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A dataset of structural breaks 
in greenhouse gas emissions for 
climate policy evaluation
Talis Tebecis1 & Jesus Crespo Cuaresma   1,2,3 ✉

The quantitative assessment of policies aimed at climate change mitigation requires rigorously 
identifying abnormal changes in greenhouse gas emissions. We present a new dataset of robust 
level changes in greenhouse gas emissions that cannot be explained by aggregate socioeconomic 
fluctuations. Modern methods of structural break identification based on two-way fixed effects models 
are employed to estimate the size of significant level changes in emissions. The resulting dataset spans 
information for all major greenhouse gases in OECD countries across 37 IPCC sectors, from 1995 to 
2022. The data unveils large differences in abnormal changes in emissions across gases, countries and 
sectors, as well as over time. Our resulting data can be applied to a broad range of research questions, 
including the analysis of the comparative efficacy of policy instruments to mitigate climate change.

Background & Summary
Purpose of the study.  We provide a comprehensive dataset of structural breaks in greenhouse gas (GHG) 
emissions for all countries in the Organisation for Economic Co-operation and Development (OECD) between 
1995 and 20221. Structural breaks refer to persistent step changes in GHG emissions that are not accounted for 
by economic, demographic or technological development. Having controlled for these main determinants of 
emissions, we seek to isolate the persistent increases or decreases in GHG emissions that are likely attributable to 
policy or institutional changes. The policy and institutional changes associated with the largest (negative) struc-
tural breaks can thus be considered to be the most effective at having reduced emissions. This dataset serves as a 
resource for the systematic and comparative evaluation of the effects of (climate) policies on GHG emissions, and 
thus the effectiveness of national and supranational mitigation efforts.

Traditional policy evaluation techniques follow a forward causal approach. Typically, a researcher selects 
a policy of interest, then seeks to isolate the effect of that policy, controlling for other socioeconomic deter-
minants of the outcome variable. A common statistical method used in such traditional approaches is 
difference-in-difference (DID) estimation. The forward causal approach requires that policies of interest are 
selected ex ante, and then these policies tend to be evaluated in isolation. This risks omitting potentially bene-
ficial but overlooked policies, and it means that policy mixes may be ignored through attempting to isolate the 
impact of only single policies.

The dataset presented here can be used as the basis for reverse causal policy evaluation, which first identifies 
significant changes in emissions, then attributes these “effects” to “causes,” typically policies2. The reverse causal 
approach employs an extension of the DID estimator to systematically identify structural breaks in GHG emis-
sions that can possibly be attributed to policies that were implemented in a period around the break date, as has 
already been done in a number of studies with more constrained coverage than that provided by our data3–6. 
Existing studies have primarily explored carbon dioxide emissions, which is only one of the major contributors 
to anthropogenic GHG emissions. Most of these studies have also been limited in their geographic scope and sec-
toral coverage. As such, as compared to existing efforts6, we provide a dataset covering structural breaks in emis-
sions at a very high level of sectoral granularity for not only carbon dioxide emissions, but for all major GHGs.

Study overview.  Our study provides a comprehensive dataset of structural breaks in GHG emissions for all 
OECD countries in 1995–2022 for all major GHGs across all sectors, excluding land use, land use change and 
forestry (LULUCF). We use inputs on all the gases that are reported under the common reporting format of the 
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United Nations Framework Convention on Climate Change (UNFCCC): carbon dioxide (CO2), methane (CH4), 
nitrous oxide (N2O) and fluorinated greenhouse gases (F-gases)7. We thus cover emissions from 23 different 
gases, including 19 F-gases, as well as an aggregate of all GHGs in terms of CO2 equivalents (CO2-e) based on their 
100-year global warming potential (GWP). Emissions are disaggregated into 37 categories consistent with the 
2006 Intergovernmental Panel on Climate Change (IPCC) guidelines for national greenhouse gas inventories7. 
This is the most granular level of detail under the 2006 IPCC guidelines, providing a very high level of detail 
for the analysis of climate policies in the reverse causal framework. We identify structural breaks in all OECD 
countries (Austria, Australia, Belgium, Canada, Chile, Colombia, Costa Rica, Czech Republic, Denmark, Estonia, 
Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Israel, Italy, Japan, Korea, Latvia, Lithuania, 
Luxembourg, Mexico, the Netherlands, New Zealand, Norway, Poland, Portugal, Slovak Republic, Slovenia, 
Spain, Sweden, Switzerland, Türkiye, the United Kingdom and the United States). Both positive and negative 
structural breaks, or step changes in emissions, are included in the dataset.

The process of identifying structural breaks follows a novel approach based on model selection within a 
two-way fixed effects (TWFE) model4. First, the annual panel dataset of emissions of a given gas in a given sector 
is regressed on year and country dummy variables and a vector of control variables which includes the gross 
domestic product (GDP), its square, and country population. These control variables account for affluence and 
population size, the two main determinants of emissions8, while the inclusion of countries in the sample with 
relatively homogeneous access to technology controls for technological development. The analysis has been 
conducted for the full sample of OECD economies and for a subsample including only the EU15 countries 
(Austria, Belgium, Germany, Denmark, Spain, Finland, France, United Kingdom, Ireland, Italy, Luxembourg, 
the Netherlands, Greece, Portugal and Sweden), as the EU15 countries were all subject to similar (supranational) 
climate regulations over the observation period, being within the European Union (EU).

Significant structural breaks are identified by using a saturated set of possible treatment effects. A treatment 
effect is a persistent (step) increase or reduction in emissions, identified after having accounted for the controls 
mentioned above (GDP, its square and population, as well as all non time-varying country and sector specific 
factors). This is essentially an extension of the common DID estimator, where variables potentially identifying 
every possible combination of country-year pairs are included in the model. Statistically significant effects of 
these variables correspond to step changes in emissions in a given country from a given year. For example, the 
estimated effect corresponding to “Austria-2010” would refer to a (positive or negative) step change in emissions 
for Austria from 2010 onward for a given gas in a given sector. As GDP and population are included as control 
variables, major economic or population shocks will not be identified as structural breaks. For example, a major 
economic downturn will likely reduce both economic activity and emissions, and so will not be identified as a 
break. With a fully saturated set of all possible treatment effects, the regression parameters are not identifiable, 
so we employ a general-to-specific (GETS) variable selection approach to keep only statistically significant treat-
ment effects (country-year pairs) in the model. Only these statistically significant structural breaks are captured 
in the dataset we compile.

The reverse causal approach does not seek to replace traditional policy evaluation techniques, but it serves 
as a complementary approach to directly compare policies and to identify potentially overlooked policies. It 
overcomes some key limitations of traditional approaches to policy evaluation. First, the lack of comparability 
between different evaluation approaches in traditional methods is remedied by using a harmonized statistical 
approach to identifying effective policies. Secondly, as a single structural break can be attributed to multiple 
policies, the reverse causal approach allows one to identify effective policy mixes, as opposed to only exploring 
the effects of isolated policies. At the same time, the reverse causal approach has limitations. Structural breaks 
are identified as statistically significant step changes in emissions which means that effective policies that cause 
gradual changes in emissions over time may not be identified, or may be identified as only having delayed effects. 
The low target false-positive rate employed in our dataset implies a conservative approach to the identification 
of structural breaks and means that we tend to identify only highly significant structural breaks, potentially 
omitting smaller or less significant breaks.

Methods
Data inputs.  The Emissions Database for Global Atmospheric Research (EDGAR v8.0, https://edgar.jrc.
ec.europa.eu/dataset_ghg80) database9 provides annual information on GHG emissions by sector, including car-
bon dioxide (CO2), methane (CH4), nitrous oxide (N2O) and fluorinated greenhouse gases (F-gases). We use 
the annual time series data covering the period from 1995 to 2022 with emissions expressed as kilotons per 
year. Emissions are measured in CO2 equivalents (CO2-e), computed using the methodology in the IPCC Fifth 
Assessment Report (AR5) for global warming potential (GWP) over a 100-year time horizon10. The economet-
ric model employed required data on population and GDP, which are used as control variables. GDP data is 
measured in constant 2015 US dollars (indicator code: NY.GDP.MKTP.KD; https://data.worldbank.org/indicator/
NY.GDP.MKTP.KD) and population is measured as the total population per country per year (indicator code: 
SP.POP.TOTL; https://data.worldbank.org/indicator/SP.POP.TOTL). These are both sourced from the World 
Bank’s World Development Indicators database11,12.

Two different country samples are employed as comparator groups in our analysis:

	 a)	 All EU15 countries: Austria, Belgium, Germany, Denmark, Spain, Finland, France, United Kingdom, 
Ireland, Italy, Luxembourg, the Netherlands, Greece, Portugal and Sweden; and

	 b)	 All OECD countries: the EU15 group plus Australia, Canada, Chile, Colombia, Costa Rica, Czechia, 
Estonia, Hungary, Iceland, Israel, Japan, Korea, Latvia, Lithuania, Mexico, New Zealand, Norway, Poland, 
Slovak Republic, Slovenia, Switzerland, Türkiye and the United States.
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The two above sample groups were specifically chosen due to the relative homogeneity of countries in terms 
of regulations and the countries’ ability to implement decarbonisation technologies. The period of 1995 to 2022 
was chosen because most EU countries were subject to similar regulations under the European Single Market for 
this period. In principle, as the data inputs are emissions, population and GDP, for which accessible data exists 
for almost all countries, this approach could be implemented for almost all countries in the world. However, 
it is possible that the impact of population, GDP and policy changes on emissions differs between developed 
and developing countries, hence the decision to maintain a relatively homogeneous sample of only developed 
countries in the analyses.

The identification of structural breaks in the EU15 sample exploits the fact that EU countries are subject to a 
set of similar regulations with regards to climate policy, making the regulatory environment for implementing 
climate policies relatively homogeneous over the observation period. For instance, the European Climate Law 
establishes a legally binding commitment for the EU to achieve climate neutrality by 2050, and the EU Industrial 
Emissions Directive establishes common guidelines for reducing industrial emissions across the whole of the 
EU. While such harmonized regulations exist at the European level, countries have the freedom to implement 
additional national-level policies.

The use of the OECD sample allows for the identification of structural breaks that may have occurred across 
the entire EU15 sample due to the harmonized regulations, while still maintaining a relatively homogeneous 
sample group, as OECD countries are all market-based economies with relatively similar access to technologies 
and levels of development. The two sample groups allow for comparison and robustness, while still maintaining 
a relatively homogeneous sample in terms of countries’ ability to decarbonize.

Table 1 provides an overview of the input data, including countries, gases and sectors in the sample.

Identifying structural breaks in emissions data.  The abnormal changes in emissions are estimated 
using methods of structural break detection for panel models, with two-way fixed effects (TWFE) and a 
general-to-specific (GETS) variable selection approach, as has been implemented in existing studies4,13,14. The 
assumed data generating process for emissions of gas g in sector i of country j is given by
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, ,  denotes emissions, 1. is the Heaviside function, which takes value one if its argument is true, and zero 

otherwise, and the column vector xj,t includes (log) population, (log) GDP and (log) GDP-squared as control 
variables. The error term εi,j,t is assumed to fulfill all the assumptions of the normal linear regression model. We 
carry out our inference in balanced panel datasets by sector. For a sector-specific panel formed by N countries 
and T time periods, the most general specification includes N(T−1) potential breaks, with corresponding coef-
ficients τk,s on the indicator covariates. Each one of these variables represents a potential structural break, or a 
step function, which changes the level of the emissions variable from year s until the end of the sample. The 
model as presented by this regression specification cannot be estimated, since the number of unknown param-
eters is larger than that of sample observations. We thus employ the GETS algorithm to perform model selection 
in the specification14, and the estimated coefficients of the selected model allow for an interpretation similar to 
that of the treatment effect in a DID estimator.

We implement the GETS algorithm using the “getspanel” package in R15, using the block search algorithm of 
the “gets” package13. We calibrate the level of target significance, so as to control the expected false-positive rate 
of the selected indicators16, and employ three different levels of target significance: 5%, 1% and 0.1%. The use of 
different target significance levels provides a test of the robustness of the identified breaks, with low target signif-
icance levels implying that the identified breaks are likely to constitute large (significant) changes in emissions. 
Our conservative approach effectively implies that we identify minimum effect sizes, and thus lower-bound 
estimates of abnormal changes in emissions.

Countries

Sample 1: EU15 (15 countries) Austria, Belgium, Germany, Denmark, Spain, Finland, France, United Kingdom, Ireland, Italy, Luxembourg, 
the Netherlands, Greece, Portugal and Sweden.

Sample 2: OECD (38 countries) EU15 + Australia, Canada, Chile, Colombia, Costa Rica, Czechia, Estonia, Hungary, Iceland, Israel, Japan, 
Korea, Latvia, Lithuania, Mexico, New Zealand, Norway, Poland, Slovak Republic, Slovenia, Switzerland, Türkiye and the United States.

Gases

1. All GHGs (in CO2-equivalents)

2. CO2

3. CH4

4. N2O

5. F-gases (aggregated emissions of c-C4F8, C2F6, C3F8, C4F10, CF4, HCFC-141b, HCFC-142b, HFC-125, HFC-134a, HFC-143a, HFC-152a, 
HFC-227ea, HFC-23, HFC-245fa, HFC-32, HFC-365mfc, HFC-43-10-mee, NF3, SF6)

Sectors (2006 IPCC 
Categories)

37 Sectors: Electricity and heat, Petroleum refining, Manufacturing & construction, Civil aviation, Road transport, Railways, Water-borne 
navigation, Other transportation, Residential, Non-specified, Solid fuels, Oil and natural gas, Cement production, Lime production, Glass 
Production, Carbonate uses, Chemical industry, Metal industry, Non-energy fuel products, Electronics industry, Substitutes for ODS, Other 
product manufacture, Enteric fermentation, Manure management, Biomass burning, Liming, Urea application, Direct N2O - managed soils, 
Indirect N2O - managed soils, Indirect N2O - manure, Rice cultivations, Solid waste disposal, Biological treatment - waste, Incineration of 
waste, Wastewater treatment, Indirect N20 - nitrogen, Fossil fuel fires.

Table 1.  Overview of input data including countries, gases and sectors in the sample.
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Figure 1 presents three examples plots from the “Main Activity Electricity and Heat” sector for a positive 
structural break (identified in the Netherlands), a negative structural break (United Kingdom), and a time series 
without any identified structural break (Ireland). The graphs depict also the counterfactual dynamics of emis-
sions in the absence of the structural break, which allows us to visualize the magnitude of the abnormal change 
in emissions.

The data input of the method employed for the creation of our dataset is thus composed by the emissions data 
sourced from EDGAR v8.0., as well as the GDP and population data from the World Bank’s World Development 
Indicators. The output is a panel dataset of country/sector structural breaks in emissions identified by the model, 
as well as their magnitude. These structural breaks are to be interpreted as persistent step (level) changes in emis-
sions for a given sector in a given country, as compared to the benchmark region (EU15 or OECD).

Data Records
The dataset “all_structural_breaks.csv” is available in an online Zenodo database (https://doi.org/10.5281/
zenodo.13325884)1. Each row in the dateset corresponds to an identified structural break, with the 14 columns 
containing details about the structural break including the GHG, sample, sector, magnitude, country, year and 
direction of the break.

The column “gas” details which type of greenhouse gas the structural break was identified for, and can take 
the following values: “all_ghg” which is the aggregate of all GHGs measured in CO2-e, “ch4” which is methane, 
“co2” which is carbon dioxide, “fgas” refering to all fluorinated gases, and “n2o” which is nitrous oxide. The 
“sample” column indicates whether a break was identified in the EU15 or OECD sample. The “IPCC code” col-
umn details the sector code according to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories, 
with the corresponding “sector group” and “sector description” in the subsequent columns. Sectors are grouped 
into five categories: Energy; Industrial processes and product use (IPPU); Agriculture, forestry, and other land 
use; Waste; and Other. The “target p-value” column indicates which target p-value (or false positive rate) the 
break was identified for. The columns “country” and “country code” list the country in which the break was iden-
tified, both using the full name of the country and its standardised 2-letter ISO country code. The column “year” 
corresponds to the break date. The “coef ”, “std.error”, “t-stat”, and “p-value” refer to the estimated coefficient on 
the break, and its standard error, test statistic and p-value, respectively. Finally, the “break direction” column 
details if the break is negative or positive.

Table 2 outlines basic descriptive statistics on negative and positive structural breaks by gas, country, sector, 
year and sample. The mean values refer to mean number of total breaks identified within category. For example, 
a mean of 96.4 negative structural breaks were identified per country across the entire dataset.

Tables 3–6 provide a breakdown of the total number of negative and positive identified structural breaks by 
gas, country, sector and break year, respectively.

Fig. 1  Example plots of a positive structural break (Netherlands), a negative structural break (United 
Kingdom), and a time series without any identified structural break (Ireland). The black line shows actual 
values, the blue line shows fitted values, and the red lines shows the counterfactual, in the absence of a structural 
break, for a period of five years after the break date. Vertical red lines depict the break date, and grey bars around 
these lines depict a 95% confidence interval around the break date. Data is from the “Main Activity Electricity 
and Heat” sector, and structural breaks are identified at a 5% significance level.

Negative Positive

Mean SD Obs. Mean SD Obs.

Gases 732.6 373.8 3663 776.0 399.7 3880

Countries 96.4 61.3 3663 102.1 51.4 3880

Sectors 99.0 65.2 3663 104.9 66.9 3880

Years 135.7 65.9 3663 143.7 78.7 3880

Samples 1831.5 450.5 3663 1940.0 620.0 3880

Table 2.  Descriptive statistics. Mean values refer to the mean number of total structural breaks identified in 
each category.
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Technical Validation
We validate the identified structural breaks using the block search algorithm of the GETS variable selection 
process. An iterative process selects significant structural breaks to reduce the general model to a specific model, 
with only statistically significant structural breaks included in the final specification. To ensure a high level of 

Gas (chemical symbol) Negative Positive Total

All GHGs (in CO2-e based 
on 100 year GWP) 1218 1293 2511

Methane (CH4) 717 693 1410

Carbon Dioxide (CO2) 540 639 1179

Fluorinated gases (F-gases) 154 147 301

Nitrous oxide (N2O) 1034 1108 2142

Total 3663 3880 7543

Table 3.  Total number of breaks by type of gas and break direction.

Country Negative Positive Total

Australia 47 36 83

Austria 62 131 193

Belgium 126 118 244

Canada 31 36 67

Chile 46 118 164

Colombia 49 112 161

Costa Rica 85 141 226

Czechia 85 35 120

Denmark 167 85 252

Estonia 89 89 178

Finland 132 95 227

France 149 95 244

Germany 131 116 247

Greece 175 232 407

Hungary 59 84 143

Iceland 74 78 152

Ireland 261 147 408

Israel 67 80 147

Italy 133 145 278

Japan 52 34 86

Latvia 70 153 223

Lithuania 58 144 202

Luxembourg 178 129 307

Mexico 3 144 147

Netherlands 154 66 220

New Zealand 26 98 124

Norway 15 50 65

Poland 58 59 117

Portugal 88 194 282

Republic of Korea 82 86 168

Slovak Republic 95 32 127

Slovenia 98 97 195

Spain 109 235 344

Sweden 237 114 351

Switzerland 48 23 71

Turkiye 34 140 174

United Kingdom 230 64 294

United States 60 45 105

Total 3663 3880 7543

Table 4.  Total number of breaks by country and break direction.

https://doi.org/10.1038/s41597-024-04321-w
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confidence in the identified breaks and a low false positive rate, we calibrate the model with three levels of target 
significance: 5%, 1% and 0.1%. The conservative significance levels mean that only highly significant structural 
breaks are identified. The GETS method is known to have very good performance in terms of false positive rate 
and predictive error as compared to LASSO and adaptive LASSO alternatives13. The GETS method proceeds in 
three steps:

	 (i)	 it starts with a general unrestricted model, which includes as many variables as possible and that passes 
standard specification tests,

	(ii)	 backwards elimination of variables in the model is carried out along several paths, making use of signifi-
cance tests and ensuring validity using a set of diagnostic tests,

	(iii)	 a final specific, identifiable model is chosen maintaining only those variables that are still identified as 
statistically significant.

Such a methodological framework ensures that the chosen model only contains statistically significant struc-
tural breaks and, thus, that the effects found are strongly supported by the available data.

Further, validation of specific breaks is achieved through comparison of breaks across samples and visual 
inspection of the model fit with the actual time series of emissions. As shown in Fig. 1, the fitted models align 

Sector Negative Positive Total

Biological treatment - waste 64 106 170

Biomass burning 129 118 247

Carbonate uses 42 70 112

Cement production 8 4 12

Chemical industry 71 126 197

Civil aviation 119 91 210

Direct N2O - managed soils 126 128 254

Electricity and heat 205 217 422

Electronics industry 19 13 32

Enteric fermentation 102 107 209

Fossil fuel fires 9 7 16

Glass Production 6 36 42

Incineration of waste 140 153 293

Indirect N20 - nitrogen 126 126 252

Indirect N2O - managed soils 126 94 220

Indirect N2O - manure 140 140 280

Lime production 2 16 18

Liming 26 40 66

Manufacturing & construction 221 202 423

Manure management 175 200 375

Metal industry 68 75 143

Non-energy fuel products 150 146 296

Non-specified 94 84 178

Oil and natural gas 150 167 317

Other product manufacture 155 156 311

Other transportation 117 152 269

Petroleum refining 119 133 252

Railways 72 68 140

Residential 127 161 288

Rice cultivations 14 25 39

Road transport 277 306 583

Solid fuels 54 54 108

Solid waste disposal 26 34 60

Substitutes for ODS 95 67 162

Urea application 22 24 46

Wastewater treatment 153 157 310

Water-borne navigation 114 77 191

Total 3663 3880 7543

Table 5.  Total number of breaks by sector and break direction.
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closely with the actual time series, suggesting that the specified model captures a significant proportion of the 
variation in the true data generating process, thus validating the chosen specification of the model.

Usage Notes
This dataset serves as the foundation for analysing climate policies using the reverse causal approach across all 
major GHGs and all sectors. The reverse causal approach has already been implemented in a number of studies 
to evaluate the effectiveness of climate policies, but these have been limited in their sectoral coverage, scope of 
GHGs or geographic coverage3–6. These studies serve as a useful basis for implementing this method, and our 
dataset serves as a foundation for further exploration of the effectiveness of climate policies across different 
GHGs and countries. Further, the richness of the dataset allows for comparisons between countries across a 
range of sectors, a dimension of heterogeneity which has not yet been systematically implemented in literature 
to date. Specifically, the dataset covers 37 different sectors as defined by the 2006 IPCC Guidelines for National 
Greenhouse Gas Inventories, with an aggregation of sectors provided into the following five groups: Energy; 
Industrial processes and product use (IPPU); Agriculture, forestry, and other land use; Waste; and Other. The 
data do not include emissions from land use, land use change and forestry (LULUCF).

The approach of the above studies involves first identifying structural breaks, then attributing these breaks to 
relevant policies. Policies are generally attributed to breaks in the same sector in a confidence interval around the 
year of the break, accounting for lags in policy effects on emissions or anticipatory effects of upcoming policies. 
For example, a negative break in emissions in the Austrian transport sector from 2010 onward may be attributed 
to a transport emissions tax implemented in 2009. A break could be attributed to a single policy, or a mix of pol-
icies implemented in the interval. In fact, in previous studies, many breaks are associated with multiple policies 
and the interaction effects between policies is starting to be explored. The approach to identifying policies differs 
in the aforementioned studies, but the use of policy databases, such as those of the OECD or the International 
Energy Agency (IEA) serve as a good starting point. These attributed policies can further be analysed to draw 
conclusions about which kinds of policies were most effective in a particular country or sector.

Further analysis of these structural breaks and attributed policies could help to identify “role model coun-
tries” or “best practice policies” based on those countries or policies with the most or largest negative structural 
breaks. This would then inform decision making about the most effective climate policies going forward, based 
on a systematic and holistic approach to measuring climate policy effectiveness.

Year Negative Positive Total

1996 5 14 19

1997 43 29 72

1998 112 86 198

1999 115 83 198

2000 203 177 380

2001 166 169 335

2002 120 171 291

2003 188 212 400

2004 170 223 393

2005 210 196 406

2006 213 230 443

2007 150 207 357

2008 185 195 380

2009 203 241 444

2010 225 182 407

2011 219 229 448

2012 151 193 344

2013 166 246 412

2014 95 165 260

2015 190 129 319

2016 121 162 283

2017 124 172 296

2018 83 102 185

2019 76 22 98

2020 122 37 159

2021 1 5 6

2022 7 3 10

Total 3663 3880 7543

Table 6.  Total number of breaks by year and break direction.
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Another point of interest not yet explored in the literature is the presence of positive structural breaks, that 
is, persistent increases in emissions not attributed to GDP, population or technological change. Analysis of such 
breaks could shed light on potential unintended consequences of policies or rebound effects.

Code availability
The code used to identify the structural breaks as well as the underlying data sources are available in an online 
database (https://doi.org/10.5281/zenodo.13325884)1. The statistical programming software R was used to the 
generate the results.
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