (HSD) pathway, high-quality development (HQD) pathway, 
business-as-usual (BAU) pathway, and the low-speed development (LSD) pathway.

We define HSD to represent an industrialized development pathway with the fastest assumed economic 
growth rate and characterised by a demographic future of high educational attainment and aging. We describe 
HQD as a high-quality economic development future. High-quality development represents a pathway that 
China plans to achieve, and it means shifting the growth model from crude to intensive, with a focus on inno-
vation. In this case, the tertiary industries will play a more important role in the national economy than the 
secondary industries, while inevitably, some economic growth may be sacrificed. Hence, compared to HSD, we 
assume a slightly lower economic growth rate in HQD but similar demographic assumptions. We assume the 
BAU pathway follows historical development trends with moderate changes in socioeconomic and demographic 
characteristics. Finally, for LSD, we assume a future that is the exact opposite of HSD. The detailed assumptions 
for each variable in the four scenarios are shown in Table 3.

Quantifying assumptions of predictors under different scenarios.  We applied various quantitative meth-
ods to define the future values of key variables, as shown in Table 3. We first quantified the variables at the 

Features

Future development scenarios Quantitative 
method/Data 
source Spatial levelHSD HQD BAU LSD

Secondary industries High Middle high Medium Low

Jing, et al.42
Provincial

Tertiary industries Middle high High Medium Low

GDP High Middle high Medium Low

Provincial/Urban/Rural

Employment rate High High Medium Low Growth rate

Household size Small Small Medium Large Headship rate

Primary education Low Low Medium High

Chen, et al.43

Secondary education High High Medium Low

High education High High Medium Low

J&C dependency ratio Low Low Medium High

Aged dependency ratio High High Medium Low

Urbanization rate High High Medium Low

Provincial

Technology spending

Regression-based simulation A regression 
model14

Social protection spending

Health spending

Education spending

Table 3.  Future assumptions regarding quantitative variables under different scenarios.
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provincial level. We used predictions from two available datasets. We sourced projections of GDP and the share 
of value-added of industries from Jing, et al.13, and of educational attainment, urbanization, and household 
dependency from Chen, et al.39 Those two studies developed localized SSP storylines for China, which allow for 
consistent assumptions across the two datasets. We then mapped the localized SSP narratives from these two 
studies to our four scenarios, assuming similar demographic and economic developments as under SSP5, SSP1, 
SSP2, SSP3 in the HSD, HQD, BAU, and LSD pathways, respectively.

We used past growth rates to generate future employment rate trends. Under HSD and HQD, we assumed an 
increase in employment at the average rate of increase in employment in G7 countries over the last twenty years, 
which is about 0.1 percentage per year. Under BAU, we assumed the employment rate increases at the rate of 0.05 
percentage per year, while under LSD we assumed the employment rate to stay at the level it was in 2019. We 
adopted the headship rate method40,41 to produce household size projections, based on data from the Chinese 
Census 2000 and 2010, and the provincial projections of population and urbanization rate39.

We did not have access to projections or commonly used quantitative methods for predicting government 
spending. We therefore developed and applied a regression model to create a regression-based simulation for 
future government spending on four specific items14. This model estimated the spending of each item using a 
combination of socioeconomic and demographic variables (in a first-order lag form), along with available future 
projections. We based our model on provincial panel data from 2007 to 2019, and included province fixed effects 
and a time variable (Year). The performance of the regression model can be seen in Figs. S1–4.

It is important to note that the projections of variables were done at the same spatial level as the available 
historical data. As a result, we projected value-added of industries, urbanization, and government spending at 
the provincial level. Household size and employment rate were calculated based on the respective historical 
provincial/urban/rural values. For educational attainment and dependency structure, we used the change rate 
derived from provincial projections and the historical urban and rural values in 2019 to generate projections at 
the urban and rural level.

Projections of disposable income, income inequality and income distribution.  In this module, 
we first projected disposable income share of GDP (Y1) and Gini coefficients (Y2/PD2) at provincial level and 
the income ratio (Y3) and Gini ratio (Y4) between urban and rural populations from 2020 to 2100 under the 
four future scenarios. Using these projections, we then solved for the future per capita disposable income at the 
provincial (PD1), urban (SD1-1), and rural level (SD1-2), and urban and rural Gini coefficients (SD2-1, 2-2). The pro-
vincial/urban/rural income distributions (PD3, SD3-1, 3-2) for the 31 Chinese provinces were then projected based 
on future Gini coefficients and per capita GDP.

The recursive projection approach.  We developed an approach using recursive projections to create annual data 
of Y1–Y4 from 2020 to 2100. In this approach, the RF model was trained on the most recent four years of data 
and then used to predict the response factors for each projected year. This process was repeated recursively from 
2017 to 2099 to make projections for the years 2020 to 2100.

Solving the equality constraints.  Based on the projected Y1 and Y3, available provincial projections of Chinese 
GDP42, and urbanization rate43, a system of linear equations was created and solved to generate the per capita 
disposable income at the provincial (PD1), urban (SD1-1), and rural (SD1-2) level, as shown in Eq. 5. Based on the 
projected provincial Gini coefficient (PD2), Y4, solved PD1 and SD1-1, 1-2, and future urbanization rate43, the pro-
jections of urban (SD2-1) and rural (SD2-2) Gini coefficients were solved annually with equations shown in Eq. 6.


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Where PSur and PSru represent the urban and rural population share, respectively, while Iur, Iru, and I are the per 
capita disposable income at urban, rural, and provincial level.

Projections of income distribution.  We assumed a log-normal distribution as the functional form of income 
distribution at the provincial, urban, and rural level. This is one of the most commonly assumed forms used 
in previous literature18,44. We parameterized these using the projections of per capita disposable income and 
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Gini coefficients. Equation 7a–c describe the parameterization of the log-normal functional form16, applying a 
density distribution, which was defined and used for computing the income level at further different percentiles.

erf Gini2 ( ) (7a)1σ = × −

Ln I( )
2 (7b)

2
µ σ= −

F x Ln x( ) (( ( ) )/ ) (7c)x ϕ µ σ= −

Where Gini represents the Gini coefficients at provincial/urban/rural level for province i in year t, and I is the 
respective per capita disposable income.

Data Records
The projected yearly per capita disposable income, Gini coefficients, and income distribution (includes func-
tional parameters and income percentile), under the four localized developmental scenarios are provided at the 
provincial, urban, and rural levels. These are all available in the public repository Figshare45. This dataset also 
includes the 95% confidence intervals (CIs) of per capita disposable income and Gini coefficients for uncertainty 
analysis purposes. The dataset is available in the form of csv files, and Fig. 3 shows the hierarchy of data organi-
zation and file name templates.

To store the data, we define three main folders, named “Provincial”, “Urban”, and “Rural”, pertaining to the 
different spatial levels. Each main folder includes three sub-folders, named “Disposable income”, “Income ine-
quality (Gini)”, and “Income distribution”. Each sub-folder contains four new folders named after the four sce-
narios to store the corresponding projections under different scenarios. In the scenario folders located in folder 
“Disposable income”, files named “Income.csv”, “Income_High.csv”, and “Income_Low.csv” are built to store per 
capita disposable income data (with unit of Yuan). For the scenario folders within the sub-folder “Income ine-
quality (Gini)”, Gini coefficients and its 95% CIs under each scenario are stored in files “Gini.csv”, “Gini_High.
csv”, and Gini_Low.csv, respectively. In scenario folders of sub-folder “Income distribution”, the parameters of 
income distribution stored in files “Mean value.csv” and “Standard deviation.csv”. Then, sub-folders “Income 
percentile” are further created within each scenario folder to store the files of income percentiles. All the files of 
income percentiles (with unit of Yuan) are named as “ID_Province name.csv”, while ID is the number assigned 
to each province.

Fig. 3  Data organization. Dataset is available in the form of csv files.
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The provincial projections of per capita disposable income, Gini coefficients, and income distributions are 
shown in Figs. 4, 5. We distinguish the 31 provinces by three groups named tiers 1–3, based on their per cap-
ita GDP for the period 2007–2019. We then select five provinces from each tier to illustrate future disposable 
income and income inequality projections.

Fig. 4  Provincial per capita disposable income (thousand yuan) of sample provinces.

Fig. 5  Provincial income inequality (Gini coefficient) of sample provinces.
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Technical Validation
We tested the reliability and robustness of our results in the following steps, including model performance evalu-
ation, errors assessment for provincial disposable income, and volatility analysis for provincial Gini coefficients.

Model performance evaluation.  In Tables 4, 5, we describe the predictive capacities of the provincial 
and urban (rural) models. For provincial model, models trained on income dataset and Gini coefficient dataset 
all showed outstanding performance in both baseline validation and robust validation (for only Gini coefficient 
model). The RMSE of the models were all below 4%, and the MAPE was all below 6%, indicating that the RF 
models showed excellent predictive capacity of the temporal dimension and generalization ability in terms of 
the spatial dimension. For further analysis, we selected the model which exhibited the best performance, i.e., the 
income model using the FL dataset and the Gini model using FLO dataset to perform the subsequent procedures.

The urban (rural) level models for disposable income also showed satisfactory predictive performance 
across, particularly the model trained using the NL dataset, which produced a RMSE below 3% and a MAPE 
below 2%. However, the models trained on Gini coefficient ratio did not perform as expected. While the model 
trained on the FLO dataset had an acceptable performance for baseline validation, with a RMSE below 5% 
and a MAPE below 10%, it still did not meet expectations in the robust validation. This could be due to the 
uneven distributions of income equality across provinces, particularly in rural China46, which suggests that the 
predictive variables used in this study to build the models were limited in capturing the spatial differences in 
rural Gini coefficients. In literature, several variables have been highlighted as important for explaining changes 
in rural Gini coefficients, such as employment rates across different industries47, migration48, and land use 
change49. Nevertheless, data on these variables are rarely available, and their future projections carry consid-
erable uncertainties. Therefore, we still regard the current model using the FLO dataset as the best choice for 
further simulation.

Error assessment for provincial disposable income.  Table 6 presents the mean predictive errors from 
2020 to 2023 between the provincial projections of per capital disposable income derived from per capita GDP 
and the provincial per capita disposable income collected from China Statistical yearbooks. The absolute per-
centage error (APE) is calculated based on Eq. 8 to reflect the predictive errors, where Pt represents the projected 
result and At represents the corresponding actual value.

=
−

×APE
P A

A
(%) 100%

(8)
t t

t

The mean APE across all 31 provinces is 4%, indicating a slight difference between projected income and 
actual value. Specifically, 29 among 31 provinces demonstrate APEs below 10%, and 24 among those 29 prov-
inces show APEs below 5%.

Volatility analysis for income inequality projections.  We cannot directly compare our projections 
with others’ estimations due to the lack of similar income inequality datasets. To validate the reasonability and 
confidence of this dataset, we performed a volatility comparison based on provincial Gini coefficients projections. 
The volatility index was represented by the ratio of extreme deviation to minimum value.

To validate the ability of our model in predicting potential fluctuations in income inequality, we performed 
a volatility comparison between the projected provincial Gini coefficient and the historical Gini coefficient of 
a few countries, including the G7 countries and China. The Gini coefficients for these countries were obtained 
from the World Bank (https://databank.worldbank.org/source/world-development-indicators). The comparison 
results are shown in Fig. 6. The volatility of Gini coefficients across eight countries ranges from 8–45%, with 

Indicators (%) Models

Baseline validation Robust validation (for Gini)

NL FL FLO NL FL FLO

RMSE
Income

1.1 1.1 1.1

MAPE 3.2 3.0 3.2

RMSE
Gini

3.5 3.4 3.4 1.8 1.7 1.7

MAPE 5.4 5.3 5.4 3.9 3.7 3.5

Table 4.  Model performance at provincial level.

Indicators (%) Models

Baseline validation Robust validation (for Gini)

NL FL FLO NL FL FLO

RMSE
Income

2.0 2.2 2.1

MAPE 1.9 2.0 1.9

RMSE
Gini

4.8 5.0 4.4 14.1 14.7 15.3

MAPE 10.3 10.1 9.8 20.4 19.0 19.8

Table 5.  Model performance at urban (rural) level.
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an average of 23%. The volatility across provinces is 5–36% (16% average) for HSD, 8–40% (20%) for HQD, 
7–32% (17%) for BAU, and 3–27% (12%) for LSD. Thus, the volatility range, we observe across provinces is of 
the similar range as that across countries and covers the volatility seen in the past few decades (20–60 years) of 
most countries. This indicates this dataset can capture potential fluctuations in income inequality on a long-term 
temporal scale.

Usage Notes
This study builds a methodological framework applying machine learning algorithms to project income ine-
quality and distribution at the provincial, urban, and rural levels for 31 mainland Chinese provinces from 2020 
to 2100 under different development pathways. In what follows, we discuss the potential applications of the pro-
posed methodology and the released dataset, and we also interpret the uncertainties and limitations of this work.

Applicability of the methodology and dataset.  Our products have several channels to easily interface 
with users’ customized demands, and some examples of such uses are shown in Fig. 7. The first strand of appli-
cations for our products is to produce datasets that caters to users’ customized demands. For example, this study 
provides a methodological framework to project income distribution datasets at different spatial level while con-
sidering necessary consistency constraints, which can be replicated and applied easily, as there are no strict limits 
on the form of data input (balanced or unbalanced panel data). Applying our methodology, users can produce 
similar datasets for other countries or regions at different spatial levels using their own historical datasets and 
assumptions regarding future scenarios.

In addition to such direct applications, the dataset produced by this study can also serve as an input for 
various research domains and analyses. For instance, the income distribution can be used to carry out further 
micro-level simulation-based analysis at the unit of individuals or households, so as to support highly granular 

Province APE (%) Province APE (%)

Beijing 3.08 Hubei 3.38

Tianjin 1.66 Hunan 2.34

Hebei 2.28 Guangdong 3.87

Shanxi 15.92 Guangxi 1.25

NeiMongol 11.90 Hainan 4.94

Liaoning 3.08 Chongqing 2.35

Jilin 2.05 Sichuan 2.03

Heilongjiang 1.58 Guizhou 3.94

Shanghai 1.15 Yunnan 3.32

Jiangsu 5.49 Xizang 9.39

Zhejiang 3.15 Shaanxi 2.51

Anhui 1.95 Gansu 4.37

Fujian 1.94 Qinghai 1.94

Jiangxi 2.65 Ningxia 5.23

Shandong 1.94 Xinjiang 7.26

Henan 6.85

Table 6.  The mean predictive errors from 2020 to 2023.

Fig. 6  The volatility comparison between Chinese provinces and selected developed countries.
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analyses1,50. Users can also determine specific income metrics according to their customized requirements, such 
as considering alternative international and national poverty thresholds, and diverse inequality metrics like 
the Palma ratio, or detailed income projections for all deciles. These data can serve as key input for various 
macro-level analyses across social, economic, and environmental domains, such as demand assessments, carbon 
footprint evaluations, and inequality research related to social well-being and health impacts of natural hazards. 
Meanwhile, this dataset can also be used in integrated assessment and computable general equilibrium models 
to clarify the coupled feedback between income, climate change, and economic outputs.

Uncertainties and limitations.  We designed four different provincial-level pathways to explore divergent 
assumptions regarding future developments and related uncertainties in underlying socio-economic and demo-
graphic predictive factors. However, uncertainties still exist due to the lack of consideration of explicit policy 
interventions on income redistribution. While we consider indicators, such as educational expenditure, health 
expenditure, and social protection expenditure, as proxies for redistributive policies, we project these based on 
future development conditions rather than any explicit government intentions or policies to reduce inequalities. 
Therefore, the dataset released in this study can be regarded as a baseline reference range of disposable income, 
income inequality, and income distribution without taking possible policy intervention measures into account. 
In addition, our dataset was generated assuming a continuous development trend under each pathway, and thus 
does not include unforeseeable contingencies. Our dataset can be regarded as a benchmark and basis for further 
research that explores the impacts of specific policies, technological innovations, or events.

Code availability
All R codes for creating income inequality and distribution datasets for China provinces are stored in the public 
repository Figshare45.
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