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1. Introduction
The low-frequency variability of the atmosphere has long been the subject of intense investi-
gation in the dynamical meteorology community (Benzi et al. 1986; Ghil 1987; Mo and Ghil 
1987; Benzi and Speranza 1989; Tibaldi and Molteni 1990; Pelly and Hoskins 2003b,a). 
Recent decades have seen increasing interest in the complex interplay between the upper-level 
midlatitudinal circulation, mediated through Rossby waves, and surface extreme events, such 
as heat waves, with their manifold impacts. This topic has been investigated across multiple 
scales, from hemispheric to local, for various scenarios, from past climates to future projec-
tions, and for numerous applications, from predictability in numerical weather prediction 
(NWP) systems to extreme weather-related impact and risk assessment.

Heat waves are prolonged episodes of high temperatures, whose duration, from a few 
days to a few weeks, entails different formation, development, and maintenance mecha-
nisms. In the Northern Hemisphere, they are typically associated with high-amplitude 
upper-tropospheric ridges or blocking anticyclones. These are often embedded in persis-
tent large-scale wave patterns (White et al. 2022) and can lead to “concurrent heat waves” 
simultaneously affecting several regions across the midlatitudes (Kornhuber et al. 2020). 
These are examples of spatially compounding extreme events, which can lead to extreme 
socioeconomic impacts via hazards co-occurring at multiple locations (cfr. Zscheischler 
et al. 2020). See Fig. 1 for an example of the association between Rossby wave potential 
vorticity and temperature anomalies for the concurrent heat waves of July 2023. Despite 
the increasing frequency of such concurrent heat waves (Rogers et al. 2022; Messori et al. 
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2024) and their improved forecasting in operational NWP systems (e.g., Emerton et al. 2022), 
our understanding of their large-scale drivers is limited, yet critical to further improving 
their predictability, especially at subseasonal-to-seasonal time scales. One crucial open 
question is the relationship between surface weather extremes and large-scale atmospheric 
circulation patterns, such as Rossby waves (cfr. Dole et al. 2011; Hoskins and Woollings 
2015; Röthlisberger et al. 2019; Ali et al. 2022; Strigunova et al. 2022) and blocking (Kautz 
et al. 2022).

While progress has been made on the atmospheric circulation response to climate change, 
the connection between circulation changes and trends in extremes is an active area of 
research (Shaw and Miyawaki 2024). On the one hand, high-amplitude Rossby waves have 
been highlighted as a key driver of concurrent heat waves in some years (Kornhuber et al. 
2019). In fact, Rossby waves can interact with extreme events across different time scales. It 
has been found that the predictability of heat waves is higher than for milder temperatures or 
cold extremes (Wulff and Domeisen 2019; Hochman et al. 2022) or for other extreme events 
(Domeisen et al. 2022), especially if these heat extremes are associated with the occurrence 
of high amplitude Rossby waves (cfr. Pyrina and Domeisen 2023 and references therein). On 
intraseasonal-to-seasonal and longer time scales, however, high-amplitude Rossby waves 
are poorly predicted in weather models (cfr. Teubler and Riemer 2016; Quinting and Vitart 
2019; Pérez et al. 2021; Pérez-Fernández and Barreiro 2023), although, generally, tenden-
cies for hot extremes can be estimated on subseasonal forecast horizons (Domeisen et al. 
2023) and magnitude becomes certain about a week ahead (Oertel et al. 2023).

On the other hand, over the historical record, heat waves have increased in most regions 
of the globe (Russo and Domeisen 2023), with Europe emerging as a key hotspot (Rousi et al. 
2022). Despite this observational evidence, climate models significantly underestimate heat 
wave trends due to atmospheric circulation biases (Vautard et al. 2023). Additionally, acti-
vating specific tipping elements like the Atlantic meridional overturning circulation (AMOC) 
might have a major impact on the statistical and dynamical properties of heat waves in the 
European sector (Schenk et al. 2018).

To review scientific advances and identify outstanding challenges and opportunities, the 
workshop “Rossby waves, heat waves, and compound extreme events,” co-organized by the 
Institute for Atmospheric Sciences and Climate (ISAC) of the National Research Council of 
Italy (CNR) and the University of Trento, Italy, was held in Bologna from 28 to 30 November 
2023. The workshop was specifically designed to bring together a diverse research community, 

Fig. 1. Northern Hemisphere Rossby waves, waveguides, and heat wave locations for July 2023. Shading 
shows monthly averaged meridional winds at 200 hPa, with positive values denoting southerly winds. 
Regions that experienced heat waves for more than 5 days in a month are denoted with the black 
hatches. The solid black contours show monthly mean zonal wind U at 200 hPa and are plotted every 
5 m × s−1 from 15 to 30 m × s−1. The dashed gray contours show waveguide occurrence frequency in per-
centage and are plotted every 10% from 40% to 100%. The waveguide occurrence frequency per grid 
denotes the number of times the grid experiences q|| log | | || 10 m6 1∇ >( ) −  in a month, where q is the 
potential vorticity in PVU (1 PVU = 10−6 K kg−1 m2 s−1) on two different isentropic surfaces (320 and 340 K).
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with experts from different subfields of the broad research ecosystem under the umbrella of 
“atmospheric and climate sciences” (e.g., extreme events analysis, atmospheric dynamics, 
climate modeling, and NWP).

A focal discussion theme was the connection between Rossby waves and concurrent 
heat waves, with contributions on selected case studies, on the different roles of (quasi-)
stationary and traveling Rossby waves, on the role of topography and land–sea contrast for 
the formation of co-occurring heat waves, and nonlinear interactions and wave resonance. 
These contributions relied on and described a plethora of different methods for Rossby wave 
identification and characterization (waveguides, PV inversion, Rossby wave packets, local 
wave activity, spectral decomposition, and wave detection methods). Global statistics of 
Rossby wave energy by Strigunova et al. (2022) showed an increased skewness of the spectra 
of Rossby wave anomalies at planetary scales (k = 1–3) during heat waves, with a reduction 
of intramonthly variance most pronounced at zonal wavenumber k = 3. Furthermore, it was 
noted that heat waves are increasing most strongly in specific regions rather than uniformly 
across all regions (Žagar et al. 2020).

The workshop also touched on other aspects of the large-scale atmospheric circulation 
relevant to spatially compounding extremes, such as weather regimes and land–atmosphere 
and ocean–atmosphere interactions. Riboldi et al. (2023) highlighted that spatially compound-
ing extremes can also result from anomalous zonal large-scale flows rather than anomalous 
wave activity.

Another focus point was the predictability of heat waves through the identification of 
specific precursors at different spatiotemporal scales, such as those related to conditions for 
Rossby wave amplification and breaking [blocking, the role of upstream latent heat release 
during moist ascent (cfr. Steinfeld and Pfahl 2019; Oertel et al. 2023; Papritz and Röthlis-
berger 2023) or specific weather regimes and teleconnections (e.g., active/inactive monsoon; 
Garfinkel et al. 2024; Hochman et al. 2021b)].

Statistical methods of heat wave characterizations were also extensively addressed, re-
vealing how the most extreme heat waves show typicality features (Galfi and Lucarini 2021; 
Hochman et al. 2021a; Lucarini et al. 2023; Noyelle et al. 2024). According to the concept of 
typicality (Galfi and Lucarini 2021; Lucarini et al. 2023), if one considers a reference location 
within the surroundings of an observed heat wave, the majority of foreseeable heat waves 
of comparable intensity are expected to exhibit similar features as the observed one, over 
large–typically continental–spatial scales. Some evidence for the typicality of co-occurring 
heat waves was also discussed, indicating a correspondence between the climatic and NWP 
viewpoints (Lucarini et al. 2023; Fischer et al. 2023).

2. Scientific questions/challenges
Below, we provide a more detailed discussion of scientific questions and challenges that 
emerged from the presentations and the ensuing discussion:

Rossby wave dynamics for spatially compounding extremes:  The nature of Rossby 
waves involved in spatially compounding extremes, notably heat waves, is still a subject 
of discussion. Several studies highlighted the role of specific wavenumbers (such as zonal 
wavenumbers k = 4–8) organized in quasi-stationary and circumglobal planetary waves 
(e.g., Petoukhov et al. 2013; Kornhuber et al. 2019). This view was put into question by 
other studies (Röthlisberger et  al. 2019; Wirth and Polster 2021) that noted how such 
wavenumbers are instead associated with transient, nonhemispheric Rossby wave pack-
ets. While a possible explanation could involve the interaction between the time-varying 
upper-level jet stream and geographically fixed large-scale orography (Jiménez-Esteve et al. 
2022), more work is needed to confirm or reject this hypothesis. The role of circulation  
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features such as atmospheric blocking or recurrent Rossby wave packets, both known to be 
related to heat waves, must also be systematically assessed in this context.
Synoptically induced Rossby wave amplification: Diabatic outflow in the warm con-
veyor belt of extratropical cyclones is very important for the nonlinear amplification of 
Rossby waves (e.g., Grams and Archambault 2016; Steinfeld and Pfahl 2019; Oertel et al. 
2023). This happens at the synoptic time scale through extratropical cyclogenesis, which 
triggers persistent ridges often evolving in blocking events (e.g., Riboldi et al. 2019) as-
sociated with heat waves (Quinting and Reeder 2017; Zschenderlein et al. 2019, 2020). 
Whether diabatic outflows are systematically correlated to temperature anomalies and 
extreme events at the surface is still an open question.
Synoptically induced Rossby wave amplification: Diabatic outflow in the warm con-
veyor belt of extratropical cyclones is very important for nonlinear amplification of 
Rossby waves (e.g., Grams and Archambault 2016). This happens at the synoptic time 
scale through extratropical cyclogenesis, which triggers persistent ridges often evolving 
in blocking events (e.g., Riboldi et al. 2019). Whether diabatic outflows are systemati-
cally correlated to temperature anomalies and extreme events at the surface is still an 
open question.
Predictability of heat waves: Long-range prediction of heat waves can be related to 
teleconnections, which are often mediated through Rossby wave trains [Boreal Sum-
mer Intraseasonal Oscillation effect on the easterly jet, possibly as a consequence of 
background El Niño–Southern Oscillation, cfr. Strnad et al. (2023), the impact of dia-
batic heating of the Tropical Indian Western Pacific on European heat waves; Ma and  
Franzke (2021)]. Due to their large-scale or global nature, teleconnections can often be 
interpreted in the context of concurrent or compound extreme events. The predictability 
of heat waves is also conditioned by their duration, which needs to be better understood 
for improved subseasonal-to-seasonal outlooks (Wulff and Domeisen 2019). On synoptic 
time scales, Oertel et al. (2023) discuss “predictability barriers” due to the interaction 
of diabatic outflow with the Rossby wave pattern for the prediction of the 2021 North 
American heat wave magnitude. From a reduced-order model point of view, two compet-
ing modes are seen to occur, zonal and blocking modes, and the transitions among them 
are often determined by the role of noise, making blocking, in particular, very hard to 
predict in NWP systems (Xavier et al. 2024; Hochman et al. 2021a). In Europe, this noise 
can take the form of rapidly evolving atmospheric structures (1–2 days) that can convey 
warm air from the tropics (D’Andrea et al. 2024). Zonal and blocked flows are associated 
with somewhat different levels of structural instability in the atmosphere (Faranda et al. 
2017), challenging our ability to capture their statistics in climate models (Lucarini and 
Gritsun 2020). Therefore, a systematic underestimation of concurrent heat wave occur-
rence has been highlighted in climate models (Kornhuber et al. 2023).
Role of blocking and topography: Related to the previous point but deserving of spe-
cific consideration is the necessity to improve the understanding of the link between 
Rossby waves, blocking, and topography, particularly the reproduction of this link in 
state-of-the-art NWP and climate models. As it has been known for a long time [cfr. 
Tibaldi and Molteni (2018) and references therein], topography and surface friction criti-
cally influence the capability of models to characterize the stability, frequency, and tran-
sition phase of blocking events, leading to increased or reduced predictability (Schubert 
and Lucarini 2016; Lucarini and Gritsun 2020).
Physically justified weather regimes: The existence of weather regimes as recurrent 
or persistent regional/hemispheric-scale patterns associated with concurrent heat waves 
has been assessed statistically (e.g., Yiou and Nogaj 2004). Physically justified assess-
ments must be conducted and tailored to specific needs and balanced by diverse pattern 
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recognition approaches, such as k-means clustering, hidden Markov models, EOFs, and 
self-organizing maps, including recent machine learning approaches. Statistical models 
based on circulation analogs are good candidates to emulate persisting features during 
heat waves (e.g., Yiou et  al. 2023). A posteriori assessments of the physical ground-
ing of regimes are also key (Vannitsem 2001; Franzke et  al. 2008; Kwasniok 2014;  
Zschenderlein et al. 2019, 2020; Hochman et al. 2021a; Springer et al. 2024). Depend-
ing on the situation, a protocol for the most appropriate method for pattern recognition 
and clustering is needed.
Statistical treatment of spatially compounding extreme events: The typical trajec-
tory leading to an extreme state refers to the most likely development of the extreme 
event. The typical trajectory is a theoretical concept: when the extreme event unfolds, 
the real dynamics fluctuate around the typical trajectory. We call the events that ap-
proach this typical trajectory “typical extreme events” (Galfi and Lucarini 2021; Lucarini 
et al. 2023; Noyelle et al. 2024). But how do we study such “typical” extreme events? 
How far does this typicality apply to spatially compounding events? How do we extend 
the probability density function of an observable to sample extremely rare events when 
we do not have sufficiently large observational datasets? Committor functions informed 
by stochastic weather generators and data-driven large deviation theory as a comple-
ment to classical extreme value theory have been proposed, but their applicability has 
to be assessed depending on the context (cfr. Kwasniok 2015; Galfi and Messori 2023; 
Miloshevich et al. 2024).
Interactions with land and ocean surface: Besides their origin from internal atmo-
spheric variability, Rossby waves can be forced by changes in midlatitude sea surface 
temperatures (SST) and soil moisture anomalies (cfr. Martius et al. 2021). Marine heat 
waves and droughts can act locally to enhance and propagate temperature extremes 
on land. More work is needed to disentangle the complex ocean–atmosphere and 
land–atmosphere Rossby wave interactions and their cause–effect relationships.
Reconciling definitions of persistence: The word “persistence” has different connota-
tions, depending on the various processes and time scales it refers to and the defined 
framework (Holmberg et al. 2023). One can distinguish between global, state, and epi-
sodic persistence, manifesting as either (quasi-)stationarity or recurrence (cfr. Tuel and 
Martius 2023). Regarding atmospheric circulation, both the (quasi-)stationarity (e.g., 
blocking) and recurrence (e.g., recurrent Rossby wave packets) of flow anomalies can 
lead to prolonged and impactful surface extremes. While agreement on the exact mean-
ing of persistence may not be possible or even relevant, more clarity and nuance are 
advised when presenting work linked to this concept.

3. Interdisciplinary approaches
The workshop program was designed to leave ample space for open discussion.  Overall, 
the need to foster collaborations across disciplinary boundaries was emphasized as 
key to achieving progress with recommendations for coordinated action around several 
 focal points:

Integration, harmonization, and consistent use of different metrics for Rossby 
wave characterization: waveguides, PV approach, local wave activity, phase speed for 
storm-track propagation, jet stream, kinetic or mechanical energy, latent heat release/
atmospheric rivers, and persistence;
Different approaches for the study of concurrent extremes: coincidence analysis, 
large deviation theory (LDT), and extreme value theory (EVT);
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Comparisons of different spectral approaches: Fourier coefficients, Hough harmon-
ics, Wavelet, Hayashi, stationary versus traveling, and planetary versus synoptic;
Integration of methodologies from dynamical systems theory: analysis of unsta-
ble periodic orbits, Lyapunov analysis of the tangent space, and model reduction via  
Markov chain modeling;
Clever use of the model hierarchy: large ensembles, quasigeostrophic (QG) models,  
dynamical cores, convective permitting regional climate models (CORDEX), and data- 
driven models (coral reef optimization method);
Impacts perspective: what extremes are most relevant for droughts, heat stress, energy 
consumption, and power-grid resilience, regionally and on hemispheric scales? Which 
time scales are interesting for risk preparedness and decision-making across different 
social and industrial sectors?

4. Outlook and conclusions
Despite, but also thanks to the diversity of represented expertise, a common vision emerged 
from the workshop community for pushing forward our understanding of the complex inter-
action between atmospheric Rossby waves and spatially compounding extreme events. We 
identified collaborative efforts leveraging various approaches and tools as the most promising 
avenue for rapid scientific advances. All participants acknowledged the workshop as an es-
sential step toward achieving these goals, and there is ongoing discussion on how to transform 
this venue from a one-off event to a continued and sustainable effort.

Some cutting-edge questions identified as more amenable to future progress are listed 
below. The first necessary step is developing a common framework to distinguish between 
concurrent heat waves mediated by a common driver, from a set of individual events hap-
pening concurrently by chance, due to physically distinct large-scale atmospheric dynamics. 
Events caused by common drivers, which could occur under amplified, zonally extended 
Rossby waves “connecting” the various mechanisms, characterized by their predictability 
and statistics, deserve an in-depth analysis from an atmospheric circulation perspective.

As shown during the workshop, state-of-the-art climate models struggle to reproduce 
concurrent heat waves. This model deficiency is a crucial issue, as concurrent heat waves 
are becoming increasingly frequent compared to isolated heat waves (Rogers et al. 2022). 
A modeling approach should focus on characterizing high-intensity and moderate extreme 
events that might become the median event in a future climate. The amplification and increase 
in frequency of extreme events with climate change have been, in fact, directly related to 
mechanisms responsible for the development of Rossby waves (cfr. for instance, the “fast-get-
faster” paradigm, a direct consequence of the Clausius–Clapeyron relationship; Shaw and 
Miyawaki 2024).

There is a pressing need to enhance the predictability horizon of extreme heat waves, and 
probabilistic approaches seem to be particularly promising, especially regarding heat wave 
duration (Pyrina and Domeisen 2023). Sensitivity studies on the direct or indirect role of 
topography or surface friction in the development of blockings and the modulation of ampli-
fied Rossby waves might provide further crucial insights into the drivers of concurrent heat 
waves (Jiménez-Esteve et al. 2022; Jiménez-Esteve and Domeisen 2022).

Whereas both individual and concurrent heat waves are prone to become more frequent 
in future climate change scenarios, it is unclear whether the new events will simply be an 
intensification of already observed extreme heat waves (typical extreme events or “gray 
swans”) or will follow completely different trajectories, thus being perceived as freak 
events or black swans (cfr. Fischer et al. 2023). Note that the latter option is not unlikely, 
considering the effect of global warming on the atmospheric circulation. Given that these 
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two extreme events may be statistically and dynamically different, we need various 
analysis tools. While approaches like EVT, LDT, and typicality analysis are adequate for 
understanding typical extreme events and how these will change with global warming, 
we need different approaches to analyze black swans. Computational tools such as rare 
event sampling algorithms, ensemble boosting, and some machine learning methods are 
promising. However, proper theoretical approaches, which are currently missing, are also 
critically needed.

Identifying large-scale precursors for local extreme heat wave events by exploiting 
data-driven models and machine learning algorithms is a promising field of research, as 
demonstrated by recent work from workshop contributors (e.g., Dorrington et al. 2024). 
However, statistical assessments involving classical EVT or LDT (cfr. Kwasniok 2015, 2019) 
and purely data-driven technologies must be complemented by physically justified argu-
ments shedding light on the involved mechanisms. Beyond observational constraints, this 
process-oriented approach is key in correctly and systematically evaluating existing model 
biases in representing spatially compounding events (Bevacqua et al. 2023).
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