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Abstract 

Although the separate effects of water and nitrogen (N) limitations on forest growth are well known, 

the question of how to predict their combined effects remains a challenge for modeling of climate 

change impacts on forests. Here, we address this challenge by developing a new eco-physiological 

model that accounts for plasticity in stomatal conductance and leaf N concentration. Based on  

optimality principle, our model determines stomatal conductance and leaf N concentration by 

balancing carbon uptake maximization, hydraulic risk and cost of maintaining photosynthetic 

capacity. We demonstrate the accuracy of the model predictions by comparing them against gross 

primary production estimates from eddy covariance flux measurements and sap-flow measurement 

scaled canopy transpiration in a long-term fertilized and an unfertilized Scots pine (Pinus sylvestris L.) 

forest in northern Sweden. The model also explains the response to N fertilization as a consequence 

of (i) reduced carbon cost of N uptake and (ii) increased leaf area per hydraulic conductance. The 

results suggest that leaves optimally coordinate N concentration and stomatal conductance both on 

short (weekly) time scales in response to weather conditions and on longer time scales in response 

to soil water and N availabilities. 

Introduction 

Human-made increases in atmospheric carbon dioxide (CO2) concentration have led to rising 

temperature, and more drought events (IPCC 2014), which have major impacts on gross primary 

production (GPP) and forest growth. On the one hand, one might expect higher temperature to 

positively affect biomechanical processes of photosynthesis (Sage and Kubien 2007) and hence 

growth. On the other hand, more drought events increase the risk of hydraulic failure and higher 

mortality (McDowell et al. 2008, Ryan 2011). In addition, tree growth is limited by other factors, such 

as nitrogen (N) availability, which is particularly important in boreal forests in the northern latitudes 

(Tamm 1991, Binkley and Högberg 2016, Högberg et al. 2017). Thus, interactive effects of water and 

temperatures on photosynthesis and growth are further influenced by plant nutrition and soil N 

accessibility, but it is not yet clear how to best incorporate them in process-based models. 

 

Process-based physiological models are well-suited for assessing the response of photosynthesis to 

different climate drivers. One such model is the well-established Farquhar and von Caemmerer 

model of leaf photosynthesis (Farquhar et al. 1980, Farquhar and von Caemmerer 1982). To account 

for resource limitation of photosynthesis, this model can be complemented with models of stomatal 
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conductance and photosynthetic capacity, which is linked to leaf N concentration. Several semi-

empirical models have been proposed to model the response of stomata, such as the Ball and Berry 

model (Ball et al. 1987), where the stomatal conductance (𝑔𝑠) is linearly related to the quantity 

𝐴𝐻𝑟/𝐶𝑎. Here, 𝐴 is the carbon assimilation rate, 𝐻𝑟 is the relative humidity, and 𝐶𝑎 is the ambient 

CO2 concentration at the leaf surface. 

 

A limitation of the empirical models is that they can be safely applied only within the range of 

environmental conditions and observations for which they were developed, and thus may not be 

accurate under novel conditions or climate change. To overcome this limitation, adaptive models 

based on optimization principles have been developed. These models assume that the responses of 

𝑔𝑠 and other plant variables to environmental variations are regulated by an optimal trade-off 

between carbon gain and cost. In the case of 𝑔𝑠, the apparent cost is the loss of water through 

transpiration. Based on this premise Cowan & Farquhar (1977) proposed the optimal water use 

efficiency hypothesis where the carbon gain was 𝐴 and the cost was assumed proportional to leaf 

transpiration (𝐸), i.e. net gain is 𝐴 −  𝐸/𝜆, where 𝜆 is a constant. However, observations have shown 

that the cost does not merely increase linearly with respect to 𝐸, but the slope steepens with rising 

𝐸, as a result of increased absolute water potential and thus bringing the vascular system closer to 

xylem cavitation (Wolf et al. 2016). Mathematically, this means that the derivative of the cost 

function, with respect to 𝐸, should be an increasing function of 𝐸, defined, for example, as a 

concave-up parabola (Wolf et al. 2016, Anderegg et al. 2018) or a sigmoid (Sperry et al. 2017). 

Following the approach of Sperry et al. (2017), Eller et al. (2018) proposed the SOX model in which 

the costs is a function of root–canopy hydraulic conductance, 𝑘𝑟𝑐. The underlying assumption is that 

the cost will increase as the 𝑘𝑟𝑐 decreases due to the increase in absolute water potential necessary 

to maintain 𝐸. A similar assumption is also applied in the model by Sabot et al. (2022a).  

 

While the above-mentioned models have only considered the cost associated with water transport, 

other models have also incorporated the cost of maintaining photosynthetic capacity into the cost 

term (Friend 1991). Following similar ideas, Prentice et al. (2014) proposed that the cost of 

maintaining photosynthetic capacity is proportional to 𝑉c,max/𝐴, where 𝑉c,max is the maximum rate 

of RuBP carboxylation. The drawback of the Prentice et al. (2014) model is similar to that of the 

Cowan & Farquhar (1977) approach, in that the cost associated with transpiration is proportional to 

𝐸/𝐴, thus its slope is not an increasing function of 𝐸 (Sabot et al. 2022b). In contrast, a more recent 

approach by Joshi et al. (2022) and Flo et al. (2023), called the P-hydro model, optimizes both 

photosynthetic capacity and has a transpiration cost increasing with 𝐸 linked to increasing negative 
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plant water potential assumed to cause hydraulic limitation and damage (Joshi et al. 2022). Also, the 

recent model by Sabot et al. (2022a) optimizes not only the trade-off between hydraulic function 

and photosynthesis but also optimizes photosynthetic N and its distribution between different 

components, even accounting for the limited adjustment rates and associated delay of leaf N 

adjustments over time. However, none of the above-mentioned models explicitly accounts for the 

effects of varying soil N availability. 

 

In this study, we present a new leaf optimization model which combines the cost of maintaining 

photosynthetic capacity, inspired by the P-hydro model (Joshi et al. 2022), with the hydraulic cost 

representation of the SOX model. Thus, we optimize not only stomatal conductance as in the SOX 

model, but also the leaf N content. Our model also accounts for the difference in time-scale between 

the regulation of stomatal conductance and leaf N content. This leaf-based optimality model is 

upscaled to allow calculations of canopy GPP and transpiration (𝐸𝑐). In contrast to existing models of 

this type (Sabot et al. 2022a, Joshi et al. 2022) we include the cost of N uptake in order to account 

for variation in soil N availability. We test and validate the model against observed GPP from eddy 

covariance flux measurements and 𝐸𝑐 estimates from stem sap-flow measurement for a Scots pine 

(Pinus sylvestris L.) forest in northern Sweden, where 13 years of controlled annual fertilization has 

been administered alongside an untreated reference stand. This setting allows us to test our model 

with varying soil N availability and variable climate over several years. We show that the model 

predicts the seasonal pattern of GPP and 𝐸𝑐 well. It also predicts the differences between control 

and N-fertilized stand as a consequence of different carbon costs of N uptake and leaf area per 

sapwood area.  

Theory and model 

Model description 

A flowchart of the model is provided in Fig. 1 and detailed descriptions of the sub-models are 

presented in the succeeding subsections. Our model calculates daily stand-level canopy gross 

primary production (GPP) and canopy transpiration (𝐸𝑐) based on leaf area index (LAI), canopy 

height (𝐻), and climate data (see Table 1 for a full list of necessary inputs). We assume that 

physiological response is controlled by two plastic variables: the stomatal conductance (𝑔𝑠) and 

foliage N mass-based concentration (𝑁𝑚,𝑓) of a leaf/needle situated at the top of the canopy. The 

plastic variables are determined by optimization with respect to a fitness proxy, which represents 

the net carbon gain per leaf area. Central to the optimization is the instantaneous fitness proxy, 𝐺, 

which is calculated as the instantaneous leaf-level carbon assimilation of a leaf/needle situated at 
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the top of the canopy (𝐴) subtracted by the cost of maintaining transpiration and photosynthetic 

capacity (the potential electron transportation of a leaf situated at the top canopy, 𝐽max). The cost of 

maintaining transpiration reflects drought-related loss of soil-canopy conductance (𝑘sc) due to 

xylem embolism, which corresponds to a proportional loss of function of the supported leaf area and 

its carbon assimilation. The cost of maintaining potential photosynthetic capacity (Nr+Nu) is related 

to two contributing processes: (i) respiration of a leaf and its supporting roots and stem tissues (Nr), 

which is assumed proportional to leaf N content, and (ii) the carbon cost of N uptake (Nu), which 

depends on soil N availability. The calculation procedure of 𝐺 is as follows: first, 𝐴 and 𝐽max are 

calculated using a mechanistic physiological model. 𝐴 and 𝐽max are functions of climate variables 

(above canopy photosynthetic active radiation, 𝐼0, ambient air temperature, 𝑇𝑎, ambient carbon 

dioxide partial pressure 𝐶𝑎, vapor pressure deficit VPD), and the two plastic variables. Next, 𝑘sc is 

calculated by the hydraulic model with VPD, soil volumetric water content (𝜃), 𝐻, and 𝑔𝑠 as input. 

Using these calculations in an iterative optimization algorithm the cumulative fitness, i.e., the 

integral of 𝐺, over a week is maximized by optimizing 𝑁𝑚,𝑓 and daily 𝑔𝑠 values (two 𝑔𝑠 values for 

each day and one 𝑁𝑚,𝑓 value for the entire week). Subsequently, daily GPP and 𝐸𝑐 are calculated by 

upscaling the leaf-level values to the stand-level. Here, the stand LAI and the daylight hours (∆𝑡𝑔) 

are used as additional input.   

 

Leaf level photosynthesis model 

The leaf level carbon assimilation is calculated in a standard fashion as a balance between the rate of 

assimilation (carbon demand) and the mass transport of carbon dioxide into the leaf through 

stomatal and mesophyll conductance (carbon supply). The assimilation rate, A (mol m-2 s-1) is 

calculated as the minimum of electron transport limited assimilation rate, 𝐴𝑗, and the carboxylation-

limited assimilation rate, 𝐴𝑐, (Farquhar et al. 1980). We assume co-limitation, i.e., that 𝐴𝑐 = 𝐴𝑗 

(coordination hypothesis, Chen et al., 1993; Maire et al., 2012; Wang et al., 2017; Smith et al., 2019), 

thus, 

 

 
A =

𝐽

4

𝑐𝑖 − 𝛤∗

𝑐𝑖 + 2𝛤∗
. 

Eq. 1 

 

In Eq. 1, 𝑐𝑖 (Pa) is the intercellular partial pressure of carbon dioxide, 𝛤∗ (Pa) is the carbon dioxide 

compensation point, and 𝐽 (mol m-2 s-1) is the rate of electron transportation, see Eq. 2. 
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𝐽 =
𝛼𝐼I + 𝐽𝑚𝑎𝑥 − √𝛼2𝐼I

2 + 2𝛼𝐼I𝐽𝑚𝑎𝑥(1 − 2𝜃𝐽)  + 𝐽𝑚𝑎𝑥
2

2𝜃𝐽
. 

 
Eq. 2 

 

In Eq. 2, 𝐼I (mol m-2 s-1) is the irradiance incident on a leaf, 𝐽𝑚𝑎𝑥 (mol m-2 s-1) is the potential electron 

transportation, 𝜃𝐽 (-) is a measure of the curvature of the light response curve, and 𝛼 (-) is the 

quantum yield.  

The mass transportation of carbon dioxide into the chloroplast through stomatal and mesophyll 

conductance is given by Fick's law: 

 

 
𝐴 = 𝑔

(𝑐a − 𝑐i)

𝑃
. 

Eq. 3 

 

In Eq. 3, 𝑔 (mol m-2 s-1) is the combined stomatal (𝑔𝑠) and mesophyll (𝑔𝑚) conductance, and 𝑃 is the 

atmospheric pressure (Pa). We assume that 𝑔𝑚 is proportional to 𝑔𝑠, thus 𝑔 ∝ 𝑔𝑠. Specifically, we 

assume 𝑔 ≈ 0.42𝑔𝑠 (Wang et al. 2017). Because the demand and the supply equations need to be 

balanced, we get: 

 

 𝑔

𝑃
(𝑐a − 𝑐i) =

𝐽

4

𝑐𝑖 − 𝛤∗

𝑐𝑖 + 2𝛤∗
⇔ 𝑐i

2 + [
𝐽𝑃

4𝑔
+ 2𝛤∗ − 𝑐a] 𝑐i − [

𝐽𝑃

4𝑔
𝛤∗ + 2𝑐a𝛤∗] = 0. 

Eq. 4 

 

Eq. 4 is a quadratic equation and 𝑐i is given by the greater of the two roots. Thus, we have an 

expression for 𝑐i as a function of 𝑔, 𝐼I, and 𝐽𝑚𝑎𝑥, i.e., 𝑐i(𝑔, 𝐼I, 𝐽max). Similarly, we get an expression 

for the carbon assimilation (Eq. 5) by substituting Eq. 4 into Eq. 3. 

 

 𝐴(𝑔, 𝐼I, 𝐽max, 𝑐a) =
𝑔

𝑃
(𝑐a − 𝑐i(𝑔, 𝐼I, 𝐽max)). Eq. 5 

 

 

Temperature dependency of photosynthetic parameters and its acclimation to annual 

temperature cycle 

We use the Arrhenius equation and the model from Tarvainen et al. (2018) to estimate the short-

term temperature dependency of the photosynthetic parameters. Specifically, the temperature 

responds of 𝛤∗, is modelled by using the Arrhenius equation (Landsberg and Sands 2010),       
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𝛤∗ = 𝛤ref

∗  exp (
𝐸𝐴,𝛤(𝑇 − 𝑇ref)

𝑇𝑅𝑇ref
), 

Eq. 6 
 

 

In Eq. 6, 𝑅 = 8.314 (J K-1 mol-1) is the gas constant, 𝐸𝐴,𝛤 (J) is the activation energy of the parameter, 

𝑇 is the temperature (K), and 𝛤ref
∗  is the parameter value at a reference temperature 𝑇ref (298 K). 

 

We use Eq. 4 from Tarvainen et al. (2018) to model the short-term temperature responds of 𝐽𝑚𝑎𝑥, 

 

 

𝐽max = 𝐽max,opt𝑓Jmax(𝑇) = 𝐽max,opt

𝐸𝐷,𝐽 exp (
𝐸𝐴,𝐽(𝑇 − 𝑇opt)

𝑇𝑅𝑇opt
)

𝐸𝐷,𝐽 − 𝐸𝐴,𝐽 (1 − exp (
𝐸𝐷,𝐽(𝑇 − 𝑇opt)

𝑇𝑅𝑇opt
))

. 

 
 

Eq. 7 

 

In Eq. 7, 𝐸𝐷,𝐽 (J) is the deactivation energy, 𝐸𝐴,𝐽 (J) is the activation energy, and 𝐽max is the value of 

𝐽max at optimal temperature 𝑇opt (K). 

 

On a longer timescale, parameters may acclimate to the annual temperature cycle. Specifically, the 

magnitude of the light response curve follows the trend of the temperature cycle while the shape of 

the curve remains constant (Hari and Mäkelä 2003, Mäkelä et al. 2004). Mäkelä et al. (2004) 

enforced this property by assuming that the quantum yield is proportional to 𝐽𝑚𝑎𝑥. For our model, 

we achieve the same effect by assuming that both 𝐽𝑚𝑎𝑥 and the quantum yield, α, follow the same 

seasonal cycle, specifically, 𝛼 = 𝑋𝑡𝛼season and  𝐽max = 𝑋𝑡𝐽max,season(𝑇𝑎 , 𝑁𝑎). Here, 𝛼season and 

𝐽max,season(𝑇𝑎 , 𝑁𝑚,𝑓) are parameters representing the seasonal apex of 𝛼 and 𝐽max, respectively, 

and 𝑋𝑡 ∈ [0,1] is a variable accounting for the reduction of 𝛼 and 𝐽max due to the seasonal variation 

in temperature. Note that 𝐽max,season(𝑇𝑎, 𝑁𝑚,𝑓) depends on the ambient air temperature, 𝑇𝑎, and 

the N concentration per leaf mass, 𝑁𝑚,𝑓. If these equations are substituted into Eq. 2 we get Eq. 8.  

 

 𝐽

=
𝑋𝑡

2𝜃
[𝛼season𝐼I + 𝐽max,s(𝑇𝑎 , 𝑁𝑚,𝑓)

− √𝛼season
2𝐼I

2 + 2𝛼season𝐽max,s(𝑇𝑎 , 𝑁𝑚,𝑓)𝐼I(1 − 2𝜃) + 𝐽max,s(𝑇𝑎, 𝑁𝑚,𝑓)
2

]. 

 

 
 

Eq. 8 

 

The time-dependent variable 𝑋𝑡 (-) is a function of the delayed ambient air temperature, 𝑆𝑡 (°C), see  
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Eq. 9.  

 

 

𝑋𝑡 = {

0, 𝑆𝑡 ≤ 𝑆min,
𝑆𝑡 − 𝑆min 

∆𝑆
, 𝑆min < 𝑆𝑡 < 𝑆min + ∆𝑆

1, 𝑆𝑡 ≥ 𝑆min + ∆𝑆,

, 

 
Eq. 9 

 

In Eq. 9,  𝑆min is a parameter representing the minimum threshold for the activation of 
photosynthesis, and ∆𝑆 ≥ 0 is a parameter controlling when the photosynthetic capacity reaches its 
seasonal peak.  Thus, 𝐽max increases linearly with respect to 𝑆𝑡 in the temperature range 𝑆min <
𝑆𝑡 < 𝑆min + ∆𝑆. The delayed temperature, 𝑆𝑡, is the effective temperature to which the 
photosynthesis has acclimated to, i.e. the temperature that determines the level of activation of 
photosynthesis (𝑋𝑡 , Eq. 9). Because this acclimation takes time, 𝑆𝑡 lags behind the current 
temperature, which is modelled using a first order delay dynamics model (Mäkelä et al. 2004, 2008):  
 

 
𝑆𝑡 = (1 −

1

𝜏
) 𝑆𝑡−1 +

1

𝜏
𝑇𝑡, 𝑆0 = 𝑇0. 

Eq. 10 

 

In Eq. 10, 𝑇𝑡 is the ambient air temperature at time 𝑡, 𝑇0 is an initial temperature of a temperature 

time series, and 𝜏 is a parameter controlling the temperature delay; A higher value of 𝜏 equals a 

longer delay in the temperature response. 

 

The effect of nitrogen concentration on the photosynthetic capacity 

We assume that the seasonal apex of 𝐽max,opt is proportional to the per leaf-mass N concentration, 

𝑁𝑚,𝑓, i.e., 𝐽max,opt(𝑁𝑚,𝑓) = 𝑎𝐽𝑚𝑎𝑥𝑁𝑚,𝑓 (Franklin 2007, Landsberg and Sands 2010). Here, 𝑎𝐽𝑚𝑎𝑥 is a 

proportionality parameter. Thus,  𝐽max,season(𝑇𝑎, 𝑁𝑚,𝑓) = 𝐽max,opt(𝑁𝑚,𝑓)𝑓Jmax(𝑇𝑎) and 𝐽𝑚𝑎𝑥 =

𝑋𝑡𝐽max,opt(𝑁𝑚,𝑓)𝑓Jmax(𝑇𝑎). 

 

Hydraulics model 

If 𝑔𝑠 and VPD are given, we can calculate the canopy transpiration per leaf area, 𝐸: 

 
𝐸 =

1.6𝑔𝑠𝑉𝑃𝐷

𝑃
. 

Eq. 11 

 

In Eq. 11, 𝑃 is the atmospheric pressure (Pa). We assume that the water flow between root and leaf 

is in steady-state and negligible non-stomatal water loss, which means that 𝐸 equals the water 

uptake. We use Darcy's law to calculate the canopy water potential, 𝜓𝑐 (MPa), as a function of soil 

water potential, 𝜓𝑠, and 𝐸 (Eller et al. 2018): 
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𝜓𝑐 = 𝜓𝑠 − 𝐻𝜌𝑔 −

𝐸

𝑘sc
. 

Eq. 12 

 

In Eq. 12, 𝜌 = 997 (kg m-3) is the density of water, 𝑔 = 9.82 (m s-2) is the gravitational acceleration, 

and 𝑘𝑠𝑐 (mol m⁻² leaf s⁻¹ MPa⁻¹) is the soil-canopy conductance. 𝑘sc decreases from a potential 

maximal value, 𝑘sc,max, as water potential, 𝜓, declines according to the vulnerability function, 

𝑃(𝜓): 

 

𝑃(𝜓) =
𝑘sc

𝑘sc,max
= (

1

2
)

(
𝜓

𝜓50,sc
)

𝑏sc 

. 

Eq. 13 

In Eq. 13, 𝜓50,𝑠𝑐 is the water potential resulting in half of the maximum conductivity, i.e., 

𝑃(𝜓50,𝑟𝑐) = 0.5, and 𝑏sc is a shape parameter controlling how fast 𝑘sc decreases with the water 

potential.  

 

We calculate 𝜓𝑠 from the effective soil saturation, 𝑆𝑒 (-), by applying equation 2.19 from Jansson & 

Karlberg (2011): 

 𝜓𝑠 = 𝜓𝑎  𝑆𝑒
−1/𝜆

. Eq. 14 

In Eq. 14, 𝜓𝑎 is the air-entry tension and 𝜆 (-) is the pore size distribution index of the soil. 

The effective saturation is a function of soil water content (Jansson and Karlberg 2011), 𝜃 (-): 

 
𝑆𝑒 =

𝜃 − 𝜃𝑟

𝜃𝑠 − 𝜃𝑟
. 

Eq. 15 

In Eq. 15, 𝜃𝑠 is the saturated soil water content and 𝜃𝑟 is the residual water content.  

 

We calculate 𝑘𝑟𝑐 by solving Eq. 16 (Sperry and Love 2015). 
 

𝑘sc = 𝑘sc,max

∫ 𝑃(𝜓)
𝜓𝑐,𝑝𝑑

𝜓𝑐
𝑑𝜓

𝜓𝑐,𝑝𝑑 − 𝜓𝑐
. 

 
Eq. 16 

 

In Eq. 16, 𝜓𝑐,𝑝𝑑 = 𝜓𝑠 − 𝐻𝜌𝑔 is the pre-dawn canopy water potential. We use Simpson's 1/3 rule to 

approximate the integral in Eq. 16 and the equation is solved by applying a fix-point iteration 
method.  
 

Plant optimization 

We define the instantaneous fitness proxy, 𝐺 (mol m-2 s-1), as the instantaneous carbon assimilation 

rate at top of the canopy, 𝐴 = 𝐴(𝑔s, 𝐼I0
, 𝐽max), times a reduction factor 𝑘cost , representing the 

effect of reduced plant conductance under water stress (Eller et al. 2018), minus the cost of 

maintaining 𝐽𝑚𝑎𝑥, i.e., (𝑁𝑟 + 𝑁𝑢)𝐽𝑚𝑎𝑥. Thus, 
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 𝐺 = 𝐴 − 𝐴(1 − 𝑘cost) − (𝑁𝑟 + 𝑁𝑢)𝐽max = 𝐴𝑘cost − (𝑁𝑟 + 𝑁𝑢)𝐽max. Eq. 17 

 

In Eq. 17,  𝑁𝑟  (-) represents the leaf respiration cost as the ratio between dark respiration (Rd) and 

𝐽max, which is linked to leaf N because photosynthetic capacity and 𝐽max, increases with leaf N 

concentration associated with photosynthetic proteins. 𝑁𝑟  was estimated based on measured 𝐽max 

and Rd (night and daytime values) in Scots pine (Kellomäki and Wang 1997). Because 𝑁𝑟  is based on 

the ratio of fundamental leaf biochemical processes with similar climatic responses (Wang et al. 

2020) it is relatively constant among species and climate conditions. 𝑁𝑢 represents the carbon 

investment (fine-roots, mycorrhiza, exudation) for nutrient uptake required to construct and 

maintain 𝐽max which is expected to strongly depend on soil N availability.  

The costs of hydraulic risks and damage are represented by the parameter 𝑘cost = (𝑘sc −

𝑘crit)/(𝑘sc,max − 𝑘crit) (Supplementary material of Eller et al., 2018). Based on the commonly 

observed lethal loss of conductivity of 88% (Liang et al. 2021), here we assumed 𝑘crit = 0.12𝑘sc,max 

and the 𝐴(1 − 𝑘cost) cost term we assume that: 1) each fraction of 𝑘sc corresponds to an equal loss 

in functional leaf area and thus assimilation loss and 2) in the event of hydraulic failure and fatal 

embolism, i.e., when 𝑘𝑟𝑐 decreases and approaches 0, the loss should be equal to the total carbon 

gain. 

While 𝐺 represents the instantaneous fitness reward, we assume that 𝑁𝑚,𝑓 and 𝑔𝑠 regulate such 

that the accumulative fitness, i.e. the integration of 𝐺 over time, is maximized. Furthermore, we 

assume that: i) 𝑁𝑚,𝑓 optimizes on a weekly time scale and 𝑔𝑠 on a sub-daily time scale. ii) 𝑁𝑓  is 

constant over a week’s period. iii) The day-to-day change of the weather variables within a week are 

neglectable compared to the within-day variation. iv) The daily integration of 𝐺 can be approximated 

by the sum of two instantaneous function values according to the two-segment daily model (SDM-2, 

Wang et al., 2014). The original segmented daily model assumed that the nonlinear response of 𝐴 

can be approximated by a piecewise linear function, i.e., the response curve can be approximated by 

a number of line segments, and that weather variables (specifically radiation, temperature, and 

relative humidity) follow a sine function. With these assumptions, we propose a two-step 

optimization routine. In the first step, we optimize 𝑁𝑚,𝑓 and two 𝑔𝑠 values to maximize the integral 

of 𝐺 over a specified week (long-term optimization). The two 𝑔𝑠 values represent the within-day 

variation of stomatal conductance (one 𝑔𝑠 value for each segment in SDM-2) for an average day 

within the specific week. In the second step, we maximize the daily integral of 𝐺 for each day in the 

specified week by re-optimizing the two 𝑔𝑠 value for each day (fine-tuning). Here we use the optimal 

weekly 𝑁𝑚,𝑓 value from the previous step as input, and the two average-day 𝑔𝑠 values from the first 
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step are used as initial guesses for the optimization algorithm. Additional information regarding the 

plant optimization is available in the supplementary information (Methods S1). In order to use the 

SDM-2 approximation, we need to estimate within-day values for the weather variables. To this end 

we use the same trigonometric functions from Wang et al. (2014) to model the diurnal change of the 

ambient temperature and radiation, the remaining weather variables are either calculated from 

these (VPD) or are assumed to be constant during the day (𝐶𝑎 and 𝜃), see Methods S1 for more 

information. 

 

The optimization problem is solved by using the implementation of Broyden–Fletcher–Goldfarb–

Shanno algorithm (BFGS) from the Optim.jl package (K Mogensen and N Riseth 2018). We search the 

optimum in the range 0.007 ≤ 𝑁𝑚,𝑓 ≤ 0.05 and 0.001 ≤ 𝑔𝑠 ≤ 𝑔𝑠,𝑐𝑟𝑖𝑡 for each 𝑔𝑠 and 𝑁𝑚,𝑓 value. 

Here, 𝑔𝑠,𝑐𝑟𝑖𝑡  is the stomatal conductance which results in 𝑃(𝜓𝑐) = 0.12. 

 

Upscaling to stand-level  

Stand level primary production 

We assume that 𝐽max and 𝑔s acclimate to irradiance resulting in a proportional relationship with 

irradiance level (Landsberg and Sands 2010). Then, the instantaneous gross primary production per 

ground area of canopy vegetation (GPP of trees), GPPc, is calculated as: 

 
𝐺𝑃𝑃𝑐 = ∫ 𝐴(𝑔s, 𝐼I, 𝐽max)𝑑LAI

LAI

0

=
1 − exp(−𝑘 × LAI)

𝑘
𝐴(𝑔s, 𝐼I0

, 𝐽max). 
 

Eq. 18 

 

In Eq. 18, 𝐿𝐴𝐼 is the leaf area index (projected area), and k and 𝐼I are the light extinction coefficient 

and irradiance incident on a leaf, respectively, see Methods S2 for further details. Analogue to the 

plant optimization routine, we employ the SDM-2 approximation (Wang et al. 2014) to calculate 

daily  GPP value from instantaneous values. In order to compare with eddy-covariance data 

(ecosystem GPP, GPP𝑒), we accounted for understory vegetation GPP, GPP𝑔, to calculate GPP𝑒 =

GPP𝑐 + GPP𝑔. We assume that light use efficiency (LUE, defined as GPP/absorbed light) is the same 

for both vegetation layers (Tian et al. 2021). GPP𝑐 can then be upscaled by using an upscale factor, 

𝜁 = GPP𝑒/GPP𝑐  . The value of 𝜁 depends on the understory vegetation LAI and corresponding light 

extinction coefficient (see Methods S3 for more information). We estimate that 𝜁 ≈ 1.2 for the 

fertilized stand and 𝜁 ≈ 1.13 for the control (Table S1). These corresponding contribution of GPP𝑔 to 

GPP𝑒 was 17% and 12% for the fertilized stand and control, respectively. This is in line with previous 

estimates (Chi et al. 2021). Hereafter, we will refer to GPP𝑒 as simply GPP.  
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Canopy transpiration 

We neglect the effects of boundary layer conductance (combined leaf and canopy boundary layer), 

thus the instantaneous canopy transpiration 𝐸𝑐 is calculated as: 

 

 
𝐸𝑐 = 𝑔𝐶

𝑉𝑃𝐷

𝑃
. 

Eq. 19 

 

In Eq. 19, 𝑔𝐶  is the canopy conductance. The canopy conductance is calculated as:  

 

 
𝑔𝐶 = 1.6 ∫ 𝑔𝑠𝑑LAI

LAI

0

= 1.6𝑔𝑠,top

1 − exp(−𝑘 × LAI)

𝑘
, 

Eq. 20 

 

see Methods S2 for further details. Again, we employ the SDM-2 approximation (Wang et al. 2014) 

to calculate the daily values for 𝐸𝑐. 

 

Data 

The data used for model calibration are based on measurements from the experimental site 

Rosinedal (64°10′ N, 19°45′ E). The site is a 90-year-old naturally regenerated Scots pine forest, 

regenerated with seed trees in 1920-1925. In 1955, the stand was pre-commercially thinned, 

followed by thinnings in 1976 and 1993. The experiment was established in 2005 and annual  

N fertilization started in 2006 with addition of 100 kg N ha-1 year-1 from 2006 to 2011, and reduced 

to 50 kg N ha-1 year-1 in 2012 (Lim et al. 2015). We used weather data and measured tree dimensions 

from the fertilized and the control stand as input for the model, see Table 1 for a full list of input 

variables and Fig. 2 for a depiction of the weather data time series. Briefly, stem diameter was 

measured at 1.3 m (DBH) annually for all trees in each of the three mensuration stands (1000m2) for 

each treatment stand. Tree height and length of live crown were measured on 20 trees per stand, 

using Vertex 4 Ultrasonic Hypsometer (Haglöf Inc., Sweden). We developed a relationship between 

height and DBH following the recommendation of Näslund (1947); parameters of the function were 

estimated in each year for each stand, and then applied to all individual trees. Based on destructive 

tree harvests in June 2006, October 2012, and October 2018, we developed allometric equations for 

foliage, stem and branch biomass. From 2012 and 2018 harvest samples, subsets of fresh foliage 

samples were scanned and dried to estimate specific leaf area. Biomass of each component was 

predicted based on a combination of the tree dimensions and the developed allometric equations. 

We estimated leaf area index by multiplying foliage biomass and specific leaf area estimates. Model 

outputs were calculated using daily data and validated against the eddy-covariance based ecosystem 
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GPP estimates (Zhao et al. 2022) and 𝐸𝐶  values for the growth periods of 2015-2018. The growing 

seasons was assumed to start when daily mean temperature ≥ 5 °C for five successive days, and end 

when daily mean temperature was < 5 °C for five successive days. The 𝐸𝐶  values are estimated using 

the empirical model from Tor-ngern et al. (2017) with corresponding parameter estimates for the 

study site, provided in that paper. Daily partial pressure of atmospheric CO2 [CO2] was collected from 

Internation Carbon Observatory System (ICOS) tower at Svartberget, 10 km north of the site 

(www.icos-sweden.se). We used Level 1 datasets (basic quality control) and Level 2 datasets (the full 

quality control) at 150 m height. Level 1 was available from 2015 throughout 2020, excepting 2018 

data, while Level 2 was available from 2017. We based our [CO2] input on the Level 1 data with gap-

filling the 2018 missing data using a correlation between level 1 and level 2 for overlapped 

measurement points (2017 and 2020, [CO2] at Level 1 = [CO2] at Level 2 x 0.783 + 781; n = 742 daily 

mean [CO2]). 

 

Parameter estimation 

The set of unknown parameters of the model, 𝜽 (see Table 3 for a full list of estimated parameters) 

that could not be estimated based on measurements were estimated by fitting the model to 

observations. The remaining model parameters were taken from other sources, see Table 2. To 

minimize the effect of data outliers, we assume that model and measurement errors are Laplace 

distributed (Tian et al. 2021), i.e., 𝑦𝑖,𝑗,𝑘 − 𝑀(𝑋𝑗,𝑘, 𝜽)
𝑖,𝑗,𝑘

= 𝑒𝑖,𝑗,𝑘~𝐿𝑎𝑝𝑙𝑎𝑐𝑒(0, 𝑎𝑖 + 𝑏𝑖𝑀(𝜽)𝑖,𝑗,𝑘). 

Here, 𝑦𝑖,𝑗,𝑘 denotes the response variables (the measured variables), 𝑋𝑗,𝑘 are the collection of 

explanatory variables (tree size and climate data). 𝑀 is the model output, 𝑒𝑖,𝑗,𝑘 are the model errors, 

𝐿𝑎𝑝𝑙𝑎𝑐𝑒(𝜇, 𝑏) is the Laplace distribution with location parameter 𝜇 and scale parameter 𝑏 > 0. The 

parameters  𝑎𝑖  and 𝑏𝑖 control the variance of the error distribution and we assume that the scale 

parameter is linear with respect to the model output (Tian et al. 2021). We also use data type 

specific weights, 𝑤𝑖, to weigh the importance of different data types. The subscripts 𝑖, 𝑗, 𝑘 denotes 

the data type (𝐺𝑃𝑃, 𝐸𝐶, or 𝑁𝑚,𝑓), the stand treatment (control or fertilized), and the data index 

(individual observations), respectively. This assumption leads to the following likelihood function,  

 

 𝐿(𝑌|𝜽, 𝒂, 𝒃)

= ∏ ∏ ∏ [
1

2(𝑎𝑖,𝑗 + 𝑏𝑖,𝑗𝑀(𝜽)𝑖,𝑗,𝑘)
exp (−

|𝑒𝑖,𝑗,𝑘|

𝑎𝑖,𝑗 + 𝑏𝑖,𝑗𝑀(𝜽)𝑖,𝑗,𝑘
)]

𝑘𝑗𝑖

𝑤𝑖

. 

 
Eq. 21 

 

In Eq. 21, 𝒂, 𝒃 are collections of 𝑎𝑖  and 𝑏𝑖 values, respectively. The values for 𝑦𝑁𝑚,𝑓,𝑗,𝑘, 𝑎𝑁𝑚,𝑓,𝑗, and 

𝑏𝑁𝑚,𝑓,𝑗 were estimated from data Lim et al. (2015) and the values of  𝑎𝐸𝑐,𝑗 and 𝑏𝐸𝑐,𝑗 were taken from 
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Tian et al. (2021) (Table 2), while 𝑎𝐺𝑃𝑃,𝑗 and 𝑏𝐺𝑃𝑃,𝑗 were estimated in conjunction with the unknown 

model parameters and we used 𝑤𝐸𝐶
= 𝑤𝑁𝑚,𝑓

= 1.0 and 𝑤GPP = 1.5. 

The parameter estimates, (𝜽∗, 𝑎𝐺𝑃𝑃,𝑗
∗, 𝑏𝐺𝑃𝑃,𝑗

∗),  were determined by maximization of the likelihood 

function, i.e., 𝜽∗, 𝑎𝐺𝑃𝑃,𝑗
∗, 𝑏𝐺𝑃𝑃,𝑗

∗ = arg max
𝜃,𝒂,𝒃

𝐿(𝑌|𝜽, 𝑎𝐺𝑃𝑃,𝑗, 𝑏𝐺𝑃𝑃,𝑗). To find the maximum, we 

employed the adaptive differential evolution optimizer, a global optimization algorithm, from the 

BlackBoxOptim.jl package (Feldt 2018).  

 

We performed two parameter estimation and validation cases: One where all the parameters in 

Table 3 are shared between the two stand treatments, i.e., same parameter values were used for 

both treatments, with the exception of 𝑁𝑢 and 𝑘𝑟𝑐,max. Hydraulic conductance per leaf area 

(𝑘𝑟𝑐,max) is known to vary significantly among sites with water and N availability, and our hypothesis 

is that the carbon cost of N uptake (𝑁𝑢) differs between the treatments. In the second case, none of 

the parameters in Table 3 were shared between the two stand treatments, i.e., the parameters were 

estimated separately for the control and fertilized stand. The result of the first case will be shown in 

the Results section and the result of the second case can be viewed in Methods S4 and Fig. S3-Fig. 

S5. 

 

Model testing and validation 

To validate our model, we excluded 20% of the datapoints (119 out of 588 datapoints) to form a 

validation dataset. The validation dataset was generated by randomly selecting datapoints from the 

complete dataset. The remaining datapoints, the training dataset, were used for parameter 

estimation. To minimize the effect of selection bias, we repeated the parameter estimation and 

validation process 10 times for both cases, thus creating 10 random validation and training datasets.    

 

Because the representation of N limitation is a unique aspect of our model, we evaluated the 

impacts of excluding variation in key N variables, leaf N (𝑁𝑚,𝑓) and N uptake costs (𝑁𝑢), on model 

results and performance in terms of the R2 values of GPP and Ec. Three alternative simulations were 

performed by: (i) enforcing constant leaf N concentrations (𝑁𝑚,𝑓) over time, (ii) applying the same 

𝑁𝑚,𝑓 for both fertilization treatments, and (iii) applying the same soil N uptake cost (𝑁𝑢) for both 

treatments. The results were compared to the default model case. We also evaluated the effect of 

removing soil water variation (𝜃), which is another key driving variable. We tested to what degree 

the variability of 𝜃 effects the model predictions by running the model with the parameters from 

Table 2 and Table 3 with static 𝜃 values and comparing to the default case. We choose the static 

value of 𝜃 as the mean of the default 𝜃 time series for both stand treatments.      
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Results 

The model can predict seasonal changes in 𝐺𝑃𝑃 and 𝐸𝐶  

The result for the parameter estimation is depicted in Fig. 3. Estimated parameters are provided in 

Table 3. The R2 in the training set, for the run with the highest likelihood, was 0.71 (𝐺𝑃𝑃) and 0.8 

(𝐸𝐶) for the fertilized stand. The corresponding values for the control were 0.7 (𝐺𝑃𝑃) and 0.79 (𝐸𝐶) 

(Table 4). (error estimates for all 10 runs are depicted in Fig. S1). Overall, our model was able to 

capture the inter-seasonal variation of  𝐺𝑃𝑃 and 𝐸𝑐. However, there is a bias present when 

examining the model residuals (Fig. S2). Specifically, for the estimations of 𝐸𝑐 the model 

overpredicts for lower 𝐸𝑐 and underpredicts for lower values. For  𝐺𝑃𝑃, the model underpredicts for 

higher GPP values. 

 

The effect of soil N availability on 𝐺𝑃𝑃 and 𝐸𝐶  is captured by hydraulic conductance 

per leaf area and the site-specific nitrogen cost 

The summary statistics of the shared and non-shared parameter estimation case showed similar 

predictive performance. For the non-shared parameter case, the R2 was 0.72 (𝐺𝑃𝑃) and 0.81 (𝐸𝐶) for 

the fertilized stand and 0.75 (𝐺𝑃𝑃)  and 0.8 (𝐸𝐶) for the control stand (see Methods S4 and Table 

S2). The result suggests that the difference between the two treatments can be well captured by the 

differences in N acquisition cost (𝑁𝑢) and hydraulic conductivity per leaf area (𝑘sc,max). 𝑁𝑢 (unitless) 

was 0.00 and 0.012 and 𝑘sc,max was 0.57 and 0.67 mmol m⁻² leaf s⁻¹ MPa⁻¹ for the fertilized and 

control treatments, respectively (Table 3). 

 

Environmental drivers of leaf N concentration, stomatal conductance, and water use 

efficiency  

Fig. 4 illustrates the variation in optimal stomatal conductance (𝑔𝑠) and leaf N concentration (𝑁𝑚,𝑓) 

with respect to the weather variables including irradiance (𝐼0), mean ambient temperature (𝑇𝑎), 

vapor pressure deficit (VPD), and soil water content (𝜃). We calculated the Pearson correlation 

coefficients between the plant variables and the weather variables. For 𝑁𝑚,𝑓 the correlation was 

0.01 (P=.81), -0.7 (P<.001), -0.26 (P<.001), and 0.3 (P<.001) for 𝐼0, 𝑇𝑎, VPD, and 𝜃, respectively. For 

𝑔𝑠 the corresponding values were -0.58 (P<.001), -0.43 (P<.001), -0.78 (P<.001), and 0.32 (P<.001). 

The result indicates that the optimal value of 𝑁𝑚,𝑓 mostly respond to changes in 𝑇𝑎, whereas 𝑔𝑠, 
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responds mostly to the change in VPD and 𝐼0. Correlation values shown here are for the fertilized 

stand. The control showed similar results and these values can be viewed in Table S3.   

 

The response of water use efficiency, wue = GPP/𝐸𝑐, to meteorological variables 𝐼0,𝑇𝑎,  VPD, and 𝜃 

are shown in Fig. 4; here, GPP reference to the gross primary production of canopy vegetation. The 

correlation coefficients between wue and meteorological variables were -0.32 (P<.001), -0.51 

(P<.001), -0.61 (P<.001), and 0.16 (P<.001) for 𝐼0, 𝑇𝑎,  VPD, and 𝜃, respectively. From the correlation 

values and Fig. 4 we see that wue responds similarly to the various weather variables as 𝑔𝑠. In 

contrast, the wue response showed little resemblance to the weather response of 𝑁𝑚,𝑓, indicating 

that wue is mainly influenced by 𝑔𝑠. 

 

The importance of nitrogen- and soil water limitations for model results 

The effects of variability in leaf N (𝑁𝑚,𝑓) and N uptake costs (𝑁𝑢) did not exhibit strong impacts on 

the model ’s ability to predict the observed GPP and 𝐸𝑐 variation. The use of a static 𝑁𝑚,𝑓 value 

instead of a dynamically optimized and the use of equal 𝑁𝑚,𝑓 or 𝑁𝑢 in both treatments, all had 

minimal impacts on the model’s fit to GPP and 𝐸𝑐  observations (Table S4 and Table S6). However, 

applying the same 𝑁𝑢 in both treatments (𝑁𝑢 = 0.006) shifted the modelled mean 𝑁𝑚,𝑓 values to 

1.5% in both treatments, which diverges strongly from the observed values (1.94% for the fertilized 

stand and 1.16% for the control, Lim et al. 2015). The use of static soil water content (𝜃) had 

negligible impact on the model’s ability to predict observed  GPP and 𝐸𝑐 (Table S5).  

 

Discussion and conclusions 

Model scope and limitations 

Our model estimates canopy transpiration (𝐸𝑐) and GPP, based on optimal acclimation of stomatal 

conductance and leaf nitrogen (N) concentration. The model can, for the most part, accurately 

predict observed inter- and intra-seasonal variation of 𝐸𝑐 and GPP at the two study sites (Fig. 3), 

although there is a moderate bias in the estimations of 𝐸𝑐 and underprediction of 𝐺𝑃𝑃 for higher 

𝐺𝑃𝑃 data values (Fig. S2). An exception is the growing season of 2018, where the site was hit by a 

severe drought period with very high VPD and low soil water in the middle of the growing season 

(Fig. 2). During two weeks in this period the model somewhat underestimates GPP and 𝐸𝑐 for both 

the fertilized stand and the control, indicating an exaggerated reduction of stomatal conductance. 

This divergence may be caused by an underestimation of the actual soil water content available to 

the trees since soil water was measured at a maximum depth of 50 cm and the trees may have 
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deeper roots. Rooting depth of these trees have not been measured but Scots pine often have tap 

roots extending much deeper than 50 cm (Martinsson 1986). 

 

Our results demonstrate that the effect of fertilization can be captured by adjustments in only two 

parameters: maximum soil-to-canopy hydraulic conductance per leaf area, 𝑘sc,max, and the site-

specific N acquisition cost parameter, 𝑁𝑢. The current version of the model predicts GPP and 

transpiration for trees with a given LAI and potential hydraulic conductivity per LAI (𝑘sc,max). As 

such, it is naturally unable to predict dynamics of these properties, which could be addressed in 

future versions of the model (see Conclusions and Outlook, below).  

 

The impact of increased soil nitrogen availability. 

The difference between our model and the previous models by Eller et al. (2018) and Prentice et al. 

(2014) is that we do not only account for optimal stomatal response but also optimize leaf N 

concentration. Another recent model that allows optimization of stomatal conductance and 𝐽max, 

which is functionally equivalent to our optimization of leaf N, is the model by Joshi et al. (2022). 

However, this model has a different hydraulic cost function and, more importantly, does not address 

variation in the cost of N uptake related to soil N availability.  

 

Our model allows us to account for the response to increased soil N availability. In agreement with 

our model predictions, it has been observed that increased soil N availability results in increased leaf 

N concentration (Lim et al. 2015, Tarvainen et al. 2016). This, in turn, has a positive impact on the 

potential photosynthetic capacity and the 𝐽max in our model. The model results suggest that the 

fertilization treatment radically reduced the trees’ C cost for N uptake (the unitless cost parameter 

𝑁𝑢) from 0.012 to 0.0. However, without further empirical evidence, the zero cost of N uptake 

should be interpreted with care, rather as being too low to be separated from other costs by the 

model analysis than as an absolute zero value. Nevertheless, the large difference in N uptake costs 

agrees with the concurrent observed difference in C allocation to the components contributing to N 

uptake: fine-root, mycorrhiza, and exudates production (Marshall et al. 2023). The low-cost uptake 

of N may be possible via mass flow of dissolved N in water uptake, which can be the dominant 

process of N uptake in fertilized conditions (Oyewole et al. 2017, McMurtrie and Näsholm 2018, 

Henriksson et al. 2021) where the chemical profile of soil N is biased towards mineral forms 

(ammonium and nitrate, Inselsbacher et al. 2014) that are mobile in the soil solution. This effect may 

have been further enhanced by higher soil water in the fertilized stand related a higher field capacity 

and more organic matter than in the control stand (Tian et al. 2021). Other than fertilized soils, this 
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may occur under specific conditions where soil nitrification rates are high. In contrast, the control 

stand represents a more common boreal forest soil profile, where N is present mainly in organic and 

less mobile forms which drive up the N acquisition cost. 

 

Besides the decrease in 𝑁𝑢, we also get an increase in LAI in the fertilized stand. Because the 

sapwood cross sectional area has not increased to the same extent, we get a 12% lower Huber value 

(sapwood area / leaf area) in the fertilized compared with the control stand (calculated from field 

measurements). This contributes to the estimated 15% decrease in estimated conductivity per leaf 

area (𝑘𝑠𝑐,max) in the fertilized stand. These results may reflect an optimality response to a lower cost 

of N uptake and thus lower cost of leaf area. 

 

Given the novel representation of N limitation in our model, a relevant question is how important is 

N limitation for accurate GPP modeling? Based on the negligible impacts on the model’s ability to 

reproduce measured GPP and  𝐸𝑐 of removing temporal- and treatment differences in leaf N (Table 

S4) it may appear unimportant. The same result is also found for temporal variation in soil water 

content 𝜃 (Table S5), which is not too surprising since Fig. 4 showed low correlation between 𝜃 and 

𝑔𝑠 as well as 𝜃 and 𝑁𝑚,𝑓. 

However, these results are not necessarily evidence of irrelevance of the N-related variables but 

rather a lack of observational constraints. As the model is calibrated to reproduce observed GPP and 

𝐸𝑐 only, it can compensate for lacking effects of N or soil water by adjustments of parameters, even 

though they may have side effects on other processes and variables that are not constrained by 

observations. This is obvious from the results of applying the same N uptake cost in both treatments 

– it does not deteriorate the GPP and 𝐸𝑐 predictions (Table S6) but it leads to unrealistic leaf N 

concentrations. Thus, additional data, such as observations of seasonal variation in leaf N, would be 

valuable for better quantification of the importance of N limitation in our GPP modelling approach.   

 

The responses of leaf variables and water use efficiency to weather variables 

Based on our results, we can infer that the optimal leaf N concentration (𝑁𝑚,𝑓) is negatively 

correlated with temperature (Fig. 4). This is in line with empirical observations for Scots pine (Zha et 

al. 2002), understory evergreen plants (Muller et al. 2011), and a global biogeographic pattern of 

different plant species (Reich and Oleksyn 2004). This is caused by the shape of the C assimilation 

curve and the cost of maintaining 𝐽max as a function of 𝑁𝑚,𝑓. The optimum 𝑁𝑚,𝑓 will occur when the 

slope of the C assimilation function is equal to the slope of the cost line. When the temperature 

increases, the slope of the cost line increases more than the C assimilation curve, and thus the 
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optimal 𝑁𝑚,𝑓 will decrease (Fig. S8). This temperature effect further implies that the leaf N content 

should decrease with higher temperatures in the middle of the growth season (see Fig. S7). Because 

the model only accounts for photosynthetic N but no other forms (e.g., N for structural purposes or 

storage) that may respond differently, it probably overestimates the seasonal N variation. 

Furthermore, the model does not consider seasonal dynamics in the vertical N distribution in the 

canopy. Nevertheless, qualitatively similar seasonal variation has been observed in a nearby boreal 

Scots pine forest (Näsholm and Ericsson 1990) as well as a temperate Scots pine forest (Wyka et al. 

2016). 

 

As expected, we found that stomatal 𝑔𝑠 correlated best with VPD. A high VPD leads to an increase 

in water loss and negative water potential for a fixed value of 𝑔𝑠. Thus, 𝑔𝑠 is reduced in response to 

rising VPD, in order to reduce the hydraulic risk cost. Our results (Fig. 4) further show that the 

stomatal  𝑔𝑠 is negatively correlated to the above canopy photosynthetic active radiance (𝐼0). 

However, this correlation does not correspond to a direct relationship but reflects a correlation 

between VPD and 𝐼0 and confounding variation in other drivers, which was confirmed by running 

the model with fixed weather variables (except for 𝐼0) (Fig. S9). Furthermore, we found that the 

response of wue to the environmental variables closely follows that of 𝑔𝑠 (Fig. 4). Thus, wue is more 

strongly correlated to 𝑔𝑠 than 𝑁𝑚,𝑓, which is not surprising as water used as transpiration is directly 

regulated by 𝑔𝑠. In all cases, soil water content (𝜃) had a small impact on 𝑔𝑠, 𝑁𝑚,𝑓, and wue when 𝜃 

is large (approximately 𝜃 > 25% for the fertilized stand and  𝜃 > 15% for the control stand). For 

lower soil water content, a decrease in 𝜃 leads to decreases in 𝑔𝑠,top, 𝑁𝑚,𝑓,top, and wue, driving the 

observed positive correlation between 𝜃 and the plant variables and process rates. The difference 

between high and low 𝜃 is caused by the monotonically decreasing concave down shape of the 

vulnerability function, 𝑃(𝜓). For low values of 𝜃 (highly negative soil water potential, 𝜓𝑠), the 

increase in cost associated with small changes in plant variables (the derivative of the cost with 

respect to the plant variables) is larger than for higher 𝜃.  

 

In summary, while both 𝑔𝑠 and 𝑁𝑚,𝑓 correlated well with different weather variables there is no 

significant correlation between the two plant variables (Pearson correlation = 0.014, p = 0.73 for the 

fertilized stand and 0.00072, p = 0.99 for the control stand, Fig. S6). This implies that 𝑔𝑠 and 𝑁𝑚,𝑓 

mostly respond to different meteorological variables. 𝑔𝑠 responds strongly to irradiance and VPD, 

while 𝑁𝑚,𝑓 responds strongly to the ambient temperature.  
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Outlook 

The key scientific advancement made by this improved model lies in its ability to explain, and 

accurately predict the interacting effects of climate, soil water availability, and soil N availability on 

GPP and transpiration, based on an eco-evolutionary optimality principle (EEO), i.e., optimization 

based on eco-evolutionary theory. This capacity makes the model well suited for studying the impact 

of climate change in N limited boreal forests. Also, the effects of changes in soil N availability such as 

fertilization practices and N deposition can be studied by our model. However, one has to be careful 

when applying the model to severe drought conditions as it does not yet account for accumulation 

of hydraulic damages (Franklin et al. 2023). A challenge in applying our proposed model to other 

stands is the estimation of the carbon cost of nitrogen uptake, 𝑁𝑢. In future studies this parameter 

could be estimated for different experimental stands and statistically linked to soil conditions at the 

stands, such as a nutrient limitation index (Van Sundert et al. 2020). The resulting relationships can 

then be used to model 𝑁𝑢 at other sites. To address long-term effects on forest growth, the model 

can be extended with the capacity to predict carbon allocation to the different plant organs, such as 

branches, fine root, stem, and leaves. To this end, our model could be coupled with allocation 

models based on similar EEO principles (e.g., Franklin et al., 2012 and Fransson et al., 2021).  

 

Acknowledgement 

The study site Rosinedal is part of the Swedish Infrastructure for Ecosystem Science (SITES) and 

financial support from the Swedish Research Council (VR) and contributing research institutes to 

SITES are acknowledged. O.F. was supported by Knut & Alice Wallenberg Stiftelse (Project Future 

Silviculture, Grant 2018.0259). 

Author contributions 

O.F. and P.F conceived the study and formulated the model. P.F. implemented and analyzed the 

model, and wrote the first draft of the manuscript. H.L. provided biometric data, P.Z. and M.P. 

provided the eddy covariance data. All authors discussed the results and implications and revised 

the manuscript.  

 

D
ow

nloaded from
 https://academ

ic.oup.com
/treephys/advance-article/doi/10.1093/treephys/tpae168/7950994 by guest on 13 January 2025



U
N

CO
RRE

CTE
D

 M
A
N

U
SC

RIP
T

21 
 

Funding 

Knut and Alice Wallenberg Foundation [Grant 2018.0259]; FORMAS [grant number 2020-02319] to 

H.L.; National Research Council of Thailand (NRCT) and Chulalongkorn University [N42A660392] and 

the Thailand Research and Innovation Fund Chulalongkorn University to P.T. 

Conflict of interest  

None declared. 

Data and Materials Availability 

The code for the model is available on GitHub at https://github.com/PeterFransson/CCPH.jl, while 

the scripts and data used for fitting the model and running simulations can be found at 

https://github.com/PeterFransson/CCPH_Project.   

References 

Aguade D, Poyatos R, Gomez M, Oliva J, Martinez-Vilalta J (2015) The role of defoliation and root rot 

pathogen infection in driving the mode of drought-related physiological decline in Scots pine 

(Pinus sylvestris L.). Tree Physiol 35:229–242. https://academic.oup.com/treephys/article-

lookup/doi/10.1093/treephys/tpv005 

Alduchov OA, Eskridge RE (1996) Improved Magnus Form Approximation of Saturation Vapor 

Pressure. Journal of Applied Meteorology 35:601–609. 

Anderegg WRL, Wolf A, Arango-Velez A, Choat B, Chmura DJ, Jansen S, Kolb T, Li S, Meinzer FC, Pita 

P, Resco de Dios V, Sperry JS, Wolfe BT, Pacala S (2018) Woody plants optimise stomatal 

behaviour relative to hydraulic risk. Ecol Lett 21:968–977. 

Ball JT, Woodrow IE, Berry JA (1987) A Model Predicting Stomatal Conductance and its Contribution 

to the Control of Photosynthesis under Different Environmental Conditions. In: Progress in 

Photosynthesis Research. 

Binkley D, Högberg P (2016) Tamm Review: Revisiting the influence of nitrogen deposition on 

Swedish forests. For Ecol Manage 368:222–239. 

Chen JL, Reynolds JF, Harley PC, Tenhunen JD (1993) Coordination theory of leaf nitrogen 

distribution in a canopy. Oecologia 93:63–69. 

Chi J, Zhao P, Klosterhalfen A, Jocher G, Kljun N, Nilsson MB, Peichl M (2021) Forest floor fluxes drive 

differences in the carbon balance of contrasting boreal forest stands. Agric For Meteorol 306 

Cowan IR, Farquhar GD (1977) Stomatal function in relation to leaf metabolism and environment. 

Symp Soc Exp Biol 31 

D
ow

nloaded from
 https://academ

ic.oup.com
/treephys/advance-article/doi/10.1093/treephys/tpae168/7950994 by guest on 13 January 2025

https://github.com/PeterFransson/CCPH.jl
https://github.com/PeterFransson/CCPH_Project


U
N

CO
RRE

CTE
D

 M
A
N

U
SC

RIP
T

22 
 

Eller CB, Rowland L, Oliveira RS, Bittencourt PRL, Barros F V., Da Costa ACL, Meir P, Friend AD, 

Mencuccini M, Sitch S, Cox P (2018) Modelling tropical forest responses to drought and El Niño 

with a stomatal optimization model based on xylem hydraulics. Philosophical Transactions of 

the Royal Society B: Biological Sciences 373 

Farquhar GD, von Caemmerer S (1982) Modelling of Photosynthetic Response to Environmental 

Conditions. In: Physiological Plant Ecology II. 

Farquhar GD, von Caemmerer S, Berry JA (1980) A biochemical model of photosynthetic CO2 

assimilation in leaves of C3 species. Planta 149:78–90. 

https://link.springer.com/article/10.1007/BF00386231%0Apapers3://publication/doi/10.1007/

BF00386231 

Feldt R (2018) BlackBoxOptim.jl. GitHub repository 

Flo V, Joshi J, Sabot M, Sandoval D, Prentice IC (2023) Incorporating photosynthetic acclimation 

improves stomatal optimisation models. bioRxiv 

Franklin O (2007) Optimal nitrogen allocation controls tree responses to elevated CO 2. New 

Phytologist 174:811–822. 

Franklin O, Fransson P, Hofhansl F, Jansen S, Joshi J (2023) Optimal balancing of xylem efficiency and 

safety explains plant vulnerability to drought. Ecol Lett 26 

Franklin O, Johansson J, Dewar RC, Dieckmann U, McMurtrie RE, Brännström Å, Dybzinski R (2012) 

Modeling carbon allocation in trees: A search for principles. Tree Physiol 32:648–666. 

Fransson P, Brännström Å, Franklin O (2021) A tree’s quest for light-optimal height and diameter 

growth under a shading canopy. Tree Physiol 41:1–11. 

Friend AD (1991) Use of a model of photosynthesis and leaf microenvironment to predict optimal 

stomatal conductance and leaf nitrogen partitioning. Plant Cell Environ 14 

Hari P, Mäkelä A (2003) Annual pattern of photosynthesis in Scots pine in the boreal zone. Tree 

Physiol 23:145–155. 

Henriksson N, Lim H, Marshall J, Franklin O, McMurtrie RE, Lutter R, Magh R, Lundmark T, Näsholm T 

(2021) Tree water uptake enhances nitrogen acquisition in a fertilized boreal forest – but not 

under nitrogen-poor conditions. New Phytologist 232 

Högberg P, Näsholm T, Franklin O, Högberg MN (2017) Tamm Review: On the nature of the nitrogen 

limitation to plant growth in Fennoscandian boreal forests. For Ecol Manage 403 

Inselsbacher E, Oyewole OA, Näsholm T (2014) Early season dynamics of soil nitrogen fluxes in 

fertilized and unfertilized boreal forests. Soil Biol Biochem 74:167–176. 

IPCC (2014) IPCC Fifth Assessment Synthesis Report-Climate Change 2014 Synthesis Report. IPCC 

Fifth Assessment Synthesis Report-Climate Change 2014 Synthesis Report 

D
ow

nloaded from
 https://academ

ic.oup.com
/treephys/advance-article/doi/10.1093/treephys/tpae168/7950994 by guest on 13 January 2025



U
N

CO
RRE

CTE
D

 M
A
N

U
SC

RIP
T

23 
 

Jansson P-E, Karlberg L (2011) Coupled Heat and Mass Transfer Model for Soil-Plant-Atmosphere 

Systems. Stockholm, Sweden. 

Jenkins A (2013) The Sun’s position in the sky. Eur J Phys 34:633–652. 

Joshi J, Stocker BD, Hofhansl F, Zhou S, Dieckmann U, Prentice IC (2022) Towards a unified theory of 

plant photosynthesis and hydraulics. Nat Plants 8:1304–1316. 

K Mogensen P, N Riseth A (2018) Optim: A mathematical optimization package for Julia. J Open 

Source Softw 3:615. 

Kellomäki S, Wang KY (1997) Photosynthetic responses of Scots pine to elevated CO2 and nitrogen 

supply: Results of a branch-in-bag experiment. Tree Physiol 17 

Landsberg JJ, Sands P (2010) Physiological ecology of forest production: principles, processes and 

models. Academic Press. 

Liang X, Ye Q, Liu H, Brodribb TJ (2021) Wood density predicts mortality threshold for diverse trees. 

New Phytologist 229 

Lim H, Oren R, Palmroth S, Tor-ngern P, Mörling T, Näsholm T, Lundmark T, Helmisaari HS, 

Leppälammi-Kujansuu J, Linder S (2015) Inter-annual variability of precipitation constrains the 

production response of boreal Pinus sylvestris to nitrogen fertilization. For Ecol Manage 

348:31–45. http://dx.doi.org/10.1016/j.foreco.2015.03.029 

Maire V, Martre P, Kattge J, Gastal F, Esser G, Fontaine S, Soussana JF (2012) The coordination of leaf 

photosynthesis links C and N fluxes in C3 plant species. PLoS One 7 

Mäkelä A, Hari P, Berninger F, Hänninen H, Nikinmaa E (2004) Acclimation of photosynthetic capacity 

in Scots pine to the annual cycle of temperature. Tree Physiol 24:369–376. 

Mäkelä A, Pulkkinen M, Kolari P, Lagergren F, Berbigier P, Lindroth A, Loustau D, Nikinmaa E, Vesala 

T, Hari P (2008) Developing an empirical model of stand GPP with the LUE approach: Analysis of 

eddy covariance data at five contrasting conifer sites in Europe. Glob Chang Biol 14:92–108. 

Marshall JD, Tarvainen L, Zhao P, Lim H, Wallin G, Näsholm T, Lundmark T, Linder S, Peichl M (2023) 

Components explain, but do eddy fluxes constrain? Carbon budget of a nitrogen-fertilized 

boreal Scots pine forest. New Phytologist 239 

Martinsson O (1986) Tap root formation and early root/shoot ratio of pinus contorta and pinus 

sylvestris. Scand J For Res 1 

McDowell N, Pockman WT, Allen CD, Breshears DD, Cobb N, Kolb T, Plaut J, Sperry J, West A, 

Williams DG, Yepez EA (2008) Mechanisms of plant survival and mortality during drought: Why 

do some plants survive while others succumb to drought? New Phytologist 178 

McMurtrie RE, Näsholm T (2018) Quantifying the contribution of mass flow to nitrogen acquisition 

by an individual plant root. New Phytologist 218:119–130. 

D
ow

nloaded from
 https://academ

ic.oup.com
/treephys/advance-article/doi/10.1093/treephys/tpae168/7950994 by guest on 13 January 2025



U
N

CO
RRE

CTE
D

 M
A
N

U
SC

RIP
T

24 
 

Muller O, Hirose T, Werger MJA, Hikosaka K (2011) Optimal use of leaf nitrogen explains seasonal 

changes in leaf nitrogen content of an understorey evergreen shrub. Ann Bot 108:529–536. 

https://academic.oup.com/aob/article-lookup/doi/10.1093/aob/mcr167 

Näsholm T, Ericsson A (1990) Seasonal changes in amino acids, protein and total nitrogen in needles 

of fertilized Scots pine trees. Tree Physiol 6:267–281. 

https://academic.oup.com/treephys/article-lookup/doi/10.1093/treephys/6.3.267 

Näslund M (1947) Empirical formulae and tables for determining the volume of standing trees: Scots 

pine, Norway spruce and birch in southern Sweden and in the whole of the country. 

Meddelanden Fran Statens Skogsforskningsinstitut, 36, 81 (in Swedish) 

Oyewole OA, Näsholm T, Jämtgård S, Näsholm T, Inselsbacher E (2017) Incorporating mass flow 

strongly promotes N flux rates in boreal forest soils. Soil Biol Biochem 114 

Prentice IC, Dong N, Gleason SM, Maire V, Wright IJ (2014) Balancing the costs of carbon gain and 

water transport: Testing a new theoretical framework for plant functional ecology. Ecol Lett 

17:82–91. 

Reich PB, Oleksyn J (2004) Global patterns of plant leaf N and P in relation to temperature and 

latitude. www.worldclimate.com 

Ryan MG (2011) Tree responses to drought. Tree Physiol 31:237–239. 

https://academic.oup.com/treephys/article-lookup/doi/10.1093/treephys/tpr022 

Sabot MEB, De Kauwe MG, Pitman AJ, Ellsworth DS, Medlyn BE, Caldararu S, Zaehle S, Crous KY, 

Gimeno TE, Wujeska‐Klause A, Mu M, Yang J (2022a) Predicting resilience through the lens of 

competing adjustments to vegetation function. Plant Cell Environ 45:2744–2761. 

https://onlinelibrary.wiley.com/doi/10.1111/pce.14376 

Sabot MEB, De Kauwe MG, Pitman AJ, Medlyn BE, Ellsworth DS, Martin-StPaul NK, Wu J, Choat B, 

Limousin JM, Mitchell PJ, Rogers A, Serbin SP (2022b) One Stomatal Model to Rule Them All? 

Toward Improved Representation of Carbon and Water Exchange in Global Models. J Adv 

Model Earth Syst 14 

Sage RF, Kubien DS (2007) The temperature response of C(3) and C(4) photosynthesis. Plant Cell 

Environ 30:1086–106. http://www.ncbi.nlm.nih.gov/pubmed/17661749 

Smith NG, Keenan TF, Colin Prentice I, Wang H, Wright IJ, Niinemets Ü, Crous KY, Domingues TF, 

Guerrieri R, Yoko Ishida F, Kattge J, Kruger EL, Maire V, Rogers A, Serbin SP, Tarvainen L, 

Togashi HF, Townsend PA, Wang M, Weerasinghe LK, Zhou SX (2019) Global photosynthetic 

capacity is optimized to the environment. Ecol Lett 22 

Sperry JS, Love DM (2015) What plant hydraulics can tell us about responses to climate‐change 

droughts. New Phytologist 207:14–27. https://onlinelibrary.wiley.com/doi/10.1111/nph.13354 

D
ow

nloaded from
 https://academ

ic.oup.com
/treephys/advance-article/doi/10.1093/treephys/tpae168/7950994 by guest on 13 January 2025



U
N

CO
RRE

CTE
D

 M
A
N

U
SC

RIP
T

25 
 

Sperry JS, Venturas MD, Anderegg WRL, Mencuccini M, Mackay DS, Wang Y, Love DM (2017) 

Predicting stomatal responses to the environment from the optimization of photosynthetic 

gain and hydraulic cost. Plant Cell Environ 40:816–830. 

Van Sundert K, Radujković D, Cools N, De Vos B, Etzold S, Fernández-Martínez M, Janssens IA, Merilä 

P, Peñuelas J, Sardans J, Stendahl J, Terrer C, Vicca S (2020) Towards comparable assessment of 

the soil nutrient status across scales—Review and development of nutrient metrics. Glob 

Chang Biol 26 

Tamm CO (1991) Nitrogen in terrestrial ecosystems: questions of productivity, vegetational changes, 

and ecosystem stability. Springer Science & Business Media, Berlin. 

Tarvainen L, Lutz M, Räntfors M, Näsholm T, Wallin G (2016) Increased needle nitrogen contents did 

not improve shoot photosynthetic performance of mature nitrogen-poor scots pine trees. 

Front Plant Sci 7 

Tarvainen L, Lutz M, Räntfors M, Näsholm T, Wallin G (2018) Temperature responses of 

photosynthetic capacity parameters were not affected by foliar nitrogen content in mature 

Pinus sylvestris. Physiol Plant 162:370–378. 

Tian X, Minunno F, Schiestl-Aalto P, Chi J, Zhao P, Peichl M, Marshall J, Näsholm T, Lim H, Peltoniemi 

M, Linder S, Mäkelä A (2021) Disaggregating the effects of nitrogen addition on gross primary 

production in a boreal Scots pine forest. Agric For Meteorol 301–302 

Tor‐ngern P, Oren R, Oishi AC, Uebelherr JM, Palmroth S, Tarvainen L, Ottosson‐Löfvenius M, Linder 

S, Domec J, Näsholm T (2017) Ecophysiological variation of transpiration of pine forests: 

synthesis of new and published results. Ecological Applications 27:118–133. 

https://esajournals.onlinelibrary.wiley.com/doi/10.1002/eap.1423 

Wang H, Atkin OK, Keenan TF, Smith NG, Wright IJ, Bloomfield KJ, Kattge J, Reich PB, Prentice IC 

(2020) Acclimation of leaf respiration consistent with optimal photosynthetic capacity. Glob 

Chang Biol 26 

Wang F, Gonsamo A, Chen JM, Black TA, Zhou B (2014) Instantaneous-to-daily GPP upscaling 

schemes based on a coupled photosynthesis-stomatal conductance model: correcting the 

overestimation of GPP by directly using daily average meteorological inputs. Oecologia 

176:703–714. http://link.springer.com/10.1007/s00442-014-3059-7 

Wang H, Prentice IC, Keenan TF, Davis TW, Wright IJ, Cornwell WK, Evans BJ, Peng C (2017) Towards 

a universal model for carbon dioxide uptake by plants. Nat Plants 3:734–741. 

Wolf A, Anderegg WRL, Pacala SW (2016) Optimal stomatal behavior with competition for water and 

risk of hydraulic impairment. Proc Natl Acad Sci U S A 113:E7222–E7230. 

D
ow

nloaded from
 https://academ

ic.oup.com
/treephys/advance-article/doi/10.1093/treephys/tpae168/7950994 by guest on 13 January 2025



U
N

CO
RRE

CTE
D

 M
A
N

U
SC

RIP
T

26 
 

Wyka TP, Żytkowiak R, Oleksyn J (2016) Seasonal dynamics of nitrogen level and gas exchange in 

different cohorts of Scots pine needles: a conflict between nitrogen mobilization and 

photosynthesis? Eur J For Res 135:483–493. http://link.springer.com/10.1007/s10342-016-

0947-x 

Zha T, Wang K-Y, Ryyppo A, Kellomaki S (2002) Needle dark respiration in relation to within-crown 

position in Scots pine trees grown in long-term elevation of CO2 concentration and 

temperature. New Phytologist 156:33–41. http://doi.wiley.com/10.1046/j.1469-

8137.2002.00488.x 

Zhao P, Chi J, Nilsson MB, Löfvenius MO, Högberg P, Jocher G, Lim H, Mäkelä A, Marshall J, Ratcliffe 

J, Tian X, Näsholm T, Lundmark T, Linder S, Peichl M (2022) Long-term nitrogen addition raises 

the annual carbon sink of a boreal forest to a new steady-state. Agric For Meteorol 

324:109112. 

  

List of figures 

 

Fig. 1 The model is composed of four main modules: Leaf level photosynthesis model (LPM), hydraulic model (HM), objective 
function (OF), and upscaling module (UM). These modules are accompanied by an optimization routine (OR). To run the 
model, the following inputs are required:  ambient air temperature (𝑇𝑎), above canopy photosynthetic active radiance (𝐼0), 
ambient carbon dioxide partial pressure (𝐶𝑎), vapor pressure deficit (𝑉𝑃𝐷), soil volumetric water content (𝜃), daylight hours 
(∆𝑡𝑔), canopy height (𝐻), and stand leaf area index (𝐿𝐴𝐼). OR is used to determine the value of the plant variables, stomatal 

conductance (𝑔𝑠) and mass-based foliage nitrogen concentration (𝑁𝑚,𝑓) of a leaf situated at the canopy top, by maximizing 

the trait performance measure (𝐺). 𝐺 is determined by OF with soil-canopy conductance (𝑘𝑠𝑐), carbon assimilation (𝐴) and 
potential rate of electron transport (𝐽𝑚𝑎𝑥) as input. 𝐴 and 𝐽𝑚𝑎𝑥 are calculated by LPM with 𝑇𝑎,  𝐼0, 𝐶𝑎, 𝑉𝑃𝐷, 𝑔𝑠, 𝑁𝑚,𝑓 as 

inputs. 𝑘𝑠𝑐  is calculated by HM with 𝑉𝑃𝐷, 𝜃, 𝐻, and 𝑔𝑠 as inputs. Once an optimum is found, UM upscales leaf-level values 
to stand-level and we get the model output: per ground area canopy gross primary production (𝐺𝑃𝑃), and canopy 
transpiration (𝐸𝐶). 
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Fig. 2 Weather data for the fertilized (F) and control (C) stand at the experimental site Rosinedal during the growth period 
between 2015-2018. Climate drivers: daylight hours (∆𝑡𝑔) (a), ambient air temperature (𝑇𝑎) (daily max, red curve, daily min, 

green curve, and daily mean, blue curve) (b), daily photosynthetic active radiance (𝐼0) (c), vapor pressure deficit (𝑉𝑃𝐷) (d), 
soil volumetric water content (𝜃) of the fertilized stand (F) and the control (C) (e), ambient carbon dioxide partial pressure 
(𝐶𝑎) (f). These values were used as input for our model. 
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Fig. 3 Result from the parameter estimation case when most of the parameters are shared between the two stands, 
fertilized (a-b) and control (c-d). (a) and (c), and (b) and (d) depicts the data against the corresponding simulated values for 
ecosystem gross primary production (𝐺𝑃𝑃)  and canopy transpiration (𝐸𝐶), respectively. The 95% confidence interval of the 
fitted Laplace distribution (see Parameter estimation section) is depicted by the shaded area. 
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Fig. 4 Response of the optimal, stomatal conductance (𝑔𝑠 , first row), leaf mass-based N concentration (𝑁𝑚,𝑓, second row), 

and water use efficiency (𝑊𝑈𝐸)  to change in weather variables: above canopy photosynthetic active radiance (𝐼0, first 
column), mean ambient air temperature (𝑇𝑎, second column), vapor pressure deficit (𝑉𝑃𝐷, third column), and soil water 
content (𝜃, fourth column). The blue circles correspond to the optimal trait values for the fertilized stand (F) and orange 
circles correspond to the control stand (C). Correlation values between traits and weather variables can be found in Table 
S3. The figure was generated by applying the model to the environmental data (Fig. 2), using parameters from Table 2 and 
Table 3.   
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