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The rapid growth of the Chinese economy has significantly escalated energy
consumption and carbon emissions. The imperative to achieve synergies in
energy conservation and carbon reduction has never been more pressing.
Digital development presents promising avenues for addressing these
challenges, making it crucial to investigate its impact on energy intensity (EI)
and carbon emission performance (CEP). This study integrates the super
efficiency epsilon-based measure (SE-EBM), mediation effect, and threshold
effect models to assess the influence of digital development on EI and CEP
using data from 267 cities across China from 2011 to 2019. Our findings
demonstrate a notable 23.1% reduction in EI and an 18.5% improvement in
CEP attributable to digital development. Moreover, our analysis underscores
the pivotal role of technological innovation as a transformative conduit.
Importantly, we identify significant threshold effects linked to economic
development stages. This study not only enriches our understanding of
pathways to energy conservation and carbon reduction but also provides
compelling evidence supporting policies aimed at fostering and accelerating
digital development initiatives.
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1 Introduction

The rapid expansion of digitalization has profoundly impacted China’s production and
daily life. According to Pan et al. (2022), the development of the digital economy contributes
to promoting the transition towards green production and lifestyles. From 2012 to 2022,
China achieved an annual energy consumption growth rate of 6.2%, leading to a cumulative
26.4% decrease in energy intensity (EI), equivalent to a reduction of approximately
1.41 billion tons of standard coal and nearly three billion tons of carbon emissions
(CAC, 2022). The integration of the digital economy with traditional industries has
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enhanced resource utilization efficiency, promoting low-carbon
production and sustainability (Ghobakhloo, 2020; Ding et al.,
2022). Therefore, digital development significantly contributes to
achieving green and low-carbon objectives.

Numerous studies have investigated the energy and
environmental impacts of the digital economy (Haseeb et al.,
2019; Lange et al., 2020; Zhang et al., 2022; Ma et al., 2022; Guo
et al., 2023). However, our study identifies two potential gaps
compared to existing research: Firstly, previous studies
predominantly focus on energy consumption impacts, neglecting
EI. For example, these studies examine digital development’s
influence on energy consumption (Salahuddin and Alam, 2016;
Lange et al., 2020; Ren et al., 2021; Zheng and Wang, 2021), energy
transition (Shahbaz et al., 2022), energy security (Lee et al., 2022; Li
et al., 2024), and energy sustainability (Wang et al., 2022b).
Secondly, existing research predominantly assesses carbon
emissions and environmental pollution impacts, neglecting
carbon emission performance (CEP). For example, studies
explore digital development’s effects on carbon emissions
(Paschou et al., 2020; Ahmed and Le, 2021; Xu et al., 2021;
Zhang et al., 2022; Dong et al., 2022; Dwivedi et al., 2022),
environmental quality (Raza and Tang, 2022; Xu et al., 2022),
and air pollution (Wu et al., 2023). Moreover, there is limited
research focusing on developing countries, particularly China,
which faces significant challenges related to carbon emissions and
energy consumption (Jiang and Raza, 2023). Therefore, our study
aims to fill these gaps in the existing literature, contributing to
carbon neutrality goals and promoting digital development in
developing countries.

This study offers several significant contributions to the
literature. Firstly, while previous studies separately examine
energy and carbon emissions (Husaini and Lean, 2022; Khan
et al., 2022), our study provides a comprehensive assessment
under a unified framework. Secondly, while many studies
traditionally use energy consumption and carbon emissions as
indicators (Salahuddin et al., 2016; Lange et al., 2020), we
introduce metrics for EI and CEP, essential for understanding
energy efficiency and emission reduction efforts. Thirdly,
whereas existing research often relies on simple linear models
(He et al., 2021; Zhang and Liu, 2022), we employ advanced linear
models alongside mediation and threshold effect models. These
models enable a comprehensive evaluation of the indirect and
threshold effects of digital development on EI and CEP. By
integrating theoretical insights with empirical analysis, our
study provides a nuanced understanding of how digital
development influences energy conservation and emission
reduction strategies.

This study integrated the super efficiency epsilon-based measure
(SE-EBM), mediation effect, and threshold effect models to assess
the impact of digital development on EI and CEP using data from
267 cities in China from 2011 to 2019. CEP was calculated using the
SE-EBM model, evaluating the linear, nonlinear, and threshold
effects of digital development on EI and CEP using fixed effects,
mediation effects, and threshold effects models. Furthermore, four
robustness analysis methods were employed to test the stability of
empirical results.

The logical structure of this study is as follows: Section 2 reviews
the literature, Section 3 describes the methodology and data sources,

Section 4 presents empirical results, and Section 5 provides
conclusions and policy implications.

2 Literature review

2.1 Impact of digital development on energy
consumption

Many existing studies have examined the impact of digital
development on energy consumption reduction (Schulte et al.,
2016; Cao et al., 2021). Cao et al. (2021) used digital finance as
an indicator and found significant energy consumption reductions
associated with digital development. Scholars have also highlighted
digital development’s role in enhancing energy sustainability (Wang
et al., 2022b; Husaini and Lean, 2022) and promoting the adoption
of new energy sources (Li et al., 2021; Hong Nham et al., 2023) or
clean energy (Wang et al., 2023). Shahbaz et al. (2022) reported a
notable increase in renewable energy usage by 0.021% due to digital
development, contributing to green and sustainable development
(Chen, 2022).

However, some researchers argue that the growth of the internet
has led to increased energy consumption (Ren et al., 2021). Despite
this, most studies emphasize the positive impact of digital
development on reducing energy consumption and improving
sustainability. EI serves as a crucial metric for assessing green
and high-quality development, although digital development may
adversely affect EI. Unfortunately, research specifically investigating
the role of digital development in EI remains limited.

2.2 Impact of digital development on
carbon emissions

Numerous studies have demonstrated the positive effect of
digital development on reducing carbon emissions (Wang et al.,
2022a; Li and Wang, 2022). Wang et al. (2022a) reported that a 1%
increase in digital development correlates with a 0.886% decrease in
carbon emissions. Digital development has been shown to facilitate
significant reductions in carbon emissions through optimized
energy mixes aimed at achieving carbon neutrality (Guo et al.,
2022). Additionally, studies indicate that digital development
plays a critical role in promoting low-carbon sustainable
development, particularly in economically advanced eastern
regions (Zhang et al., 2022; Lee and Wang, 2022). Some scholars
have underscored the role of digital finance in advancing
environmental sustainability (Ozturk and Ullah, 2022).

Conversely, others argue that digital development exacerbates
carbon emissions, particularly in China (Zhou et al., 2019; Zhang
et al., 2022; Li et al., 2018). Zhou et al. (2022) suggested that digital
development has contributed to a 6% increase in China’s total
carbon emissions. Despite these findings, most scholars maintain
that digital development ultimately benefits carbon emissions
reduction. Existing research has predominantly focused on
assessing CEP and its impacts on carbon emissions, overlooking
research from the perspective of CEP. CEP is crucial for
understanding the relationship between carbon emissions and
economic growth, thereby serving as a pivotal indicator for green
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development. Based on existing research, we propose that digital
development presents new opportunities for enhancing CEP,
although research specifically evaluating this remains scarce.

2.3 Energy-saving and emission reduction
effects of digital development

Achieving synergies in energy conservation and carbon
reduction is crucial for sustainable development, aligning with
China’s goals of peak carbon emissions by 2030 and carbon
neutrality by 2060 (SCPRC, 2021; Chen et al., 2018). The Chinese

government emphasizes coordinated efforts in energy conservation
and carbon reduction through initiatives like the “Notice on the
Action Plan for Peak Carbon Emissions by 2030”. These efforts aim to
increase the share of non-fossil energy consumption to approximately
20% by 2025, reduce energy consumption per unit of GDP by 13.5%
from 2020 levels, and lower carbon dioxide emissions per unit of GDP
by 18% from 2020 levels.

Existing literature, as reviewed in Section 2.1, Section 2.2,
predominantly focuses on separate analyses of energy
consumption and carbon emissions, overlooking synergistic
effects within a unified framework. Moreover, existing studies
often neglect EI and CEP, which are closely tied to economic growth.

FIGURE 1
Research framework.

TABLE 1 Variable definitions.

Variable Abbreviation Definition

Energy intensity LnEI Proportion of energy consumption in GDP (log)

Carbon emission performance LnCEP Quantified through the SE-EBM model (log)

Digital development LnDD Calculations were performed using PCA (log)

Population density LnPOPD The ratio of urban population to the urban area (log)

Industrialization LnIND Secondary industry’s share in city GDP (log)

Service industry LnSER The ratio of the tertiary industry to the city’s total GDP (log)

Financial development LnFD Measured using the urban deposit-loan balance to GDP metric (log)

Energy structure LnES Proportion of electricity consumption in total energy use

Frontiers in Environmental Science frontiersin.org03

Wang et al. 10.3389/fenvs.2024.1397753

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2024.1397753


To address these gaps, our study evaluates the synergistic effects
of digital development on EI and CEP under a unified framework.
Based on the literature review, we hypothesize that digital
development synergistically reduces EI and enhances CEP. Our
hypotheses are as follows.

Hypothesis 1. Digital development has a significant synergistic
effect on reducing EI and enhancing CEP.

2.4 Mechanism analysis

While existing research confirms the positive role of digital
development in reducing energy consumption and carbon emissions
(Chen et al., 2016; Wurlod and Noailly, 2018; Ajayi and Reiner,
2020; Chakraborty and Mazzanti, 2020), it often lacks theoretical
explanations for underlying mechanisms. Digital development
facilitates technological innovation and drives investments in
technology (Vavilina et al., 2020; Zhou et al., 2020). For instance,
Zhou et al. (2020) found that digital development promotes

technological innovation, demonstrating robust empirical results
using patent counts as indicators.

Technological innovation and scientific inputs are critical
pathways through which digital development influences EI and
CEP. Scholars have shown that digital development drives
technological innovation (Apostolov and Coco, 2021; Li et al.,
2017; Radicic and Petkovic, 2023) and that technological
innovation positively impacts EI and CEP (Ma et al., 2021;
Wahab, 2021; Wang and Liu, 2022). Thus, technological
innovation serves as an intermediary variable in the relationship
between digital development, EI, and CEP.

China’s economic growth has been accompanied by regional
disparities in energy and environmental outcomes (Zhang et al.,
2022; Shahbaz et al., 2022). Financial development plays a crucial role
in achieving carbon neutrality and promoting new energy development.
Regional disparities, economic growth, and financial development
heterogeneity may influence the impact of digital development on EI
and CEP. Figure 1 illustrates our research framework.

Hypothesis 2. Digital development reduces EI and improves CEP
through technological innovation.

Hypothesis 3. The impact of digital development on EI and CEP
varies across different regions in China.

Hypothesis 4. The relationship between digital development and
EI and CEP exhibits threshold effects related to economic growth
and financial development.

3 Method and data

3.1 Method

The methodological approach in this study was carefully chosen
to ensure robust analysis. We selected the fixed effects model to
assess how digital development impacts EI and CEP, focusing on

TABLE 2 Brief analysis of variables.

Variable Obs Mean Std.Dev Min Max

LnEI 2,403 −1.796 0.651 −3.448 2.131

LnCEP 2,403 −0.676 0.413 −3.153 0.425

LnDD 2,403 8.641 0.943 5.801 12.803

LnPOPD 2,403 6.473 0.934 2.263 9.564

LnIND 2,403 3.828 0.272 2.551 4.492

LnSER 2,403 3.808 0.264 2.317 4.425

LnFD 2,403 1.072 0.434 −0.581 3.413

LnES 2,403 −0.230 0.211 −1.429 −0.002

FIGURE 2
Scatter correlation between digital development, energy intensity, and carbon emission performance.
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TABLE 3 Baseline regression results.

Dependent variable: LnEI Dependent variable: LnCEP

(1) (2) (3) (4) (5) (6)

LnDD −0.165*** −0.169*** −0.231*** 0.123*** 0.136*** 0.185***

(0.026) (0.021) (0.016) (0.011) (0.007) (0.007)

LnPOPD −0.002 −0.024* −0.034* −0.025**

(0.020) (0.013) (0.016) (0.009)

LnIND −0.103 0.485*** −0.050 −0.435***

(0.072) (0.103) (0.034) (0.075)

LnSER 0.174* 0.044

(0.081) (0.075)

LnFD 0.578*** −0.523***

(0.044) (0.024)

LnEL 0.041 −0.022

(0.140) (0.039)

CONS −0.532** −0.082 −2.889*** −1.737*** −1.436*** −0.063

(0.218) (0.565) (0.726) (0.090) (0.177) (0.554)

FE YES YES YES YES YES YES

N 2,403 2,403 2,403 2,403 2,403 2,403

R2 0.240 0.242 0.344 0.079 0.085 0.280

Note that standard errors are in parentheses; FE, refers to the fixed effects for both time and city.
ap < 0.1.
bp < 0.05, and.
cp < 0.01.

TABLE 4 Estimation results of the mediating effect.

Variables Dependent variable: LnEI Dependent variable: LnCEP

LnSI LnEI LnTI LnEI LnSI LnCEP LnTI LnCEP

(1) (2) (3) (4) (5) (6) (7) (8)

LnDD 1.260*** −0.104*** 0.055*** −0.231*** 1.260*** 0.104*** 0.055*** 0.181***

(0.025) (0.019) (0.006) (0.015) (0.025) (0.008) (0.006) (0.007)

LnSI −0.100*** 0.064***

(0.024) (0.005)

LnTI −0.002* 0.088***

(0.026) (0.017)

CONTROL YES YES YES YES YES YES YES YES

CONS −16.305*** −4.527*** −2.464** −2.863*** −16.305*** 1.165*** −2.464** 0.141

(1.140) (0.425) (0.748) (0.734) (1.140) (0.396) (0.748) (0.395)

FE YES YES YES YES YES YES YES YES

N 2,403 2,403 2,398 2,398 2,403 2,403 2,398 2,398

R2 0.568 0.376 0.102 0.345 0.568 0.403 0.102 0.288

The standard errors are in parentheses; CONTROL, refers to the controlling variables; FE, refers to the fixed effects for both time and city.
ap < 0.1.
bp < 0.05.
cp < 0.01.
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linear effect analysis while controlling for potential individual
effects. Subsequently, we employed the panel threshold model to
explore nonlinear effects, investigating the thresholds of digital
development on EI and CEP. Additionally, we used the
mediation effect model to examine the mechanisms through
which digital development influences EI and CEP, facilitating
path analysis. Hence, our methodology not only adheres to the
logical framework of the study but also ensures the applicability and
comprehensiveness of the methods.

3.1.1 Baseline model
In our baseline model, digital development serves as the

independent variable, while EI and CEP are the dependent
variables. This model aims to elucidate how digital development
enhances EI and CEP. Referring to the model of Chen et al. (2018),
we set the following model:

yit � α0 + b1DDit +∑5

g�1fgxgit + γi + ρt + εit

where yit represents the values of EI and CEP for city i at time t, DD
denotes the digital development variable, and b1 is the coefficient of
interest. We anticipated a positive value for b1, indicating that digital
development positively influenced the improvement of both EI and
CEP. f represents the parameter for other variables, and x is the
control variable. α0 and εit correspond to the intercept and error
terms, respectively. ρt and γi captured the time and city fixed effects,
respectively.

3.1.2 Panel threshold model
The impact of digital development on EI and CEP is influenced

by various factors, leading to a nonlinear relationship between them.
To explore this, we propose employing a threshold model to
investigate how digital development affects EI and CEP under

TABLE 5 Regression results of regional and urban heterogeneity.

Dependent variable: LnEI Dependent variable: LnCEP

Eastern Central Western Eastern Central Western

LnDD −0.253*** −0.227*** −0.196*** 0.008 0.117*** 0.051

(0.020) (0.010) (0.027) (0.030) (0.028) (0.034)

CONTROL YES YES YES YES YES YES

CONS −2.281*** −0.108 −6.375*** −0.089 −1.028 −1.178

(0.461) (0.738) (1.574) (1.132) (0.836) (1.237)

FE YES YES YES YES YES YES

N 1,008 900 495 1,008 900 495

R2 0.370 0.358 0.353 0.090 0.178 0.150

Note that standard errors are in parentheses; CONTROL, refers to control variables; FE, refers to the fixed effects for both time and city.
ap < 0.1.
bp < 0.05.
cp < 0.01.

TABLE 6 Regression results of urban heterogeneity.

Dependent variable: LnEI Dependent variable: LnCEP

TCZ Non-TCZ TCZ Non-TCZ

LnDD −0.300*** −0.088*** 0.210*** 0.110***

(0.015) (0.015) (0.014) (0.007)

CONTROL YES YES YES YES

CONS −2.877*** 0.031 −3.226*** −2.349**

(0.543) (0.548) (0.743) (0.770)

FE YES YES YES YES

N 1,188 1,215 2079 324

R2 0.417 0.442 0.350 0.396

Note that standard errors are in parentheses; CONTROL, refers to control variables; FE, refers to the fixed effects for both time and city.
ap < 0.1.
bp < 0.05.
cp < 0.01.
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different conditions. Given significant regional disparities in
economic growth and financial development (Zhang et al., 2022;
Shahbaz et al., 2022), these variables are considered potential
thresholds that may reveal distinct effects on EI and CEP.

By incorporating these threshold variables, we aim to capture
the nonlinear dynamics of the relationship and precisely identify
the thresholds at which digital economic development impacts
EI and CEP (Zhou and Li, 2022). Referring to the model of Zhou

and Li (2022), We include the identified threshold variables to
elucidate the nonlinear effects of digital development on EI
and CEP:

yit � αi + b1DDitI c< h1( ) + b2DDitI h1 ≤ c< h2( )
+ b3DDitI h2 ≤ c< h3( ) + b4DDitI c≥ h3( ) +∑5

g�1fgXgit + γi

+ ρt + εit

TABLE 7 Estimation results of the instrumental variables.

Variables Dependent variable: LnEI Dependent variable: LnCEP

First stage regression Second stage
regression

First stage regression Second stage
regression

IV1: L.Y

L.Y 0.932*** 0.932***

(0.009) (0.009)

LnDD −0.239*** 0.200***

(0.018) (0.011)

CONTROL YES YES YES YES

CONS YES YES YES YES

Endogeneity tests 5.703** 14.047***

Partial R-sq 0.868 0.868

Kleibergen‒Paap rk LM 84.362*** 84.362***

Kleibergen‒Paap rk Wald F 99.571 99.571

FE YES YES YES YES

N 2,136 2,136 2,136 2,136

R2 0.915 0.205 0.915 0.277

IV2:Telephone × Internet

Telephone × Internet 0.207*** 0.207***

(0.011) (0.011)

LnDD −0.223*** 0.217***

(0.023) (0.015)

CONTROL YES YES YES YES

CONS YES YES YES YES

Endogeneity tests 5.603** 6.585**

Partial R-sq 0.768 0.768

Kleibergen‒Paap rk LM 5.007** 5.007**

Kleibergen‒Paap rk Wald F 13.921 13.921

FE YES YES YES YES

N 2,403 2,403 2,403 2,403

R2 0.552 0.192 0.552 0.277

Note that standard errors are in parentheses; CONTROL, refers to control variables; FE, refers to the fixed effects for both time and city.
ap < 0.1.
bp < 0.05.
cp < 0.01.
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where c and h stand for the threshold variable and value,
respectively. The study considered economic growth and financial
development as threshold variables, with an indicative function (I)
applied. A value of one was assigned when correct; otherwise, a value
of 0 was assigned. The remaining parameters are identical
to Model (1).

3.1.3 Mediation effect model
In this section, we design the channels through which

technological investment and innovation impact innovation by
constructing a mechanistic analytical model to ensure the
accuracy and comprehensiveness of the model (Lee et al., 2022).
Referring to the model of Lee et al. (2022), we set the
following model:

yit � a0 + a1DDit +∑5

g�1fgxgit + γi + ρt + εit

mit � d0 + d1DDit +∑5

g�1fgxgit + γi + ρt + εit

yit � e0 + e1DDit + e2mit +∑5

g�1fgxgit + γi + ρt + εit

where m denotes the intermediate variable encompassing two forms:
scientific input (SI) and technological innovation (TI). The coefficient
e2 is crucial, and if significant, it indicates a substantial mediating
effect ofm.Our study anticipated both positive and negative outcomes
for e2. The parameter f is to be estimated, while a0, d0, e0, and εit
represent the intercepts and error terms, respectively. The remaining
parameters are identical to Model (1).

3.2 Variables

3.2.1 Dependent variable
(i) EI. The EI variable serves as a crucial strategy for achieving

carbon neutrality and fostering sustainable economic
development. Numerous scholars have investigated the
influence of EI on carbon emissions (Shahbaz et al.,
2015; Huang et al., 2020). A commonly employed
indicator for energy conservation was the EI, which
assesses the proportion of energy consumption to GDP.
As a pivotal metric for shaping energy policies, EI plays a
significant role in advancing green development (Bashir
et al., 2021). In this study, we applied the proportional
method to compute the share of energy to GDP, which
serves as an indicator of EI based on existing research
(Zhou et al., 2022).

(ii) CEP. The CEP is a crucial metric for evaluating the efficacy
of green development. In this study, the SE-EBM model, as
referenced in prior works (Tone and Tsutsui, 2010; Akbari
et al., 2020; Jalo et al., 2021; Zhou and Li, 2024), was
employed to compute the CEP index. The detailed
calculation process of the SE-EBM model is provided
in Appendix A.

The model’s input indicators encompassed labor, capital,
and energy consumption, while its output indicators
encompassed economic development and environmental
pollution. Labour was quantified using the urban working
population, and capital was measured by summing current
and fixed capital at year-end. Energy consumption included
liquefied petroleum gas, natural gas, electricity, and heating
and was converted to standard coal values based on prior
research (Ru et al., 2015) (unit: 10,000 tons of standard coal).
The GDP measures economic output (unit: 100 million yuan),
while sulfur dioxide emissions assess environmental outcomes

TABLE 8 Excluding the impact of other policies.

Variables Remove SC policy Remove CET policy

LnEI LnCEP LnEI LnCEP

LnDD −0.233*** 0.184*** −0.245*** 0.198***

(0.018) (0.008) (0.010) (0.007)

CONTROL YES YES YES YES

CONS −3.259*** 0.708 −3.226*** 0.504

(0.604) (0.387) (0.743) (0.450)

FE YES YES YES YES

N 2,106 2,106 2079 2079

R2 0.340 0.363 0.350 0.369

Note that standard errors are in parentheses; CONTROL, refers to control variables.
ap < 0.1.
bp < 0.05.
cp < 0.01.

TABLE 9 Regression results of the GMM estimation.

Variables Dependent variable:
LnEI

Dependent variable:
LnCEP

(1) (2)

L.EI 0.753***

(0.024)

L.CEP 0.450***

(0.040)

LnDD −0.068*** 0.097***

(0.014) (0.014)

CONTROL YES YES

FE YES YES

N 2,403 2,403

Wald 45,589.25*** 6089.65***

AR (1) 0.000 0.000

AR (2) 0.475 0.102

Sargan test 764.89 792.25

Hansen test 157.10 173.01

Note that standard errors are in parentheses, CONTROL, refers to the control variable, and

FE, refers to the fixed effects for both time and city.
ap < 0.1.
bp < 0.05.
cp < 0.01.
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(unit: 10,000 tons) (Bi et al., 2014; Shan et al., 2020; Zhou and Li,
2020; Zhou et al., 2023).

3.2.2 Independent variables
The independent variable in this study was digital development,

constituting a comprehensive index derived from various elements.
According to previous studies (Bukht and Heeks, 2017; Li and
Wang, 2022; Yi et al., 2022; Zhu and Chen, 2022; Wu et al.,
2023), digital development encompasses five key dimensions: (1)
telecom business revenue (measured in ten thousand yuan), (2)
computer employment (measured by the number of people
employed), (3) internet broadband households (measured in ten
thousand households), (4) mobile phone users (measured in
10,000 persons), and (5) the inclusive finance index (measured
without units).

To simplify and consolidate these dimensions into a single
index, the principal component analysis (PCA) method was
employed—a widely adopted approach for constructing
composite indicators (Interlenghi et al., 2017; Pan et al., 2022).
Consequently, the study employed the PCAmethod to construct the
digital development index.

3.2.3 Control variables
To mitigate the potential interference of extraneous factors

on EI and CEP, we controlled for five relevant variables in this
study: (1) population density, which was measured as the ratio of
total urban registered population to urban area at year-end
(Danish et al., 2020); (2) industrialization, which was
measured by the proportion of the GDP of the secondary
industry to the total GDP in each year (Li et al., 2022); (3)
service industry development, which was calculated as the
proportion of tertiary industry added value in GDP (Li et al.,
2022); (4) financial development, which was measured as the
ratio of urban deposit and loan balance to the urban total GDP
(Qu et al., 2020); and (5) energy structure, which was measured as

the ratio of electricity consumption to the total energy
consumption (Zhou and Li, 2022). We present the definitions
and sources of the variables used in Table 1.

3.3 Data sources

This study employed panel data encompassing 267 Chinese
cities from 2011 to 2019. The data sources included the China Urban
Statistical Yearbook (CUS, 2021), National Bureau of Statistics
(NBS, 2021), China Energy Administration (CEA, 2021), and
China Environmental Statistical Yearbook (CES, 2021). The
control and dependent variables originated from CUS and NBS,
while the independent variable was derived from CUS. The
environmental pollution data were sourced from the CES.
Table 2 summarizes the statistical analysis of the key variables.
The dataset encompassed 267 cities over 9 years, totaling
2,403 observations.

Figure 2 depicts the scatter correlation between digital
development, EI, and CEP. The results show a negative
correlation between digital development and EI and a positive
correlation with CEP. This implies that digital development has
the potential to reduce EI and improve CEP. To enhance the
empirical analysis results, these variables underwent a logarithmic
transformation.

4 Results and discussion

4.1 Impact assessment analysis

4.1.1 Direct effect analysis
To address potential serial correlation and heteroscedasticity, we

utilized a robust standard error estimation equation clustered by city
and a benchmark regression model.

TABLE 10 Regression results after narrowing the study period and excluding key cities.

Variable Dependent variable: LnEI Dependent variable: LnCEP

2012–2019 2013–2018 2014–2017 2012–2019 2013–2018 2014–2017

(1) (2) (3) (4) (5) (6)

LnDD −0.233*** −0.232*** −0.235*** 0.184*** 0.181*** 0.195***

(0.017) (0.019) (0.026) (0.008) (0.010) (0.007)

CONTROL YES YES YES YES YES YES

CONS −2.366** −3.110** 0.001 0.442 0.980** 0.001

(0.752) (0.804) (0.001) (0.402) (0.265) (0.001)

FE YES YES YES YES YES YES

N 2,136 1,602 1,068 2,136 1,602 1,068

R2 0.359 0.358 0.350 0.377 0.371 0.396

Note that standard errors are in parentheses; CONTROL, refers to the control variable.
ap < 0.1.
bp < 0.05.
cp < 0.01.
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Table 3 summarizes the results of the direct effect analysis.
Columns (1) to (3) show the impact of digital development on EI,
while columns (4) to (6) detail its influence on CEP. The LnDD
regression coefficients in columns (1) to (3) were all negative,
statistically significant at the 1% level, and amounted
to −0.165, −0.169, and −0.231, respectively. This indicated a
significant reduction in EI of 0.231 units due to digital
development, aligning with previous studies (Husaini and Lean,
2022; Shahbaz et al., 2022), which found a 2.1% increase in
renewable energy attributed to digital advancements.

Columns (4) to (6) reveal positive LnDD regression coefficients
of 0.123, 0.136, and 0.185, respectively, which are statistically
significant at the 1% level. This suggested that digital
development could enhance CEP.

The control variables also yielded significant results. The
positive and statistically significant coefficients of LnIND and

LnFD suggested that industrialization and finance fostered EI.
However, our findings did not support the role of population
density in CEP improvement, contrary to the conclusions of
other scholars (Morikawa, 2012). Additionally, population
density, industrialization, and financial development negatively
impacted CEP, consistent with existing research (Morikawa,
2012). Therefore, Hypothesis 1 was confirmed.

4.1.2 Mediation effect analysis
In this section, we employed an intermediary effect model,

incorporating scientific input and technological innovation as
mediating variables. Our study yielded substantial and
noteworthy results, which are briefly summarized in Table 4.

When the dependent variable is EI, we find a statistically
significant positive correlation between EI and technological
input, with a coefficient value of 1.260, indicating that digital
development significantly enhances SI. The second column shows
regression coefficients of −0.104 and −0.100 for digital development
and technological input, respectively, both of which are significant,
indicating that digital development and SI significantly reduce EI,
with SI exerting a significant mediating effect. In columns three and
four, TI is also positively influenced by digital development, with
scholars revealing the mediating effect of TI on EI (Voigt et al., 2014;
Wurlod and Noailly, 2018).

When the dependent variable is CEP, our findings regarding the
impact of digital development align with the results for EI.
Specifically, columns (5) through (8) reveal a significant positive
impact on CEP, with SI and TI also showing significant positive
effects, confirming the mediating role of CEP (He et al., 2021; Zhang
and Liu, 2022). These findings suggest that digital development,
through increased scientific input and technological innovation, can
significantly reduce EI and enhance CEP. Thus, this conclusion
validates Hypothesis 2 that digital development influences EI and
CEP through SI and TI.

4.1.3 Heterogeneity analysis
Table 5 shows that the regression coefficients of LnDD across

regions were all significantly negatively correlated with EI at the 1%
level, with coefficient values of −0.253, −0.227, and −0.196,
respectively. This implies that digital development significantly
reduces EI in all regions, with the strongest impact observed in
the eastern region and the weakest in the western region. When the
dependent variable was CEP, the coefficient of LnDD was
significantly positively correlated only with the central region,
with a coefficient value of 0.117, while the eastern and western
regions showed positive effects but were not significant. This
indicated that digital development significantly increased CEP
only in the central region. This result was consistent with
previous research (Guang et al., 2019). These findings suggest
significant heterogeneity effects of digital development on EI and
CEP. The reason for the above phenomenon may lie in the
differences in efficiency improvement between regional
development and pollution emissions. Variations in resource
endowment and technological levels across different cities
contribute to the heterogeneity of digital development. Despite
the advanced technology and economic strength in the eastern
region, it still faces significant challenges in terms of energy
conservation and emission reduction. With its lower

TABLE 11 Estimated results of the panel threshold model.

Dependent
variable: LnEI

Dependent
variable: LnCEP

(1) (2)

LnDD (h < 5.253) −0.119***

(0.031)

LnDD (5.253 ≤ h <
5.376)

−0.073**

(0.029)

LnDD (5.376 ≤ h <
5.456)

−0.054*

(0.028)

LnDD (h ≥ 5.456) −0.027

(0.028)

LnDD (h < 6.489) 0.000

(0.017)

LnDD (6.489 ≤ h <
6.533)

0.021

(0.017)

LnDD (6.533 ≤ h <
7.286)

0.044***

(0.017)

LnDD (h ≥ 7.286) 0.065***

(0.017)

CONTROL Yes Yes

CONS Yes Yes

FE Yes Yes

N 2,403 2,403

R2 0.367 0.202

The standard errors are in parentheses, and CONTROL, refers to the control variable.
ap < 0.1.
bp < 0.05.
cp < 0.01.
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technological level, the western region exerts less influence on CEP
than does the central region. These findings support Hypothesis 3.

The establishment of China’s two control zones (TCZ),
including acid rain control zones and sulfur dioxide pollution
control zones, primarily aims to manage and regulate
environmental protection (Zhou et al., 2023). Consequently, these
policies create significant heterogeneity in urban energy
conservation and emissions reduction efforts. Analyzing the
heterogeneous effects of TCZ policies on energy conservation and
emissions reduction across different cities is essential for
understanding their outcomes in diverse environmental contexts.
Therefore, it is imperative for this study to conduct an analysis of
TCZ heterogeneity.

Table 6 summarizes the urban heterogeneity results. When EI
serves as the dependent variable, cities within TCZ exhibit
regression coefficients of DD with absolute values (0.300) greater
than those in Non-TCZ areas (0.088), indicating substantial energy-
saving benefits of DD within TCZ. Similarly, when CEP is the
dependent variable, cities within TCZ (0.210) show regression
coefficients of DD greater than those in Non-TCZ areas (0.110),
highlighting significant emission reduction benefits of DD within
TCZ. These findings underscore the significant heterogeneous
effects of digital economic development between TCZ and Non-
TCZ areas.

4.2 Robustness analysis

This study employed four methods for robustness analysis. (1)
The instrumental variable (IV) method was used to address
endogeneity issues. This method introduced exogenous IVs that
were correlated with the independent variable but unrelated to the
error term, thereby improving the accuracy and reliability of the
regression results. (2) The method of excluding other policy
interferences aimed to eliminate the interference of other policies,

enabling a more accurate assessment of the impact of the factors
under consideration on the results and ensuring the reliability and
robustness of the research conclusions. (3) The substitution method
was utilized to mitigate endpoint issues, enhancing the model’s
goodness of fit and explanatory power. (4) The method of altering
the research period was employed to control for time-related
concerns, ensuring the accuracy and robustness of causal
relationships.

4.2.1 Instrumental variable approach
To address potential endogeneity issues in examining the

reduction in EI and improvement in CEP, this study adopted the
widely used IV method in energy and environmental economics
(Barrera-Santana et al., 2022; Xue et al., 2022). The lagged terms of
EI and CEP were chosen as IV1 due to their correlation with the
independent variable. Furthermore, city telecommunications data
from 1984 served as IV2 (Nunn and Qian, 2014), reflecting the
influence of telecommunication infrastructure on internet
technologies, including technology advancement and usage
patterns. A time-varying variable was utilized, and a panel
instrument variable was formulated using the interaction of
internet and telephone counts, designated “Telephone◊Internet.”
Additionally, we acknowledged the waning influence of traditional
telecommunication tools, such as landline telephones, on economic
growth as their usage decreased.

The regression coefficients of IV1 and IV2 were positive and
substantial in both models, verifying the appropriateness of IV
selection, as shown in Table 7. This study addressed endogeneity
concerns, and the second-stage regression analysis revealed that the
regression coefficient of LnDD was significant at the 1% level. These
findings aligned with the direct effects analysis and exceeded the
baseline regression results, supporting the view that endogeneity
underestimated the impact.

Endogeneity tests confirmed the endogeneity of digital
development. The LM statistic significantly rejected the null

FIGURE 3
Threshold parameter of threshold variables. Note: (A) and (B) refer to the dependent variables energy intensity and carbon emission performance,
respectively; the solid blue line refers to the LR; and the red dotted line indicates the 95% confidence interval.
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hypothesis of insufficient IV identification. Moreover, the Wald
F-statistic exceeded the threshold of the Stock-Yogo weak
identification test, indicating the adequacy of the IV choice.

When CEP was the dependent variable, the regression
coefficient of LnDD was significant at the 1% level, suggesting
that digital development improved CEP. After addressing the
endogeneity problem, the coefficient of LnDD increased,
indicating that endogeneity caused the lower baseline results.

4.2.2 Remove policy interference
During the study period, the Chinese government implemented

several policies to promote energy consumption and reduce
emissions. However, as these policies could impact EI and CEP,
we excluded two policies, namely, the smart city pilot policy (SC)
(Mathiesen et al., 2015) and the carbon emissions trading policy
(CET) (Chen et al., 2020), to obtain more accurate estimates.

Table 8 presents the estimated results, excluding the impact of
these policies. Even after excluding the SC policy, we found that the

regression coefficients of LnDD remained significantly above the 1%
level, at −0.233 and 0.184, respectively. This suggested that the
results of our study were robust even after excluding the SC policy.
Furthermore, after excluding the CET policy, the regression
coefficients of LnDD were −0.245 and 0.198, which were
significant at the 1% level. This indicated that the results
remained similar to the benchmark results even after excluding
the CET policy. However, the impact of digital development was
found to be more significant after excluding the CET policy,
suggesting that CET policies did have an effect on the role of
digital development in EI and CEP.

4.2.3 Method modification
In this section, we investigated alternative estimationmethods to

analyse the conclusions. While the ordinary least squares method
excelled under classical assumptions, the generalized method of
moments (GMM) remained valid even without exact distribution
information of random perturbations (Hashmi and Alam, 2019;
Zakari et al., 2022). It was also robust to heteroskedasticity and
autocorrelation, violating classical assumptions. Many scholars have
applied GMM in environmental science and economics (Omri and
Afi, 2020; Ozturk and Ullah, 2022). Therefore, we employed this
method to assess the robustness of the impact of digital development
on EI and CEP.

Table 9 summarizes the GMM regression results. Our model
tests confirmed the validity of all the assumptions, with significant
AR (1) and insignificant AR (2), aligning with the nature of GMM.
Additionally, the Sargan and Hansen tests met the necessary
conditions. The regression coefficients of LnDD were −0.068 and
0.097, both of which are significant at the 1% level. This indicated
that digital development significantly reduced EI and enhanced
CEP, which is consistent with the results obtained from the
direct effect analysis. We were confident in the reliability of our
conclusions.

4.2.4 Modifying the time
To address potential biased estimation results arising from

different study periods (Vieira et al., 2018), we proposed setting
distinct study spans. Specifically, we assessed the periods of
2012–2019, 2013–2018, and 2014–2017 to mitigate temporal
interference. Table 10 illustrates that the influence of digital
development on EI remained consistent across various study
periods, as evidenced by the consistently negative and significant
coefficients of LnDD in columns (1)–(3).

In terms of CEP, the regression coefficients of LnDD were
consistently positive and significant at the 1% level in columns
(4)–(6), indicating a consistent impact across different study
periods. However, it was observed that these coefficients
increased with the duration of the study period, suggesting that
the sample period did indeed influence the effect of digital
development.

4.3 Threshold effect analysis

4.3.1 Economic growth as the threshold variable
This study employed a panel threshold model to explore the

nonlinear impact of different levels of regional economic growth on

TABLE 12 Estimated results of the panel threshold model.

Variables Dependent
variable: LnEI

Dependent
variable: LnCEP

(1) (2)

lnDD (h < 0.091) 0.080***

(0.030)

lnDD (0.091 ≤ h <
0.574)

0.049*

(0.028)

lnDD (0.574 ≤ h <
1.092)

0.030

(0.028)

lnDD (h ≥ 1.092) 0.021

(0.028)

lnDD (h < 0.166) 0.025

(0.018)

lnDD (0.166 ≤ h <
0.563)

0.045***

(0.017)

lnDD (0.563 ≤ h <
1.859)

0.062***

(0.017)

lnDD (h ≥ 1.859) 0.084***

(0.018)

CONTROL YES YES

CONS YES YES

FE YES YES

N 2,403 2,403

R2 0.341 0.141

The standard errors are in parentheses, and CONTROL, refers to the control variable.
ap < 0.1.
bp < 0.05.
cp < 0.01.
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EI and CEP (Ibrahim &Vo, 2021; Zhou and Li, 2022). As depicted in
Table B1, economic growth had a significant impact on EI at the
single and double thresholds but not at the triple threshold,
indicating a double threshold effect. Similarly, economic growth
was deemed insignificant at three thresholds when CEP served as the
dependent variable, suggesting a triple threshold effect for the
threshold variable.

Table 11 indicates that the impact of digital development on EI
and CEP varies across different thresholds of economic growth.
When EI is the dependent variable, as the economic growth
threshold increases, the regression coefficient of LnDD shows a
linear decreasing trend, ranging from −0.119 to −0.027.
Additionally, the significance of the coefficients decreases,
suggesting that as economic growth accelerates, the effect of
digital development on EI gradually weakens, confirming
Hypothesis 4. However, when CEP is the dependent variable,
the regression coefficient of LnDD exhibits a linear increasing
trend, rising with the increase in the threshold but becoming
significant only after surpassing the second threshold. This
finding implies that the stronger economic growth is, the
stronger the effect of digitalization on CEP. As depicted in
Figure 3, these findings underscore the importance of
incorporating digital development in the pursuit of sustainable
development.

In summary, the threshold values derived from the threshold
testing in this study possess not only statistical significance but also
profound economic implications. They reveal distinct influence
pathways and intensities of digital transformation on EI and CEP
across various stages of economic growth. These discoveries not only
deepen our understanding of the relationship between digital
transformation and sustainable development but also offer
valuable guidance for policymakers, emphasizing the need to
consider the current stage of economic growth and the specific
effects of digital transformation when formulating and
implementing relevant policies.

4.3.2 Financial development as a threshold variable
Regional financial levels may influence energy use and emission

reduction (Habiba et al., 2022; Razzaq et al., 2022), with a focus on
the threshold effect of financial development. According to Table B2,
financial development was not a significant factor at the single,
double, or triple thresholds when EI was the dependent variable.
However, when CEP was the dependent variable, financial
development was substantial at the single and double thresholds
but not at the triple threshold, suggesting a triple threshold effect.

Table 12 reveals that as the threshold of financial development
increases, the regression coefficient of LnDD gradually decreases,
indicating that with better financial development, the effect of
digitalization on EI gradually diminishes. The most significant
impact is observed when financial development is below the first
threshold. For CEP, the influence of digital development increases
with increasing financial development, becoming significant after
surpassing the first threshold, indicating the presence of a threshold
effect of financial development on CEP. We provide a visual
representation of these changes in Figure 4. These findings
illustrate the significant threshold effects of financial development
on the impact of digitalization on EI and CEP.

Employing financial development as a threshold variable in
examining the impact of digital economy on EI and CEP carries
significant economic implications and values. It serves to uncover
the intrinsic link between the digital economy and financial
development, thereby facilitating the green transformation and
high-quality development of the economy. This approach sheds
light on the diverse pathways and effects of digital economy
development on EI and CEP across varying levels of financial
development. Regions with advanced financial systems tend to
allocate capital more efficiently towards innovative, digital, and
low-carbon projects, thereby accelerating the optimization of
energy structures and reducing carbon emissions. Additionally, it
fosters the green transition of energy structures, diminishes CEP,
andmitigates financial and market risks incurred during enterprises’

FIGURE 4
Threshold parameter of threshold variables. Note: (A) and (B) refer to the dependent variables energy intensity and carbon emission performance,
respectively; the solid blue line refers to the LR; and the red dotted line indicates the 95% confidence interval).
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digital transformation journey. Ultimately, this ensures the
sustained positive influence of the digital economy on both
EI and CEP.

5 Conclusions and implications

5.1 Conclusions

Enhancing energy efficiency and reducing carbon emissions are
crucial for achieving China’s carbon neutrality goals and sustainable
development objectives. This study focuses on Chinese cities and
empirically evaluates the synergistic effects of digital development
on EI and CEP. The research yielded several significant findings,
summarized below:

The findings indicate a substantial 23.1% reduction in EI and an
18.5% increase in CEP attributed to digital development. To
strengthen the robustness of our conclusions, we conducted four
additional tests, all of which consistently reaffirmed our findings.
Furthermore, our study identifies that digital development
influences EI and CEP by fostering technological innovation.
Notably, we observed a threshold effect on EI and CEP
concerning economic and financial development.

5.2 Implications

Drawing from our findings, we propose the following policy
recommendations.

(1) Enhance Digital Industry Policies: Strengthen policies related to
the digital industry to maximize the positive impact of digital
development on energy conservation and carbon reduction in
China. Encourage businesses to invest in digital technologies,
particularly in sectors such as smart manufacturing, IoT, and big
data analytics. Promote the adoption of digital energy efficiency
monitoring systems for real-time energy usage analysis.

(2) Promote Investment in Digital Technology Innovation:
Foster investment in digital technology innovation,
especially within the energy sector. Establish dedicated
funds to support innovative applications of digital
technology, AI, and big data in energy management.
Facilitate collaboration between businesses and research
institutions to drive research and application of digital
technologies in energy efficiency.

(3) Tailor Policies to Regional Differences: Formulate
differentiated policy measures based on regional disparities.
Promote the application of digital technology in energy-
intensive sectors in regions experiencing significant
impacts of digital development. Strengthen digital
infrastructure in regions with lesser impacts to enhance
digitization. Consider economic and financial disparities in
policymaking by providing financial incentives for digital
technology adoption in less developed areas and guiding
advanced energy management system implementation in
more developed regions.

However, this study has notable limitations. Alternative
methodologies for measuring EI and CEP indicators may exist.
Additionally, our analysis focused on two impact mechanisms,
potentially overlooking other underlying pathways. Future
research should address these limitations by incorporating
additional indicators, datasets, and mechanistic pathways to
comprehensively understand the complex relationships among
digital development, energy, and the environment.
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Appendix A Measurement of emission
reduction performance

Several approaches have been developed to assess CEP,
encompassing both parametric and nonparametric methods.
Parametric techniques, such as the proportional method
(Shahbaz et al., 2015) and stochastic Frontier analysis (SFA) (Lin
and Long, 2015; Du and Lin, 2017), hinge on stringent production
function assumptions and single-factor analysis, respectively.
Nonparametric methods, notably data envelopment analysis
(DEA) (Tone, 2001; Li and Lin, 2017; Sueyoshi et al., 2017; An
et al., 2020; Yu and Zhang, 2019; Wu et al., 2021; Zhou A. et al.,
2022), have seen widespread use, with a particular emphasis on the
Charnes, Cooper, and Rhodes (CCR) model. Nevertheless, these
methodologies have limitations, such as unrealistic assumptions for
parametric approaches and the dependence on a single distance
function for nonparametric methods.

To address these challenges, we adopted the SE-EBM
model introduced by Tone and Tsutsui (2010), which
incorporates both radial and nonradial distance functions.
This approach allowed us to surmount the constraints
associated with existing methodologies, providing a more
holistic assessment of CEP. The initial model was formulated
as the following equation:

γ* � min
χ,τ,ϖ− ρ − σx∑m

i�1
φ−
i ϖ−

i

υio

ρυio − ∑n
j�1τjυij − ϖ−

i � 0, i � 1,/, m
∑n

j�1τjωrj ≥ωro, r � 1,/, η
τj ≥ 0
ϖ−

i ≥ 0

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

In this equation, γ represents the DEA optimal efficiency value, ρ
denotes the efficiency value under radial conditions, and ϖi

corresponds to the ith input element in the nonradial condition.
The symbol φ signifies the weight assigned to the input indicator and
must adhere to the constraint ∑m

i�1φi � 1, where σx indicates the
changing trend of radial distances and the vector parameters of
nonradial distances. Finally, τ captures the relative weights of the
input elements, and (]io, ωro) captures the input and output vectors
of the oth decision unit. Here, if the value of σx was equal to 1, the
model was considered a CCR model. If the value of σx was one and
the value of χ was 0, the model was an SBM, and the EBM needed to
calculate these parameters in advance. When γ � 1, the efficiency is
effective. Since the relationship between input and output includes
radial and nonradial relationships, we used the extended EBM
model. The model settings were as follows:

γ* � min
ρ − σx∑m

i�1
φ−i ϖ−

i
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m + σω∑ϖ
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⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

The parameter sto captures the tth undesired output of the oth
city, (ϖ+

r , ϖs−
t ) represents the slack vectors of the expected and

undesired results, and when their values are greater than 0, we
need to improve the energy efficiency in technology. φ+

r and φ−
t

captured the desired and undesired output indicators on the rth
and tth, respectively. According to these findings, when
numerous decision-making units exhibit optimal efficiency,
distinguishing the best-performing unit becomes challenging.
To address this issue, this study improved the original EBM
model by introducing a modified version known as the SE-EBM
model (Andersen and Petersen, 1993; Zhou and Li, 2021),
permitting values greater than 1.
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Appendix B

TABLE B1 Threshold effect test results

Threshold RSS MSE Fstat p-Value Crit10 Crit5 Crit1

Dependent variable: LnEI

Single 281.632 0.117 79.740 0.000 27.315 34.416 41.933

Double 277.901 0.116 32.150 0.046 25.822 31.242 52.410

Triple 276.613 0.115 11.140 0.706 29.294 32.961 48.553

Dependent variable: LnCEP

Single 108.286 0.045 117.310 0.000 23.427 25.552 31.096

Double 105.002 0.043 74.880 0.000 19.239 21.685 28.265

Triple 102.801 0.042 51.270 0.870 102.246 110.234 126.979

TABLE B2 Threshold effect test results

Threshold RSS MSE Fstat p-Value Crit10 Crit5 Crit1

Dependent variable: LnEI

Single 289.572 0.121 11.920 0.430 20.768 25.729 30.024

Double 288.642 0.121 7.710 0.666 15.676 17.866 23.931

Triple 287.936 0.120 5.870 0.850 15.634 17.191 23.584

Dependent variable: LnCEP

Single 112.423 0.047 24.910 0.003 14.964 17.679 22.416

Double 111.302 0.046 24.110 0.000 14.631 17.150 19.400

Triple 110.608 0.046 15.030 0.626 39.834 46.230 53.863
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