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SUMMARY
Household electrification is an important pillar of decarbonization in the US and requires the rapid adoption of
electric heat pumps. Household energy models that project adoption rates do not represent these decisions
well. To what extent are they limited by fundamental knowledge gaps, or is there scope to incorporate in-
sights from the social science literature? We review the energy modeling and social science literature on
heating equipment adoption to synthesize our understanding of adoption decisions, to identify best prac-
tices on representing decision-making behavior among energy models, and to suggest model improve-
ments. At the most aggregated level, market allocation models divide market shares among different tech-
nologies by considering a single representative household, ignoring heterogeneity among the actors.
Energy-system models and agent-based models can include some disaggregation. Adoption decisions
include two stages, one to retire existing equipment, and to select the preferred technology. Equipment
breaking down, price shocks, and moving to a new house promote entering the first stage, but these factors
are not widely explored in surveys. The empirical literature reveals considerable heterogeneity in what mat-
ters to people in choosing technology. Even cost considerations, which are the most widespread, vary in the
components and the manner in which they enter decisions. Other considerations include comfort and reli-
ability; whether decision-makers are urban, young and educated; and how adopters perceive novel technol-
ogies. However, the relative strengths of these factors and how they vary across the US population are not
known. Modelers can make incremental structural improvements such as separating the two decision
stages, differentiating household groups, and incorporating changing household perceptions with market
maturation. However, they cannot ground these in reality without considerable new fieldwork on decision-
making processes and their variation across the population.
INTRODUCTION

How realistic are energy model projections in reflecting house-

holds’ decisions around changing heating equipment? To what

extent are they limited by fundamental knowledge gaps, or is

there scope to incorporate insights from the social science liter-

ature? These questions are the subject of this critical review.

Household electrification is widely seen as the means of decar-

bonizing household fossil fuel use for cooking and heating.1 In

2021 the share of home heating in energy demand and green-

house gas (GHG) emissions in the United States and Europe

was�8%and�11%, respectively. Household electrification en-

tails extensive retrofits to the existing building stock, primarily to

replace fossil fuel-based heating with electric heat pumps

(EHPs). The USGovernment’s Long-term Strategy for decarbon-

ization requires that EHP would have to comprise 60 percent of

heating equipment sales by 20302. For the timely achievement of

technology penetration targets, the replacement of existing

equipment is critical. Gas furnaces and boilers may be used for
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up to 25 years on average.3 A rapid transition requires shortening

this horizon. This would require that upon retirement households

make the leap to embrace new, potentially unfamiliar technolo-

gies. EHP sales are gathering momentum—in the US, for the first

time, EHP sales overtook those of gas furnaces in 2022.4 How-

ever, adoption rates in the Southeast andWest dominate sales.5

While the Inflation Reduction Act (IRA) does allocate funds for

home improvement, the EHP rebates may not be sufficient to

tip enough households to achieve national electrification goals,6

and the incentives for efficient gas heaters undermine EHP in-

centives. Understanding the effectiveness of policies to shorten

retirement horizons and motivate selection requires that we

know how households make decisions. Likewise, if household

choices inherently limit rates of future change and thus set emis-

sions, this information needs to return tomodels of future climate

mitigation.

Energy models typically forecast energy demand, energy

supply and GHG emissions for the US and/or the world under

different scenarios of socioeconomic futures, policy, and
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CC BY license (http://creativecommons.org/licenses/by/4.0/).

mailto:nrao@yale.edu
https://doi.org/10.1016/j.isci.2024.111666
http://crossmark.crossref.org/dialog/?doi=10.1016/j.isci.2024.111666&domain=pdf
http://creativecommons.org/licenses/by/4.0/


iScience
Review

ll
OPEN ACCESS
technology evolution. Household energymodels would be useful

to policymakers for guiding policy design if they reflected how

households make decisions. Models could test the efficacy of

existing incentives, evaluate new ones and examine trade-offs

among different policy objectives and social impacts of phasing

out fossil fuel heating appliances. For instance, one might want

to know equity and efficiency trade-offs of EHP rebates to

low-income communities. However, households are typically

represented in energymodels as single economic representative

economic agents, or in a few cases as income-differentiated

groups.7 Models typically allocate market shares to different

competing technologies based on economic competitiveness,

ignoring household heterogeneity and contextual and other

behavioral factors. The question for future model development

is whether there is sufficient and generalizable knowledge in

the literature to justify developing, quickly, the next generation

of national energy model scenarios to inform policy making.

This study explores the state of knowledge in the social sci-

ence literature on modeling households’ decision-making

around EHP adoption and makes recommendations for future

directions in modeling. We focus on lessons for the US market

but draw on literature in both the US and Europe, because of

the longer history and popularity of EHP use in the latter case.

We focus specifically on adoption decisions for EHPs (extrinsic

decisions, in the economics parlance), rather than operational

choices (intrinsic decisions), such as thermostat setpoints.

Notably, several recent review articles have focused on the

general topic of identifying gaps between the social sciences

and modeling. Most of these indeed motivate and provide a

starting point for this article. Chadwick et al.8 review the state

of knowledge in the social sciences on adoption decisions for

home improvement in general, but do not address modeling.

Haiskanen and Matchoss9 review adoption criteria for a number

of residential renewable technologies, which we refer to later.

Gaur et al. in their review of EHP technologies provide some in-

sights on adoption barriers, also discussed later.10 Trutneveyte

et al.1 in their review of how social science is represented in

models suggest that most energy models tend to bridge or

iterate between social science insights and models using exog-

enous assumptions and scenarios. They suggest that future

modeling efforts shouldmerge them through structural modifica-

tions to behavioral models based on generalizable empirical

research. However, they address household technology adop-

tion only to the extent of electric vehicles. Mastrucci et al.11 re-

view the state of the art in modeling demand-driven energy

transformations, including household behavior in models, and

reach similar conclusions. They attribute the simplicity in

modeling household behavior to the lack of granularity in repre-

senting households.

Krumm et al.12 come closest to this article in reviewing behav-

ioral decisions around socio-technical transitions in European

energy models. They provide similar recommendations to Trut-

neveyte et al. and Mastrucci et al. for future modeling, and in

addition provide useful insights on the required research process

that would enable deeper integration. They also find agent-

based models (ABMs) to be the most promising direction to

achieve this purpose. However, they do not study US energy

models, nor do they delve deeply into the substance of house-
2 iScience 28, 111666, January 17, 2025
hold adoption behavior. In this article we explore the feasibility

of the recommendations from these articles for EHP adoption,

including structural changes to energy models to endogenize

behavioral drivers and better representing household heteroge-

neity. We systematically review the empirical literature on EHP

adoption and best practices in energy model projections to

address these questions.

In summary, none of the previous reviews address the specific

shortcomings in how decisions around retrofitting home heating

equipment with EHPs are modeled and the knowledge that can

be harnessed from the social sciences for that purpose. As noted

in Strazzera et al.’s recent review, ‘‘a notable research gap

emerging from this review is the need for a more nuanced under-

standing of how individual characteristics and contextual factors

interact to influence the adoption of energy-efficient heating and

cooling systems.’’13 Our main contribution is to show that what

may be viewed as a limitation in energy models to adequately

reflect decision-making behavior may in large part be a reflection

of the lack of sufficient generalizable evidence in the empirical

literature on heating equipment adoption, specifically in how

households incorporate known factors such as cost, awareness,

comfort and reliability in different contexts. Models can at least

separate the two stages in adoption of deciding to invest in

new equipment from technology selection and reflect differ-

ences in perceived affordability across income groups.

The rest of the article is organized as follows. In the next sec-

tion we review and synthesize knowledge about decision-mak-

ing around EHP adoption. Following that, we review how existing

energy models project EHP adoption in energy/climate futures.

In the discussion section, we combine insights from previous

sections to make recommendations for deeper integration be-

tween social sciences and energy models, including needed ad-

vancements in both field research and modeling.

STATE OF KNOWLEDGE ABOUT DRIVERS OF EHP
ADOPTION

Literature search methodology
Heat pumps are a relatively new technology, because of which

the literature on their adoption is sparse. In order to systemati-

cally research this literature, we used the following search criteria

in Scopus, Web of Science, and Google Scholar to identify peer-

reviewed journal articles in English. We combined variations of

keywords for ‘‘heat pump’’ and ‘‘adoption’’. Variations of ‘‘heat

pumps’’ included ‘‘heat pump systems,’’ ‘‘heating,’’ ‘‘geothermal

heat pumps,’’ ‘‘ground-sourced heat pumps,’’ ‘‘air source heat

pumps,’’ and ‘‘heating system.’’ Note that in Europe heat pumps

are often covered under a category called ‘‘renewable heating

systems,’’ which may include other renewable fuels such as

biomass pellets. The search yielded 212 articles, with a consid-

erable skewness in vintage toward the present. Manual perusal

of these articles yielded only 42 articles that sought empirical in-

sights into adoption drivers. Most of the rest were engineering,

physics or modeling analyses of various configurations of

heat pumps to assess performance and/or costs. The empirical

studies were of two types: field research, some as part of ABMs

studies; and statistical analyses of large-N, typically nationally

representative, surveys. These two strands have their respective
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limitations. The former provide useful insights on drivers of EHP

acquisition, but for relatively small geographic areas with limited,

if any, external validity. The second type of empirical studies, the

statistical analyses of surveys, have the advantage of a large

sample size, but because they have access to ownership pat-

terns rather than acquisition decisions, they cannot offer insights

on behavior. More than two-thirds of the studies were based in

Europe. One notable exception is a study by Antonopoulos

et al., wherein they examine decision-making in a survey of

10,000 American households that have undertaken any kind of

technology adoption.5 Otherwise, most studies based on field

research are mostly from Northern Europe, whose applicability

to the US is limited due to differences in the types of heating

equipment, house construction and homeowners’ values and

norms.

We synthesize some of the findings from both types of studies.

At the outset, it is noteworthy that decisions involve two stages,

in which different factors may come to bear: in the first phase,

households decide to replace their heating equipment; and in

the selection phase, households choose among available tech-

nologies/systems. Each phase may involve different decision

criteria. Policy incentives could accelerate premature retire-

ments and make EHP more attractive among available options.

To predict adoption rates at a national scale, one would need

to know which factors come to bear in each stage, how house-

holds incorporate these factors in their decision rules, and

what contextual and socioeconomic factors influence how these

decision processes vary across a population.

Current state of knowledge on EHP adoption
In the papers reviewed, the conditions that cause households to

enter the first stage decision—considering replacement—are

not well understood. As mentioned, heating equipment typically

lasts over twenty years. However, the useful life is use-depen-

dent and subjective, since people may have different prefer-

ences for balancing risks of breakdown against undertaking ma-

jor upgrades. Households that are satisfied with their heating

equipment are unlikely to change their equipment.14 Antonopou-

los et al.’s study indicates that equipment breakdowns were one

of the many motivations for adopting new home technologies in

the US.5 It is curious, given the high prevalence of central air dis-

tribution systems with heating and cooling in the US, whether

failures in air conditioning (AC), and not just heating, equipment,

contribute to triggering heat pump adoption.

In Europe, a few studies that examined the causes of equip-

ment changes find a broader set of motivations. Households

typically confront a problem, identify a new opportunity, or

move to a new home, as an impetus to switch their heating sys-

tem.15 Curtis et al. found in a representative survey of Ireland

that fuel costs and heating equipment ‘‘not working well’’ were

more common reasons than equipment failing for their replace-

ment.16 In Sweden, a marketing campaign by a municipal utility

convinced over three-quarters of over 700 residents with electric

resistance heat who expressed no prior need for a new system to

adopt service from a biomass-based district heating system.17 In

a small (6) sample of existing and new home owners in New Zea-

land, information was insufficient to overcome inertia to adopt

energy-efficient hot water systems.18 Lillemo et al. found that
reducing operating costs, improving air quality and replacing

broken equipment were the primary reasons to change equip-

ment in Norway.19 No other evidence was found on what addi-

tional incentives motivate change, other than moving to a

new home.

In the second stage decision—when households do decide to

replace old heating equipment—they tend to be creatures of

habit and retain the prior fuel and technology.20 A few review ar-

ticles and more recent studies focusing on Northern Europe pro-

vide evidence for the influence of several factors in shifting to

EHP. Overall, cost considerations are the most widespread,

though the components of cost that households consider—be-

tween initial cost, running costs or financing—differs across

studies. Operating costs of heating tend to trigger a search for

new equipment, but the latter’s upfront costs is an adoption bar-

rier. Otherwise, while some studies corroborate each other on

factors such as comfort, reliability, pro-environment attitudes

and appearance, none of them are as common as cost. We

next review studies that survey actual adopters, and then those

that investigate hypothetical preferences, and then address the

intention-action gap.

Heiskanen and Matschoss9 review differences in adoption

rates across European countries and residential renewable en-

ergy technologies, of which EHPs are one category. For EHPs,

they find that affordability is a primary driver of adoption.

Younger, more educated, and wealthier people have a higher

likelihood of adopting new innovative products, which would

matter for EHP if they are perceived as such. In their review of

EHP markets, Gaur et al.10 identify market barriers, such as pol-

icy and regulatory uncertainty, public acceptance, and eco-

nomic factors. Their review suggests that besides cost the lack

of familiarity with EHP technology can inhibit uptake. But these

reviews do not illuminate how lifestyles of different demographic

groups influence their decision process nor what type of knowl-

edge households would want and how they would incorporate it.

Among more recent country studies in Europe, comfort20 or a

desire for less fossil fuel use20–22 seem to influence the choice of

an EHP over other heating equipment. Furthermore, in Germany

two studies find that educated households are sometimes

observed to put more emphasis on adopting a proven (i.e., reli-

able) heating system—choosing gas over EHP.23,24 A study in

Sweden finds annual heating costs to be the highest priority

among amajority of households, followed by system reliability.14

Notably, environmental attitude, including toward climate

change, was a low priority in that survey. Respondents in this

study ranked EHPs the highest among alternatives for having

relatively more advantages. In Italy, a study on the propensity

to adopt biomass pellet heating systems found that households

segmented along their propensity to adopt new technologies,

among other factors such as their perception of heating system

characteristics.25 However, this study may not reveal other deci-

sion criteria because it was designed to test Rogers’ theory of

diffusion, which focuses on people’s receptiveness to new, inno-

vative products.

Several studies investigate people’s hypothetical willingness

to adopt EHPs. Jingchao et al. use stated preference surveys

to determine what influences people’s willingness to pay (WTP)

for EHPs in China. They find that being female, having science
iScience 28, 111666, January 17, 2025 3
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literacy and local environmental concerns increase WTP.26 Côté

and de Brauwer show that Germans would lease EHPs to avoid

the technical risks of a new technology.27 Corbett et al. find that

policy awareness is a strong determinant of people’s willingness

to adopt EHPs in Canada.28

Results from stated preference studies are indicative of only

people’s inclination, that is their willingness to consider EHP.

Their intentions may depart from these inclinations, and further-

more their actions may not be consistent with their intentions—

the latter being the well-known intention-action gap.5,29 Thus,

there are likely to be additional barriers that inhibit those inclined,

in principle, to adopt EHPs. Many studies find that the lack of

knowledge about the technology and its true installed cost are

significant barriers to adoption.20,29–31 One study in Germany

finds that home owners in search of new equipment scrutinize

EHPs costs more closely than do those of familiar technolo-

gies.20 In the Netherlands, a survey found a distinct difference

between households’ willingness to adopt and the willingness

to put in effort toward adoption.29 Further, in this study many re-

spondents felt they lacked the knowledge, financial means or

time to adopt EHP despite having a positive attitude toward

them. Karytsas et al. find that households WTP is well below

installation costs, and that payback periods even for ground-

sourced EHPs, which have lower operating costs than conven-

tional EHPs, are not acceptable for the majority of respondents

in three European countries.32 It seems people who express an

inclination to adopt EHP underestimate practicalities that they

would consider when actually deciding.

One potential barrier that is rarely discussed in the US context

is homes’ physical ‘‘readiness’’ to switch to EHPs without mod-

ifications, either to the heat distribution systems or to overall in-

sulation. In the US, where air-to-air heat pumps (ASHPs) are the

norm, homes with baseboard heaters, which are common in the

Northeast, would need to put in duct systems or more compli-

cated configurations of heat pumps. Households may also

require electrical upgrades to support the power use by EHPs.

The additional costs are context-specific, and hence not known

a priori, but they certainly would exacerbate the affordability bar-

rier. A recent study in the UK33 shows that many homes would

require costly upgrades, either to improve insulation or resize

distribution systems to accommodate EHPs. Over half the

households surveyed in that study were not willing to pay for

such upgrades. This study also reinforces the importance of prior

knowledge about EHP, which may be a prerequisite to consid-

ering adoption. Another UK study identifies the lack of trained

contractors and complex user experiences among EHP owners

as contributors to the slow adoption of EHPs in the UK.34 A few

studies in Europe16,20 also found that owners of smaller homes

are unable to adopt EHP or other renewables due to space con-

straints, whereas bigger houses have the required space for

installing EHP as the primary or secondary backup heating

system.

Statistical examinations of large cross-sectional household

surveys provide insights on socioeconomic characteristics that

correlate with whether households have EHP. Since they do

not have information on adoption decisions, they cannot distin-

guish first stage decision factors from fuel/technology selection

criteria. As such, they provide only indirect proxies for decision
4 iScience 28, 111666, January 17, 2025
criteria. Many studies show that moderate climate and lower

electricity rates are associated with higher EHP ownership rates

in the US.6,35,36 Shen et al. show that rebates on EHP in North

Carolina in the US may have incentivized households to adopt

EHP.37 Poblete-Cazenave and Rao show that having better insu-

lation, being in urban areas and younger, also increase the likeli-

hood of adoption.6 Some of these factors directly enter the eco-

nomic calculus, such as moderate climate (due to higher EHP

efficiencies in operation), lower electricity prices and better insu-

lation (which reduce the required capacity and related upfront

capital cost). However, age and urbanity are likely proxies for un-

observed decision criteria. A recent study based on a survey in

Vermont finds spatial clustering of EHP owners, which may be

indicative of a peer-effect.36

In summary, previous research sheds light on factors that are

considered in decision-making or on household characteristics

that increase the likelihood of EHP ownership. However, we do

not gain from these studies a complete picture of decision-mak-

ing processes. For instance, cost factors, particularly related

to upfront installation, seem the most widespread. However,

none of the studies elicits the calculus used to make decisions.

Only a few studies that ask about WTP make mention of accept-

able payback periods. However, as noted earlier, stated prefer-

ences may depart from actual behavior. All types of costs may

not enter into decisions,20 and those that do may be considered

alongside other non-economic factors. Knowledge about EHPs

seems to be a common barrier. However, it is hard to know

whether because of ignorance EHPs were simply left out of the

choice set, or if the lack of familiarity with the technology caused

a cognitive bias against EHP (such as, perceiving them as less

reliable than they are). Other non-cost factors that were identified

in a few studies include perceived comfort, system reliability, fa-

miliarity, and attitudes toward the environment and innovation,

among others.

Without knowing how these factors are prioritized, weighted,

or conditioned by circumstance, it is hard to estimate, let alone

project, their influence. Even if one were to define heuristics for

decisions, even selecting themost salient factors seems difficult.

Aside from cost and awareness, most of these factors are iden-

tified in a subset of studies, each having a different sample of

households in different cultural and economic environments,

which may have different economic, social and knowledge

endowments.

Relevance of other household technologies to heat
pumps
To understand EHP adoption decisions better, one could cast a

wider net beyond heating systems to the literature on residential

energy technologies in general, including solar rooftop PV (SPV),

or to the voluminous literature on energy efficiency technologies

or energy conservation measures (ECMs).38–40 They all share

some common characteristics, such as involving new potentially

unfamiliar technologies with high upfront costs that may be

driven by potentially complicated government incentives. As

such, households may have similar barriers to embracing them

stemming from these characteristics.

However, there are other distinct differences between these

technologies and heating systems, which may lead households
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to apply different decision rules. SPV are external. As such, they

do not alter indoor living conditions (e.g., comfort). EHP is largely

internal equipment, which may not carry status value asmuch as

do SPVs. Further, EHPmay involve intrusive changes to heat dis-

tribution systems because they typically involve lower tempera-

tures of heat circulation compared to fossil fuels, and they may

improve indoor air quality. Installing SPV, in contrast with EHP,

does not entail a significant change in environmental conditions

(e.g., pollution) or lifestyle (e.g., EVs and driving behavior).

ECM such as insulation or windows may share further similar-

ities with EHP because their installation affects comfort, and has

other side effects, such as changing home aesthetics. However,

these impacts are largely known upon installation. In contrast,

heating systems involve potentially unknown ongoing mainte-

nance and varying costs from weather-dependent performance.

Given these differences, decision factors concerning SPV or

ECM are likely to differ from those of EHP. For example, status

signaling is more likely to influence SPV adoption than that of

EHP or even ECM. On the other hand, indoor air quality would

likely influence EHP adoption, if at all, but not SPV or ECM.

Thus, applying models of decision making from SPV of ECM

could be misleading. Furthermore, the scope of this review

would increase to a prohibitive extent. To be clear, this doesn’t

rule out that some of that literature may be applicable to EHP

adoption, or that this review in turn may also shed light on the

adoption of other technologies in the home. We leave such

investigation for future research.

Aside from empirical studies, scholars have drawn on various

theories to describe heating equipment adoption behavior,

arising from the fields of economics, sociology and psychology

(for a synthesis, see studies by Wilson and Dowlatabadi41 and

Frederiks et al.42). These theories hypothesize how decision-

making is influenced by awareness (e.g., about new technolo-

gies and risks), attitudes and intentions (e.g., toward innovation

and environment), perceptions of self-efficacy or social confor-

mity, consequence (e.g., private economic costs and health),

and other external constraints (e.g., income or physical home

conditions). The factors discussed earlier have been shown to

play a role, but their strengths vary among studies. Population

characteristics or market conditions between studies are not

examined with the purpose of determining why decision factors

might vary. Furthermore, the ordering of causality of relation-

ships described by the theory is infrequently validated.

Models require valid decision rules, including the strength of

different factors when several of them influence decisions. Given

the heterogeneity in how people weigh different factors, one

would need to know how these weights vary with population

characteristics. The aforementioned theories have backing evi-

dence, but not to such a degree. Some ABMs have assumed

that household decisions can be represented with the Theory

of Planned Behavior (TPB). They use surveys to estimate weights

for different decision factors. However, as discussed later, these

studies do not validate these theories by testing the fit of their es-

timates against other theories. They remain largely hypothetical

scenarios of outcomes under the assumption of such decision-

making behavior.

The aforementioned synthesis reveals the challenge of

deriving generalizable decision rules to characterize EHP adop-
tion decisions. There has been little, if any, investigation in the US

of the first decision stage of why household enter themarket for a

new heating system in the first place. From the European studies

and one US study one learns that price shocks, equipment fail-

ures or moving to a new home are common motivations. With

regard to technology selection criteria, the evidence shows

that households vary in their knowledge of EHPs. Those familiar

enough with EHPs value installation costs and some subset of

other factors that vary across populations, such as comfort, reli-

ability and environmental impact. Given the qualitative nature of

these findings, it is unclear how to simulate a decision process,

even just based on cost, and how to differentiate households

into groups with like behavior. In order to assess how to better

apply the state of knowledge to inform household energy

models, we first review how various types of models have repre-

sented household decisions.

HOW HOUSEHOLD ENERGY MODELS REPRESENT
HEATING EQUIPMENT ADOPTION DECISIONS

Energy models are typically grouped into three categories, inte-

grated assessment models (IAMs), energy system models

(ESMs), and ABMs.12 The purpose of modeling household

heating equipment adoption decisions is to project future

household energy demand, which could in turn feed into energy

supply cost optimization scenarios, economic production func-

tions or simulations of future energy system behavior, all of

which may be modeled at different scales depending on the

model purpose. See refs.12,43 for a more detailed overview of

energy-economy models in climate research. At the most

aggregate level, IAMs and some ESMs do not model house-

holds at all. Instead, they derive market shares for different

technology/fuel combination in the residential sector using

mathematical functions that include technologies’ life cycle

costs. We call these Market allocation Models (MAMs). Promi-

nent examples in the US include NEMS44 and GCAM-US,7

while global IAM examples include IMAGE45 and TIMES.

Then there are a subset of ESMs that are detailed (‘‘bottom-

up’’) building simulation models, typically from the architecture

and building engineering community, which model physical

building characteristics to simulate heating energy demand—

we call these building models (BMs).11 Usually BMs focus

more on heating equipment operation than on adoption, but a

subset that are soft-linked to or part of IAMs project future

operation (for e.g., STURM46 in MESSAGE, or Res-IF in

IMACLIM47), which requires assumption on future adoption as

well. The most well-known example in the US is ResStock,

which has been used to assess the attractiveness of EHPs

across different building types.48 Lastly, we review ABMs,

whose raison d’etre is to model behavioral rules in households

involving interactions among them, such that markets’ emer-

gent properties can be observed through simulation.49

In the following, we crystallize the best practices from these

models in terms of how they reflect the evidence in the reviewed

literature, rather than comprehensively summarizing all models.

We will draw examples from three MAMs (NEMS, GCAM-US,

and IMAGE), and one BM (ResStock). We present the two deci-

sion stages and then discuss best practices in ABMs separately.
iScience 28, 111666, January 17, 2025 5
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First-stage decision
Among the reviewed MAMs, only NEMS models a two-stage de-

cision, whereby the market for replacement is first determined

before determining fuel and technology choice. The model deter-

mines the size of the replacementmarket based on the equipment

stock in the base year and a retirement rate for each equipment

type derived from an assumed useful life. The market for new

technologies is further constrained to a (seemingly arbitrary) value

of 20 percent of retirements among single-family homes to reflect

the bias in the population toward retaining their previous fuel/tech-

nology. The second stage decision rule to determine the replace-

ment fuel/technology is applied only to this 20 percent.
Fuel/technology choice
MAMs have market allocation rules for different technologies

based almost exclusively on life cycle costs, which include upfront

and operating costs. In order to prevent unrealistic ‘‘winner-take-

all’’ behavior—where themost cost-efficient technology would be

adopted by all households in the market—models employ

different mechanisms to constrain the market shares of new en-

trants.50 Typically, these are bias parameters or weights that are

calibrated using survey data to baseline market shares. As such,

they are ‘‘knobs’’ that proxy for, rather than explicitly represent,

the range of different underlying market dynamics that cause

gradual market takeover (e.g., fragmented markets).

Methodologically, heating technologies’ market shares are

derived using multinomial logit model estimations, which as-

sume these technologies are perfect substitutes. The shares

represent the probability of a household adopting a particular

technology conditional on the economic costs of the technology

and an ‘‘intangible’’ preference factor, since the costs alone

would not correctly predict existing market shares. The coeffi-

cient of the cost variable defines the sensitivity of the market

shares to changes in cost. Symbolically, they calibrate an equa-

tion of the form in the following, for j fuel/technology combina-

tions, where LCC is its life cycle cost, c may be the cost sensi-

tivity coefficient derived from a multinomial logit, b or a are

‘‘knobs’’ used by the modeler to prevent winner-take-all

behavior, which may also be calibrated from survey data.

Shares =
a:eðb+cLCCjÞ

P

cj

a:eðb+cLCCjÞ (Equation 1)

This form allows the models to project future market shares

based on changes in technology cost and physical household

conditions that may influence the heating operating costs. This

is how heterogeneity in the building stock can be included, as

with NEMS or ResStock. This cost coefficient also allows for pol-

icies that change costs, such as rebates for EHPs, to influence

projections. However, the preference/bias parameter is typically

a static residual factor that represents unexplained market con-

ditions in the base year. As such, changes in customer prefer-

ences over time would require a change to these bias parame-

ters. This would be important, because with growing market

shares of new technologies, peer effects, growing awareness

or other technology spillovers may well increase customer

receptiveness to EHPs. However, the present literature lacks
6 iScience 28, 111666, January 17, 2025
an empirical basis to calibrate future values for such a

parameter.

BMs that integrate with IAMs, such as STURM46 (with

MESSAGE) or Res-IRF47 (in IMACLIM-R), use a variation of the

aforementioned approach (Equation 1) of allocating technology

shares to households based on LCC. Rather than using a single

parameter to control a technology’s market share, they include a

technology-specific time-varying ‘‘intangiblecost’’ function that in-

cludes a parameter for transaction costs and a countervailing pos-

itive time-sensitive technology spillover that represents market

maturation. As such, the influence of this intangible reduces with

growing market share. However, all households still implicitly

have the same cost-minimizing decision rule. Some BMs, in

contrast to MAMs, model some household heterogeneity rather

than a single residential sector, and therefore have the potential

to incorporate different decision rules. However,mostmodels limit

this functionality tomodeling differences in home physical charac-

teristics in order to more accurately represent heating operation.

For example, ResStock creates a synthetic dataset of over

500,000householdsbasedonsimulationsof surveyedhouseholds

in order to represent the heterogeneity in building shells across the

US.48 However, other than income, the database has few descrip-

tors that can enable differentiation in household behavior.

BMs that project energy demand into the future typically have

a cohort model that simulates retirement and new construction,

and a model for technology adoption, which typically assume

standard economic payback or net-present-values.48 One BM,

TIMES,51 stands out for differentiating adoption decisions by

household group, by assigning them different discount rates

(or rates of return on their investment) and differential access

to new technologies. Such BMs could be used to investigate

different heuristics for triggering premature retirement. For

instance, a study of the Dutch building stock shows that a

younger building stock discourages renovations due to the

shortened payback horizon.52

In summary, if one were to draw out the features from all the

state-of-the-art IAM/ESM models that best represent demand

behavior, they would include: a two-stage process that first iden-

tifies a subset of households that are in themarket for a newheat-

ing system; further subdivision of the households in themarket by

geography and income; and the assignment to each subgroup of

different building shell efficiencies, climate conditions, discount

rates, and access to new heating technologies. However, it is

notable that other than the use of income-dependent discount

rates, such as in TIMES, no other behavioral attributes can be

found in the reviewedmodels.Wewill comeback to this in thedis-

cussion section where we discuss potential model improve-

ments, including the adoption of best practices across the field,

aswell as further refinements that couldpush theenvelope further

by incorporating insights from the social science literature.

BEHAVIORAL RESEARCH WITH ABMs

ABMs model consumer energy choices, including behavioral

drivers of technology adoption (see Table 1). The ABMs that

model adoption choices in our review have in common is that

they model some form of interaction between households and

examine emergent properties from these interactions. ABMs



Table 1. Summary of key features and insights from ABMs

Study Unit of analysisa
Behavioral

influences

Utility function

assumed (if any)

Empirical basis

for model

Validation

method

Interaction

variables

Emergent property

(outcome)

Snape et al.,53 ASHP, GSHP Economic payback;

peer effect;

technology hassle

factor

Weighted sum of

three factors:

Xdecision =wecon:xecon +

wsocial :xsocial �
whassle:xhassle

Secondary

sources

None Peer influence 1. Adoption plateaus in

three years

2. Peer effect only with

15% of neighbors

Niamir et al.54,55 Fuel switch Norm activation

theory (NAT)—

considering

knowledge K->

motivation M->

consideration C ->

action

Expected utility = share of

income to be spend on

composite good * (total

budget – energy cost) +

share of income to be

spend on energy

appliances * energy cost

800 households in

Navarre, a province

in Northern Spain.

None Adjust awareness

and motivation

factors to be the

mean of 8 closest

neighbors.

1. Bottom income groups

(<10k, 10–30, 30–50) are

most likely to switch to low-

carbon technologies.

2. Positive psychological

influence reduces energy

use by 67%.

3. Exchanging knowledge

lead to 78.25% decrease in

energy use

Sopha et al.56,57 Three heating

system—direct

electric heating,

individual wood-

pellet stove,

and air-to-air

heat pump.

Theory of planned

behavior (TPB)—

repetition,

deliberation,

imitation, social

comparison.

U = (c1* Attitude to heating

system adoption + c2 *

perceived behavioral

control + c3*personal

norm) * (1 – c4*social

influence) + (number of

adopters* social influence

co-efficient)

270 Norwegian

households

Network topology

and historical data

for wood-pallet

adoption rate is

adopted for

validation.

Social interaction is

defined by spatial

proximity.

1. Heat pump adoption rate

is higher for all regions

2. Electricity price

fluctuations encourage

wood pallet adoption.

Lee et al.58 Solar and

photovoltaic

systems, heat

pump

Multiple attribute

decision making

method (MLR)

U =
Pn

j = 1wjvjðxijÞ; i = 1;2;

3; ::;40

Stock model for 7790

owner-occupied

dwellings in the UK

Historic installation

rates for loft

insulation and

cavity wall

insulation for

1996–2008

Recommendation

from neighbors

(although no

values were

provided), no

description.

1. Subsidies did not

influence energy reduction

J Sachs et al.59 Gas boiler, heat

pump

Linear optimization-

based market

analysis based on

supply-demand

elasticities

NA A hypothetical region NA Number of adopters

in the whole market

Heat pump adoption rate is

greater due to low fuel cost

in comparison to other

options.
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are typically of smaller geographic scale than MAMs or ESMs,

which allows them to incorporate greater heterogeneity in

household behavior. For instance, some households may repeat

prior technology choices, other may imitate peers, and only a

subset may review costs. Some studies aim to develop house-

hold archetypes based on some combination of behavioral,

physical and socioeconomic attributes.58,59

While studies may differ in the types of emergent properties

they aim to examine, they usually assume a particular behavioral

theory or set of influences that drive their emergent properties.

The TPB is the most common, wherein several psychological

factors, such as attitudes and perceptions of agency, influence

intention. Authors usually construct the decision rule as a linear

utility function with some combination of economic, psycholog-

ical, and social drivers, weighted by their relative influence

(Equation 2 as follows).

Utilityi = weco:Ecoi +wpsy:Psychi +wsoc:Soci (Equation 2)

The economic payback function is typically more nuanced in

ABMs compared to MAMs and BMs by virtue of including

more detail in households’ energy costs such as differentiated

taxes/subsidies, discount rates or operating costs. Psychologi-

cal factors may include knowledge/awareness, attitudes (toward

the environment, technology, and effort involved), and agency/

control. Social influences usually are modeled as a neighbor-

hood or peer effect. Often ABMs use bespoke surveys to un-

cover the presence and strength of these factors, which stan-

dard national surveys do not contain. The survey data are

typically used to calibrate parameters in their decision rules.

One advantage of such a rich representation of decisions is

that ABMs can include other agents, such as government, con-

tractors or housing associations.62

ABMs provide useful insights on the importance of behavioral

attributes. For instance, one study in the UK show that a more

diverse set of heating technologies may be adopted under as-

sumptions of household heterogeneity relative to a homoge-

neous population.59 A study in Norway illustrates that the relative

competitiveness of biomass pellets relative to EHP depends on

multiple attributes, including price, performance and environ-

mental quality.56 Another study in the UK simulates how a ‘‘has-

sle’’ factor associating with installing EHPs can cause a tipping

point, which may explain significantly lower adoption rates in

UK relative to the rest of Europe.53

As with other types of models, limitations of ABMs are the vali-

dation of the underlying relationships. Surveys are often done

with the largest feasible population, which may nevertheless

be unrepresentative of a greater population. Most ABMs simu-

lating EHP adoption have been developed for European popula-

tions, so their translation to the US market is questionable. In

some cases, the underlying relationship is based entirely on

assumption, for the purpose of illustrating how differentiating

behavior in a population could lead to unexpected outcomes.
DISCUSSION

Currently most national models represent heating equipment

technology market shares rather than household decisions.



Table 2. Key model features in the literature and suggested future improvements

Common practice

Best practices in

reviewed models

Incremental

improvement

Long-term

improvements

Household heterogeneity None Differentiated by income

(e.g., GCAM), geography

and building type (e.g.,

ResStock)

Combined best

practices, calibrated to

national survey data

Identify behavior-

differentiating

dimensions; Include

differential influence of

social interaction

First-stage decision:

Equipment replacement

None Assumed retirement rate

(e.g., NEMS)

Include cohorts (e.g., by

equipment age

distribution)

Stochastic triggers (e.g.,

price shocks) based on

data

Second-stage decision: Technology choice

Technology learning Status quo bias

(calibrated to base year

data)

Allow market maturation,

stylized (e.g., TIMES)

Adopt best practices Parameterize technology

know-how, consumer

perceptions

Life cycle cost (LCC) Average LCC drives

adoption rates

Income-differentiated

switching cost (e.g.,

ResIRF/IMACLIM)

Income-differentiated

discount rates, intangible

costs

Differentiated cost

functions based on

group-specific

constraints, internal

retrofit costs (electrical,

distribution)

Social/government

interaction

None ABMs, represented but

not validated

– Survey-driven peer-

effects, utility/

government awareness

programs

Notes: Long-term, unlike Incremental, improvements, require additional data collection.
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Here we synthesize some constructive suggestions for how en-

ergy models can enhance realism in their EHP demand forecasts

(See Table 2). We discuss these in two categories: incremental

improvements that can be informed by existing models and liter-

ature and available data; and deeper structural model develop-

ment that would have to be built on new data collection. In

both, we address, where possible, three aspects of the adoption

decision process: the first stage decision to replace heating

equipment; the technology selection process; and household

heterogeneity.

Incremental model improvements
We have emphasized the importance of the retirement rate for

heating equipment. Explicitly incorporating the retirement deci-

sion may be the most important addition to energy models,

because it is a gating factor for EHP adoption, and because there

are feasible empirically based modeling strategies. NEMS’s

replacement market is an example of this first phase. Data on

the age distribution of heating equipment in energy surveys (for

e.g., the Annual Housing Survey or Residential Energy Con-

sumption Survey), annual sales, or building permits can serve

as starting points for estimating retirement rates. Additional re-

tirements can be triggered by hazard functions that simulate

equipment failures or fuel price shocks.

The next stage of technology selection involves a strong status

quo bias, which must be included in a dynamic form to allow for

the influence of future policies and market maturation on house-

holds’ awareness of EHP. A study on electric vehicle adoption

includes owners’ existing vehicle with proxies for switching

costs63 to model the status quo bias. As EHPs get more wide-
spread and known, either through social networks or policy ef-

forts, this bias may reduce. Models could include an additional

technology-specific parameter to counter this bias parameter

that reflects market maturity and grows with time, akin to the

time-dependent countervailing technology spillover in Res-IRF.

Third, differentiating households at least by income and geog-

raphy is essential for reflecting different costs and perceptions of

affordability. Although most models select technologies based

on life cycle costs, our review does not find sufficient evidence

that households account for costs on that basis. Upfront costs

may dominate cost perceptions. Nevertheless, in the absence

of clear evidence on how households factor economics in their

decision, modeling payback periods or life cycle costs seems

reasonable. In WTP studies households respond to questions

of affordability framed in payback terms, giving the impression

that they do understand life cycle costs. However, they could

just be taking the lead of researchers from their question design.

Modeling life cycle costs also offers the flexibility to model

different kinds of household constraints and policy support,

such as rebates on installed costs verses reduced electricity

rates. Thus, modeling income groups with differentiated dis-

count rates and payback period hurdles is state-of-the-art.

Some studies calculate the equivalent of an elasticity of WTP

to income, which can be implemented with income-differenti-

ated groups.

Deeper integration between models and empirical
research
The two-stage decision can be better modeled with a deeper un-

derstanding of market dynamics and household conditions. We
iScience 28, 111666, January 17, 2025 9



iScience
Review

ll
OPEN ACCESS
have learned that price shocks, moving house and aggressive

marketing (in Europe) have all led to premature retirement of

heating equipment. Future fieldwork that targets EHP adopters

and focuses on uncovering the tipping point for these decisions

would be useful. Some triggers (e.g., price shocks and equip-

ment failures) can be represented stochastically, informed by

historical data.

Market maturation and the influence of policy incentives need

to be understood to model realistic bias parameters for technol-

ogies. ABMs have an important role here, since they focus on

modeling interaction between agents. They can study knowl-

edge spillover among households, or government influence on

households with different trust levels. However, future ABMs

need methodological improvements to ground them in reality.

We have pointed out issues with validation and generalizability

previously. The best practices for developing ABMs have been

reviewed elsewhere.49

Regarding technology choice, ideally models would be deri-

ved from empirically validated theories of technology selection

that identify factors that people consider, their relative strengths,

how they combine to influence decisions, and how all these ele-

ments vary across the population. From our review, we have

learned about the factors that seem to enter people’s calculus,

and that the set of factors and their relative importance vary for

different population groups. However, the relative strengths of

these factors and how they vary across the population has not

been quantified.

We need further empirical research to determine the weights

of these factors for a representative sample of the population,

so that the population can be clustered into groups with similar

behavior. The most important behavioral attributes that differen-

tiate choices need to be drawn out and represented. Since there

is an intention-action gap, surveys need to target households

that have been in themarket for new heating equipment. Reports

of surveyed attitudes should state clearly in which phase the fea-

tures are observed; for example, if they reflect intention rather

than adoption. With so many gaps in understanding, the likely

variation in howpeoplemake decisions, and the range of circum-

stances in which they make them, we need national-scale sur-

veys that can yield generalizable results.

Other than affordability, the literature offers little guidance on

how to differentiate behavior across the US population. Even

with regard to affordability, the literature his little guidance on un-

derstanding affordability constraints in low-income commu-

nities, such as upfront cash constraints or credit eligibility. One

can conjecture many reasonable criteria for differentiation, as

have been modeled in ABMs, such as spatially sensitive peer ef-

fects, differences in knowledge about EHPs between urban and

rural households or between different education levels, or recep-

tivity to new innovative technologies by wealthier and younger

households. However, these effects are known qualitatively.

The strength of their influence relative to each other for different

population groups has yet to be quantified. Iteration could be un-

dertaken between ABM sensitivity studies and rapid polling

techniques that probe factors determined to be particularly

important for overall transition rates or the distribution of bene-

fits. Finally, there are other factors that may play a role that

have not been investigated. As mentioned earlier, the need to
10 iScience 28, 111666, January 17, 2025
replace AC equipment, or the side benefit of cooling in temperate

regions that are increasingly experiencing extreme heat, merits

investigation. Landlords and single-family homeowners may

have different sets of incentives and decision criteria. Among

new home purchasers, commercial entities that purchase for

resale may be more inclined to replace heating equipment. Con-

tractors are an important intermediary who influence house-

holds’ knowledge and behavior, and whose own knowledge

and training on and incentives to sell heat pumps likely vary

widely and merits investigation. Changes in government regula-

tions or outright bans of fossil fuel-based heating equipment in-

crease the attractiveness of EHPs, but their enforcement may be

important in communities that distrust government.
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56. Sopha, B.M., Klöckner, C.A., Skjevrak, G., and Hertwich, E.G. (2010). Nor-

wegian households’ perception of wood pellet stove compared to air-to-

air heat pump and electric heating. Energy Pol. 38, 3744–3754. https://

doi.org/10.1016/j.enpol.2010.02.052.
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