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Summary 

As more satellite imagery has become openly available, efforts in mapping the Earth’s surface have 

accelerated. Yet the accuracy of these maps is still limited by the lack of in-situ data needed to train 

machine learning algorithms. Citizen science has proven to be a valuable approach for collecting in-

situ data through applications like Geo-Wiki and Picture Pile, but better approaches for optimizing 

volunteer time are still required. Although machine learning is being used in some citizen science 

projects, advances in generative Artificial Intelligence (AI) are yet to be fully exploited. This paper 

discusses how generative AI could be harnessed for land cover/land use mapping by enhancing citizen 

science approaches with multi-modal large language models (MLLMs), including improvements to the 

spatial awareness of AI. 
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Introduction 

Monitoring of the Earth’s surface is crucial for quantifying the Earth’s carbon balance, climate 

mitigation potentials, and the risk of overshooting tipping points1. Achievement of the United Nations 

(UN) Sustainable Development Goals (SDGs) and other targets set out in multi-lateral agreements also 

rely on monitoring the Earth’s environment2. Mapping of the biophysical parameters of the land 

surface and the anthropogenic uses of land - or land cover and land use - has been undertaken for 

several decades now, made possible primarily through the availability of satellite imagery at 

increasingly higher spatial resolutions3. The opening of the Landsat archive in 20104, freely available 

high-resolution Sentinel imagery since 2015 and Planet data for the tropics since 20205,6, and public 

access to very high-resolution satellite imagery through applications such as Google Earth and 

Microsoft’s Bing Maps7, have all contributed to a proliferation of new high-resolution (10-30m) 

products on land cover and land use, some of which are even dynamically updated as new satellite 

images become available8.  

 

 Artificial Intelligence (AI) in the form of machine learning has been a part of the toolkit of remote 

sensors for decades9. AI techniques are comprised of a series of methods, tools and algorithms that 

have been developed to loosely emulate some aspect of human intelligence or that perform tasks that 

require human-like intelligence. Machine learning is a specific branch of AI that focuses on methods 

that learn from data or past experiences to be able to, for example, interpret these data or to make 

predictions10. This includes pattern recognition methods such as classification and clustering, which 

can be undertaken using different approaches such as neural networks, decision trees, support vector 

machines, etc., as well as conventional statistical models such as regression. Deep learning 

approaches, which are essentially further developments of neural networks11, are now used in many 

different applications from computer vision (e.g., for image and facial recognition, and autonomous 

driving) to natural language processing (NLP) of large bodies of text. These methods can be trained 

using supervised, unsupervised, or reinforcement learning, but the task typically requires massive 

amounts of training data to ensure model robustness and high performance. 

 

Various satellite sensors record multiple images in different parts of the electromagnetic spectrum and 

at different times, which, together with the spatial neighbourhood context, offer a favourable higher-

dimensional feature space for the application of AI machine learning approaches such as pattern 

recognition and classification. Supervised classification algorithms in remote sensing use training data 

derived traditionally from field-based data collection as well as expert visual interpretation of aerial 

and satellite imagery to produce different products for monitoring. However, the lack of training data 
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remains one of the key challenges for improving Earth surface mapping12. One alternative source of 

training data for remote sensing has been from citizen science, where citizens have used their cognitive 

skills in object recognition and visual interpretation to produce training data sets that are much larger 

than those traditionally produced by space agencies. For example, at the International Institute for 

Applied Systems Analysis (IIASA), we have developed a series of tools for crowdsourcing the visual 

interpretation of imagery and georeferenced photographs as well as the collection of in situ land cover 

and land use data. The Geo-Wiki13 and Picture Pile14 applications have been used to crowdsource large 

training and validation data sets on different types of land cover and land use but also the collection 

of other information such as the size of agricultural fields globally and the drivers of deforestation in 

the tropics15. We have also developed the FotoQuest Go mobile app, which has directed users to 

specific locations on the ground to photograph and document land cover and land use16. Other 

examples of crowdsourcing land cover information include NASA’s GLOBE program, where a recent 

study showed how the protocol of data collection in multiple directions improved the land cover 

classification performance17 while OpenStreetMap contributors use very high resolution satellite 

imagery for recognizing and annotating features as well as damage mapping for humanitarian 

causes18,19. The validation of automated change detection algorithms and the use of data contributed 

by citizens for updating an authoritative land cover data set have also been achieved using 

volunteers20,21. 

 

Such alternative and large data sources are particularly relevant for novel data-hungry AI approaches 

such as deep learning. However, there are limits to what the crowd alone can achieve. For this reason, 

AI is already being used in a number of citizen science projects to undertake two main types of tasks: 

recognition and prediction22. Under recognition, this includes classification, counting objects, object 

detection and assessing the consistency of contributions by citizens. For example, the developers of 

the Galaxy Zoo application23, which has classified millions of galaxies with volunteers24, have trained a 

machine learning model with the data generated by their contributors to undertake classification. In 

this way, citizens are helping the AI to learn. At the same time, they continue to provide much needed 

inputs in cases where human cognitive skills are superior to the machine25. They also use machine 

learning to assess the consistency of the annotations made by their citizen scientists26. Other examples 

include the Serengeti Wildebeest Count27, which uses deep learning for counting the number of 

wildebeests in images, and iNaturalist28, where machine learning models provide suggestions of plant 

and animal species through automatic detection of objects in the photographs29, thereby aiding 

citizens in undertaking their data collection tasks. Under prediction, tasks undertaken by AI include 
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data correction of air quality sensor observations from citizens30, the design of molecules in the 

EteRNA project31, and predicting water quality in the FreshWater Watch project32.  

 

Yet it is the recent advances in generative AI, in the form of multi-modal large language models 

(MLLMs) such as ChatGPT33 or the many open-source models available34 that hold considerable 

untapped potential for citizen science projects that involve classification tasks. While readers might be 

familiar with LLMS, MLLMs are LLMS that can take different forms of inputs (e.g., text, images, video) 

and output multi-modal information (e.g., take an image and output a description). With Petabytes of 

data now being generated through Earth Observation (EO), citizen science combined with generative 

AI could be used to exponentially increase the amount of in-situ data available and improve the 

accuracy and timeliness of land cover and land use mapping in the future. In particular, tasks related 

to natural disasters and emergency response could benefit from the potentially increased speed 

offered by AI applications. A recent review of foundation models, which include MLLMs, found that 

the application of MLLMs in the field of remote sensing is under-explored, with more attention applied 

to Visual Foundation Models (VFMs) and Visual Language Models (VLMs)35, both of which could also 

be used in citizen science projects. 

 

Here we present a demonstration of the capability of MLLMs for visual interpretation of satellite 

imagery and how these models could be integrated into a citizen science application like Geo-Wiki, 

exploiting the synergies between MLLMs and citizens. We then look at advances in the area of remote 

sensing foundation models (RSFM) for how more spatially-aware AI tools could improve the way we 

monitor the Earth’s surface. 

 

Citizen science and visual interpretation 

For the last decade, we have been involving citizen scientists in the visual interpretation of satellite 

imagery and the rapid labelling of georeferenced photographs to collect training data or validate 

existing land cover products15,36. However, to date, we have not used AI for automated classification 

or to aid visual interpretation in any of our citizen science campaigns. To provide illustrative examples 

of the types of tasks that volunteers do as part of these campaigns, Figure 1a shows a screenshot from 

Geo-Wiki where volunteers examine satellite imagery and answer a series of questions that use their 

cognitive skills in recognizing key landscape features37. In this particular example, citizens shade the 

sub-pixels if they see visual evidence of cropland covering more than 50% of each area, which resulted 

in a large global data set on cropland38. In Figure 1b, the Picture Pile mobile application interface is 

shown for the rapid classification of scenes from satellite imagery or geotagged photographs36. In the 
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example shown here, citizens examined two images from two different points in time to look for visual 

evidence of deforestation, swiping the image to the right if evidence was found. In total, the two 

applications have collected different types of in-situ data including land cover, agricultural field sizes, 

drivers of deforestation, and human impact at several thousand locations on the Earth’s surface15,36. 

However, this approach relies entirely on human interpretation, where some visual interpretation tasks 

are much easier than others and would, therefore, lend themselves well to AI.  

 

The potential of MLLMs for labelling and classification 

MLLMs use deep learning and natural language processing in combination with massive data sets to 

infer relationships and generate new types of content39. One notable feature of MLLMs is their ability 

to process different types of information, including images, and provide a description of what is 

contained in that image as an output, using other modules such as a pretrained vision transformer 

(ViT) like CLIP (Contrastive Language-Image Pretraining)40. This is analogous to what a visual interpreter 

would do when manually classifying scenes from satellite imagery for the collection of training and 

validation data. To demonstrate the potential of MLLMs for labelling and classification, we provided 

some visual interpretation tasks to ChatGPTv4.0 that are typical of the types of questions that we might 

ask volunteers in Geo-Wiki, shown in Figure 2 with ChatGPT’s responses. These are questions about 

the type of land cover that is visible in the image, the dominant land cover in an area that would be 

equivalent to a pixel (or grid cell) in a land cover map, and the change between two images from two 

different points in time. 

 

In Figure 2a, ChatGPT has correctly identified a mangrove/wetland area, which is one of the land cover 

types that are often poorly identified in land cover maps and would benefit from considerably more 

training data. The task shown in Figure 2b is an example from an early Geo-Wiki campaign in which we 

asked volunteers to identify the dominant land cover type in a grid cell, indicated by the blue box. 

ChatGPT correctly picks out the dominant type as vegetation and agricultural fields but also identifies 

other relevant features in the image. Finally, Figure 2c shows two satellite images from Haiti before 

and after Hurricane Matthew hit the island in 2013. This was part of a Picture Pile campaign asking 

volunteers to rapidly identify building damage41. Moreover, not only did ChatGPT identify the building 

damage, but it also inferred the potential cause as being some type of natural disaster such as a 

hurricane. This illustrates how MLLMs can be used to determine the type of change happening in 

images over time, where change detection is necessary for landscape monitoring. The production of 

land cover and land use time series that are spatially consistent over time is one area that needs further 

research42 so more in-situ data on the spatial and temporal occurrence of land cover and land use 

change would be incredibly valuable for making advances in this area.  
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Using images from the Hurricane Matthew Picture Pile campaign (Figure 2c), we randomly selected 

100 photographs where at least four out of six volunteers agreed that buildings showed signs of 

damage. We tested ChatGPT's ability to detect evidence of building damage using the F1-score as a 

performance metric. The testing was repeated five times to evaluate stability, resulting in an average 

F1-score of 0.85 compared to the human-labelled damage data from the campaign. Further 

experimentation is still needed to assess the broader classification performance on a wider array of 

images. One potential strategy could involve prompt engineering. For example, a multi-step process 

might first identify whether there are buildings in the 'after' image and then assess whether these 

buildings show signs of damage. 

 

In another test with a more recent campaign on the identification of natural versus non-natural 

ecosystems for the validation of a natural ecosystem map, we gave 16 images to ChatGPT. The 

definition of natural landscapes was provided to ChatGPT as: one that substantially resembles - in 

terms of species composition, structure, and ecological function - what would be found in a given area 

in the absence of major human impacts and can include managed ecosystems as well as degraded 

ecosystems that are expected to regenerate either naturally or through management, based on the 

Accountability Framework initiative43.  The images were chosen to reflect a range of locations around 

the world with natural and non-natural landscapes, where the classifications were determined by a 

group of validators and checked via an expert in our group. Two images were also included that were 

classified as ‘Not sure’. The results are shown in Table 1. Most classifications were correct but there 

was confusion where ChatGPT classified the landscapes as non-natural when they were natural 

according to the validators; two examples are shown in Figure 3a and b. These explanations can be 

used to understand why there is confusion (e.g., is the track in Figure 3a made by humans or this 

natural?) or to improve the way in which the questions are asked (e.g., the road appears outside the 

yellow box in Figure 3b and should have been ignored). Hence this type of example can be useful in 

prompt engineering. Figure 3c shows one of the examples where the validators were unsure but 

ChatGPT chose a natural ecosystem. In this latter case the explanation provided by ChatGPT could be 

used to help classify images with uncertainty.  

 

More recently, we demonstrated that ChatGPT could be used for mapping building attributes, which 

are land use features that are relevant to urban climate and energy balance modelling44. Using a 

sample of 92 images of buildings from Manhattan (New York City), which were obtained from 

Mapillary, we asked ChatGPT to classify the buildings according to building function (residential, 
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commercial, mixed) and building age (Victorian, Pre-WWII, Post-WWI, Postmodernist, Contemporary) 

as well as determining the building height. The overall accuracy for the prediction of building function 

and building age based on authoritative data from the city of New York and the Overture database 

were 79% and 56% respectively, while the average deviation in building height was around 3 feet.  The 

main misclassifications were often due to obscured views so flagging these images and modifying the 

questions to ChatGPT could improve this performance in the future. However, further research is 

needed to determine how transferable such an approach would be to other cities, particularly those 

in the Global South. 

 

Integrating MLLMs in citizen science platforms for classification tasks 

In the Geo-Wiki application, we primarily use very high-resolution satellite imagery, but this is only one 

of several sources of imagery that could be classified for land cover and land use. Aerial and drone 

imagery, as well as georeferenced in-situ photographs are also now openly available. The LUCAS 

database produced by Eurostat provides in-situ photographs of land cover and land use at around 300K 

locations across European Union member states, taken every three years45 while Google Street View46 

and Baidu Maps47 in China, for example, can provide global coverage of street level images. Various 

crowdsourced repositories of geotagged photographs also exist such as the Degree Confluence 

project48,49, the Global Geo-Referenced Field Photo Library from the University of Oklahoma50,51, 

Geograph52,53 and Mapillary54, as well as social media sources like Flickr55 and Instagram56. In addition 

to satellite imagery, we have used geotagged photographs from these types of sites for classification 

in Picture Pile36.  

 

Figure 4 shows how we might integrate MLLMs into a classification workflow that involves citizen 

science. After preparation of the image catalogue, which could contain a range of different image types 

like that discussed above, the images would be displayed in the citizen science platform. This would 

be integrated with an MLLM that would allow volunteers to ask relevant questions related to 

classification and labelling of land use and land cover to aid in their visual interpretation of the imagery. 

Guidance would be provided as to what types of questions could be asked but citizens could also share 

their experiences regarding how best to use this MLLM feature.  In Geo-Wiki, citizens also indicate if 

they are unsure about their classification because the images were, for example, not clear or the 

features were not easily identifiable, which gives an indication of uncertainty. 

 

At the same time, the MLLM (or a ViT) would be used to automatically classify the imagery, which 

could then be checked by citizens for quality. The advantage of using an MLLM like ChatGPT directly is 

Jo
urn

al 
Pre-

pro
of



the ease of use but the best solution would require more investigation including the use of other ViTs. 

The classifications from the citizens, which would include multiple instances of the same location, 

would be merged with the automatic classifications to filter out the high-quality data that would be 

written to the classification database. High quality would refer to locations where there was consensus 

between the citizens and/or the automatic classification and where no uncertainty was indicated. 

Ideally, the MLLM (or ViT) would also verbalize the level of uncertainty, which could then be used in 

the filtering process but research is still ongoing to find the best approaches to elicit reliable responses 

on confidence from MLLMs57. Statistical methods would be employed to determine when enough 

classifications of the same location were made to reach the desired level of accuracy that would be 

specified by the application58. Eventually more images would be automatically classified, with fewer 

and more difficult images provided to the crowd. This would mean that the time and efforts of citizens 

could be more optimally used to classify images that require their advanced human cognitive abilities 

while simultaneously contributing to the training and improvement of the MLLM (or ViT) and decrease 

the possibility of poor classifications or so-called hallucinations59. Using such an approach, applications 

such as Geo-Wiki and Picture Pile could be enhanced, potentially resulting in the production of larger 

reference data sets for land cover/land use training and validation.  

 

Adding greater spatial awareness to AI  

Since MLLMs are generally trained on existing human-generated content from the internet, they may 

have some spatial awareness. For example, they may have been trained on the existence of Tobler’s 

law, which states that features closer in space will be more related to one another than those further 

away60, but they may not be able to apply it, or apply other geographical theories around how space 

is organized, when making inferences. To improve their spatial awareness, we could add other types 

of expert knowledge, for example, spatially explicit data sets such as a species distribution models or 

bioclimatic ranges, or link to data from OpenStreetMap, which has already been demonstrated in the 

GeoLLM model61. Other spatial and land cover/land use improvements could include adaptations to 

CLIP, such as RemoteCLIP62 that uses remote-sensing specific data sets, or GeoCLIP63, that ingests 

geographic coordinates to produce a more geo-aware classification process.  

 

Another important element of land cover and land use is monitoring the change over time, where 

remotely sensed time series data and derived indices are used. The incorporation of spectral 

information as well as data from multiple sensors is an active area of research in the field of remote 

sensing foundation models (RSFMs)35.  Figure 5 shows a system whereby remote sensing data, ingested 

through RSFMs, and various types of spatial data, input to MLLMs, could be integrated with citizen 
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science, broadening the workflow shown in Figure 4. Such an approach could result in more in situ 

data and ultimately to more accurate land cover and land use maps, including dynamic products. 

  

Opportunities, Challenges and Other Considerations 

The use of generative AI in combination with citizen science and Earth Observation could result in a 

step change towards mapping the Earth’s surface more accurately and dynamically. The vision of an 

on-demand land cover mapping service as outlined by Szantoi et al.12 could even become a reality. Not 

only can land cover be mapped more efficiently but this opens up new possibilities for mapping land 

use and land use management. While these features are much more difficult to see from space, they 

can be captured, for example, in photographs. Creating good quality in-situ data sets on land use and 

land use management with the help of generative AI may improve remotely sensed land use 

classification, particularly with the availability of imagery from the new generation of hyperspectral 

satellites64.  

 

However, there are clearly challenges with such an approach. Realizing such a spatial-temporal AI 

trained with big spatial data sets as proposed here (Figure 5) would not be possible without a 

collaborative partnership between multiple institutions at an international level as well as considerable 

funding. Moreover, extensive testing of the capabilities of MLLMs and VLMs for visual interpretation 

would need to be undertaken to understand the limitations of the technology (e.g., what is the 

smallest mapping unit that would allow for accurate and reliable land use and land cover 

classification?), as well as how the tasks should be framed to produce high-quality results. Moreover, 

using commercial off-the-shelf MLLMs such as ChatGPT as demonstrated here could be very expensive 

depending on how many images are classified and what outputs are provided. A typical Geo-Wiki 

campaign classifies 100K to 300K images; if this approach were to be extended to dynamic monitoring 

on a continuous basis, this could turn into millions of images on an annual basis. Hence, there is a need 

to investigate other open-source solutions. 

 

Aside from the opportunities and specific research challenges highlighted above, there are broader 

ethical and environmental implications of using generative AI more generally that should be 

considered. It is recognized that combining AI with citizen science may demotivate some volunteers so 

the distribution of tasks between AI and citizens requires careful design22. In the citizen science and 

crowdsourcing that we implement, we pay particular attention to volunteer motivations (e.g., helping 

scientific research), and we provide incentives to participate (e.g., prizes and/or proper 

acknowledgement of contributions)15.  However, there is a substantial, distributed labour force of data 
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workers that provide labelling, feedback and moderation services that drive the development of AI65, 

and there are exploitative practices and mental health problems that arise from this process66,67. There 

are also environmental costs associated with training MLLMs68,69 that should be addressed given the 

urgent need to reduce greenhouse gas emissions and water usage. Hence, there are trade-offs in 

developing these types of models that should be properly assessed using tools that allow for more 

transparent accounting of the environmental footprints70–72. But at the same time, we should continue 

to investigate the capabilities of MLLMs for improving global land mapping and monitoring in a way 

that is as sustainable and ethical as possible.  
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(a)                           (b) 

Figure 1: Examples of visual interpretation tasks undertaken by citizens in (a) the Geo-Wiki desktop application 
interface for collecting information on the presence of cropland and (b) the Picture Pile mobile application 
interface for collecting data on deforestation 
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(a) 

 

Question to ChatGPTv4.0: What are the land cover 
types visible in the image? 
 
Answer: The majority of the image is covered with 
dense, dark green vegetation, which could be a natural 
forest or a mangrove, if located in a coastal or swampy 
area. The texture seems quite uniform, suggesting a 
single type of vegetation or closely related species. 
The overall impression is of a natural, possibly wetland 
ecosystem, with a water body meandering through. 

(b) 

 

Question to ChatGPTv4.0: What is the dominant land 
cover type in the blue box? 
 
Answer: The dominant land cover type seems to be a 
combination of vegetation and agricultural fields. The 
part of the box includes a row of trees or shrubs lining 
what appears to be a road or path, and the rest is 
primarily agricultural land with crops. 

(c) 

 

Question to ChatGPTv4.0: What kind of land cover 
change can you see between the image on the top half 
and the one on the bottom half? 
 
Answer: In the “Before” image, the area is intact, with 
buildings surrounded by vegetation, and the 
infrastructure such as roads is clearly visible and 
orderly. In the “After” image, there is considerable 
damage to the infrastructure. Many buildings appear 
to be destroyed or severely damaged, vegetation has 
been stripped away. The change is characteristic of the 
aftermath of a natural disaster such as a hurricane. 

Figure 2: Visual interpretation tasks undertaken by ChatGPT for (a) a wetland/mangrove landscape in 
South America (b) an agricultural area in central Europe and (c) an area from Haiti before and after 
Hurricane Matthew that was part of a Picture Pile campaign. Source: Google Maps (a) and (b) and 
Microsoft Bing Maps (c). 
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 Question to ChatGPT: Definition of a natural ecosystem: One that substantially resembles - in terms 
of species composition, structure, and ecological function - what would be found in a given area in 
the absence of major human impacts, and can include managed ecosystems as well as degraded 
ecosystems that are expected to regenerate either naturally or through management.  Is the area a 
natural or non-natural ecosystem? 

(a) 

 

From ChatGPT: The image depicts a landscape with sparse 
vegetation and visible signs of human activity, such as tracks and 
paths. The clear evidence of human impact and land use does not 
align with the definition of a natural ecosystem, which would 
exhibit minimal human intervention and a more natural 
arrangement of species. The visible features indicate significant 
alteration by human activities, classifying this area as a non-
natural ecosystem. 

(b) 

 

From ChatGPT: The image depicts a landscape with a uniform 
pattern of trees, indicating a managed or planted forest. The 
organized spacing of the trees and the presence of a road suggest 
significant human intervention, which does not align with the 
definition of a natural ecosystem. The visible signs of management 
and modification support the classification of this area as a non-
natural ecosystem. 

(c) 

 

From ChatGPT: The image depicts a landscape with dense, diverse 
vegetation and no visible signs of human modification such as 
roads, buildings, or agricultural fields. This natural arrangement of 
flora fits the definition of a natural ecosystem, which is 
characterized by minimal human impact and a structure that 
closely resembles what would be found in an undisturbed 
environment. The apparent absence of major human activities 
supports this classification. 

 
Figure 3: Visual interpretation tasks undertaken by ChatGPT for identification of natural and non-natural 
ecosystems where ChatGPT misclassified the images as non-natural for locations in (a) Chad and (b) 
Austria. In (c), the image from Colombia was classified as unsure by validators but natural by ChatGPT. 
Source: Google Maps. 
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Figure 4: Integrating multi-modal Large Language Models (MLLMs) in a citizen science visual interpretation 
workflow 

 

Figure 5: Integrating AI models (RSFMs an MLLMs) for improving land cover and land use mapping and 
reference data collection 
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Table 1: Comparison of classifications from ground truth and ChatGPT for the natural ecosystems map 
validation campaign. Misclassifications are shaded in grey. 

Image Location Ground truth from validators Classification from ChatGPT 

1 China Non-natural Non-natural 

2 Angola Natural Natural 

3 Brazil Natural Natural 

4 Colombia Not sure Natural 

5 Nigeria Non-natural Non-natural 

6 Chad Natural Non-natural 

7 Sudan Natural Non-natural 

8 Mali Natural Natural 

9 India Non-natural Non-natural 

10 Mexico Natural Natural 

11 Egypt Not sure Natural 

12 Iran Natural Natural 

13 USA Non-natural Non-natural 

14 Italy Non-natural Non-natural 

15 Austria Natural Non-natural 

16 Ukraine Non-natural Non-natural 
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