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Abstract: This paper contributes significantly to time series analysis by discussing the
empirical properties of white noise and their implications for model selection. This paper
illustrates the ways in which the standard assumptions about white noise typically fail in
practice, with a special emphasis on striking differences in sample ACF and PACF. Such
findings prove particularly important when assessing model adequacy and discerning
between residuals of different models, especially ARMA processes. This study addresses
issues involving testing procedures, for instance, the Ljung–Box test, to select the correct
time series model determined in the review. With the improvement in understanding
the features of white noise, this work enhances the accuracy of modeling diagnostics
toward real forecasting practice, which gives it applied value in time series analysis and
signal processing.

Keywords: time series analysis; model selection; Hassani −1/2 theorem; white noise;
ARMA; Gaussian; Ljung–Box test

1. Introduction
The white noise process is a fundamental concept in time series analysis and signal

processing, representing a sequence of random variables that are uncorrelated, each having
a constant mean and variance [1–10]. However, despite its importance, the white noise
process has often been misapplied in various practical applications and modeling [11–15].

In theory, white noise is an idealized concept where each data point is assumed to
be completely independent of the others, with no correlation between observations. It is
typically modeled as a Gaussian process, implying a normal distribution with a constant
mean and variance [16–18]. However, real-world noises are rarely entirely white because
most real processes have some forms of correlation or dependency between different
times [19–21]. Real-world noise may also not behave according to Gaussian assumptions; it
can have some skewness or kurtosis [22,23]. Modeling challenges arise when correctly iden-
tifying white noise from other types of noise or signal components, as the misidentification
of white noise may lead to incorrect model assumptions [24,25]. For example, in ARIMA
models, residuals are expected to be white noise, and if they are not, then it indicates that
the model is not adequately capturing the underlying process [26,27]. Also, white noise
assumes constant variance over time, while for many time series data, heteroscedasticity is
observed, thus invalidating the white noise assumption.
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Furthermore, real-world data quite often exhibit some form of autocorrelation. Addi-
tionally, in information theory and signal processing, it is also difficult to separate a weak
signal from white noise, especially when the signal-to-noise ratio is small [28–30]. This
must be done by designing a filter that can remove white noise without distorting the
underlying signal, and especially when the characteristics of the noise are not well known.

Practical implications further relate to the measurement errors that may be obtained
in real-world data acquisition, not being those of white noise properties and, hence, adding
more complexity to the analysis [31–33]. Mathematically, if a time series Zt representing a
stochastic process is proven to be white noise, it means that the future expected values of Zt

(and underlying stochastic process) cannot be forecasted based on past observation of Zt.
This absence of temporal correlation indicates that the series has no discernible structure
for forecasting purposes. In Gaussian white noise, the behavior of Zt (and the behavior of
its underlying stochastic phenomenon) is entirely random and unpredictable, with each
observation being independently drawn from a normal distribution with a constant mean
and variance.

The significance of this property of white noise extends beyond merely identifying
unpredictable stochastic phenomena. It serves as the foundational principle for using
white noise in time series modeling and forecasting, as it represents the benchmark for
randomness against which the presence of structure or patterns in data can be evaluated.
If a model is able to separate the given time series {Xt} into white noise {Zt}, then it means
it can model the predictable part of the Xt’s stochastic behavior and separate the complete
stochastic part. In this case, the model proposed would be considered an adequate model
for modeling and forecasting {Xt}. However, if the proposed model reduces the time series
{Xt} to a non-white noise time series, it would be considered inadequate since it has not
captured all the predictable components of Xt’s behavior (i.e., some information from the
past values is not adequately extracted to forecast the future values). In this scenario, white
noise is a criterion to evaluate the performance of the time series model.

Although white noise serves as a fundamental building block in time series analysis, its
actual detection can be challenging, as distinguishing true randomness from subtle patterns
or dependencies often requires rigorous statistical testing and careful interpretation of the
data. To determine whether a zero-mean, constant variance stationary time series {Zt} is
white noise, or qualifies as white noise, the following tests can be conducted:

H0 : ρZ(h) = 0, |h| ≥ 1, (1)

where ρZ(h) denotes the Zt autocorrelation functions (ACFs) of order h. Most tests pro-
posed for the hypothesis above are those that are based on the asymptotic distribution of
the test statistic [17,19,26]. As is evident from several studies, their application in practice
may be problematic and lead to incorrect conclusions (see, for instance, [1–3]). The afore-
mentioned tests are based on the fundamental theoretical property of white noise processes,
where the autocorrelation functions are expected to become asymptotically independent
as the sample size increases. For a true white noise process, the ACFs should converge
towards a normal distribution with a mean of zero and variance 1

n , where n represents the
sample size. This asymptotic behavior serves as the foundation for statistical tests such
as the Ljung–Box test, which evaluates whether the observed ACFs deviate significantly
from the theoretical expectation of zero correlation [25]. If the ACFs remain statistically
insignificant across multiple lags, the series can be classified as white noise, indicating no
underlying structure or serial dependence.

Nevertheless, Hassani’s − 1
2 theorem indicates that whatever time series is consid-

ered, including white noise, the total sum of the sample ACF is always equal to − 1
2 [24].

Several works emphasize the practical relevance of Hassani’s − 1
2 theorem in the anal-



Forecasting 2025, 7, 8 3 of 14

ysis and modeling of time series [34–37]. It has important implications in time series
modeling [38–40] (see also recent work on the relevance of sample ACF and application
of Hassani’s theorem [41–45]). In this paper, we delve deeper into the implications of Has-
sani’s −1/2 theorem in time series analysis, focusing specifically on its effects when applied
to a white noise process.

Section 2 provides a detailed theoretical background, wherein we delve into the
fundamental principles of white noise and its associated fundamental properties, such as
the autocorrelation and partial autocorrelation functions. In Section 3 of the paper, we
provide an in-depth simulation study that gives an empirical view on white noise behavior,
with particular attention paid to some deviations observed in practice. In Section 3 we
also assess to what extent these empirical features influence time series model selection for
ARMA modeling, with special reference to the use of diagnostic tests through an analysis
for the applicability of the Ljung–Box test. Finally, Section 4 presents our conclusions about
the findings of these studies and their general implications for time series analysis before
giving an outlook on practical applications and avenues for further research.

2. Theoretical Background
2.1. Definitions

For a stationary process {Xt} of size n, we often define the following key quantities:

2.1.1. Mean

µ = E[Xt]

Since the process is stationary, the mean is constant over time.

2.1.2. Autocovariance Function

γ(h) = E[(Xt − µ)(Xt+h − µ)]

where h is the lag. The autocovariance depends only on the lag h and not on the time index
t due to stationarity.

2.1.3. Autocorrelation Function (ACF)

ρ(h) =
γ(h)
γ(0)

where γ(0) is the variance of the process. The ACF measures the linear correlation between
observations separated by lag h.

2.1.4. Sample Mean

µ̂ =
1
n

n

∑
t=1

Xt

2.1.5. Sample Autocovariance

γ̂(h) =
1
n

n−h

∑
t=1

(Xt − µ̂)(Xt+h − µ̂)

2.1.6. Sample Autocorrelation

ρ̂(h) =
γ̂(h)
γ̂(0)
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2.1.7. Spectral Density Function

The spectral density function describes the frequency content of the time series:

f (ω) =
1

2π

∞

∑
h=−∞

γ(h)e−iωh

2.2. Bartlett’s Formula

Assume n observations X1, . . . , Xn come from a stationary time series with IID innova-
tions Zt, and n is large enough. Let

ρ̂n = (ρ̂(1), . . . , ρ̂(n))′

and
ρn = (ρ(1), . . . , ρ(n))′

(here, ρ(i) = ρX(i)). Then, ρ̂n is distributed approximately N(ρ, n−1W), where W is a
covariance matrix with elements

wij =
∞

∑
k=1

(ρ(k + i) + ρ(k − i)− 2ρ(i)ρ(k))(ρ(k + j) + ρ(k − j)− 2ρ(j)ρ(k)).

2.3. Variance of ρ(h) and MA(q) Model Identification

• (a) IID Noise: If the process consists of independent and identically distributed (iid)
noise such that ρ(k) = 0 for all h:

wij = 0 for all i ̸= j,

then the variance of the sample autocorrelation function (ACF) simplifies to

Var(ρ̂(h)) ≈ 1
n

whh =
1
n

h ̸= 0

• (b) Moving Average Process MA(q): Consider the MA(q) process defined by

Xt = Zt + θ1Zt−1 + . . . + θqZt−q, Zt ∼ IID(0, σ2
Z).

For this process, the autocorrelation coefficients vanish beyond lag q:

ρ(q + j) = 0, j = 1, 2, . . .

Consequently, the variance of the sample ACF for h > q is given by

Var(ρ̂(h)) ≈ 1
n

whh =
1
n

(
1 + 2

q

∑
k=1

ρ2(k)

)
.

• (c) Asymptotic Distribution: Asymptotically, the distribution of ρ̂(h) is approximately
normal, with the mean ρ(h) and variance as derived above. For reliable estimation,
Box and Jenkins recommend

n ≥ 50, k ≤ n
4

.

• Examination of the Sample ACF for Model Identification:

– (i) If |ρ̂(h)| < 1.96 n−1/2 for all h ≥ 1, the process can be modeled as MA(0) (a
white noise sequence).
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– (ii) If |ρ̂(1)| > 1.96 n−1/2, compare subsequent values of ρ̂(h) with the
critical value:

1.96 n−1/2(1 + 2ρ(1)2)1/2.

However, since ρ(1)2 is unknown, two alternatives arise:

1. Replace ρ(1) with its estimate ρ̂(1), and check if

|ρ̂(h)| < 1.96 n−1/2(1 + 2ρ̂(1)2)1/2, h ≥ 2.

If true, assume an MA(1) model.
2. Alternatively, for large n, approximate the term

2ρ̂(1)2

n
≈ 0.

Check if
|ρ̂(h)| < 1.96 n−1/2, h ≥ 2.

If true, assume an MA(1) model.

– (iii) More generally, if |ρ̂(h0)| > 1.96 n−1/2 and |ρ̂(h)| < 1.96 n−1/2 for all h ≥ h0,
then assume an MA(q) model with q = h0.

– Since positive terms 2 ∑
q
i=1 ρ2(i) are discarded in the variance calculation, if ρ̂(h) is

approximately 1.96 n−1/2, it should be considered within the confidence interval.

2.4. Reevaluating White Noise Theoretical Assumptions

In time series analysis and forecasting, the theoretical foundation for modeling often
relies on the assumption that white noise possesses no correlation among its observations.
This assumption is critical as it forms the basis for the derivation of variance expressions
and confidence intervals for sample autocorrelation functions (ACF).

The variance of the sample ACF, as outlined in the theoretical framework above,
depends directly on the ACF itself and its summation, particularly through second-order
moments. However, the application of Hassani’s −1/2 theorem reveals a fundamental
contradiction: the sum of the ACF for any stationary process is always −1/2 [1,3]. This
fixed sum suggests that complete independence among observations in white noise can-
not be achieved in practice, raising questions about the theoretical validity of assuming
uncorrelated noise when the sum of ACF is constrained.

Moreover, the summation of the squared ACF terms, which directly influences the
variance expression, is also under question. The bounded nature of this summation,
as implied by Hassani’s theorem, challenges the theoretical assumptions of unbounded
variance growth for confidence interval derivations [8]. Consequently, the accuracy of
commonly used confidence intervals for the sample ACF becomes questionable.

These theoretical inconsistencies extend beyond the ACF itself to the broader impli-
cations for model validation and selection. Specifically, standard tests and models such
as ARIMA, which depend on the behavior of the sample ACF for parameter estimation
and model selection, may be theoretically flawed under the constraints introduced by
Hassani’s theorem.

In the next section, we present a detailed simulation study to further explore these
theoretical challenges. We demonstrate that empirical results can deviate significantly
from the theoretical predictions, highlighting scenarios where the theoretical variance
expressions and confidence intervals break down in practice. These findings emphasize the
need for caution when applying traditional modeling techniques based on the theoretical
assumptions of stationary processes and uncorrelated white noise.



Forecasting 2025, 7, 8 6 of 14

3. Validating Theory in Practice: A Critical Examination
3.1. White Noise Empirical Characteristics

A comprehensive simulation study is conducted to evaluate and compare the behavior
of white noise characteristics observed in practice with the theoretical properties described
in the previous section. For this purpose, a total of 5000 sample paths, each consisting
of 1000 observations, are generated from a Gaussian white noise process. This process is
defined to have a mean of zero and a variance of one, ensuring it adheres to the standard
properties of white noise.

To analyze the generated white noise, the sample autocorrelation function (ACF) and
partial autocorrelation function (PACF) are computed for each of the 5000 sample paths.
Additionally, the statistical summaries of these measures are obtained to assess their distri-
bution and variability. Specifically, the focus is on the means, medians, and 95% confidence
intervals of the sample ACF and PACF, which are calculated based on the 2.5th and
97.5th percentiles of the observed values.

The results of this analysis are presented in Figure 1. The figure provides a detailed
visualization of the mean and median sample ACF and PACF across different lag values,
along with the corresponding 95% confidence intervals. Furthermore, the cumulative sums
of these functions up to various lags are also illustrated, offering additional insights into
how the cumulative behavior evolves as the lag increases. This comprehensive represen-
tation highlights the consistency of the simulated results with theoretical expectations,
providing a robust validation of the white noise properties under consideration.

Figure 1. Mean, median, and 95% confidence interval (bound between 2.5 and 97.5 percentiles) of
sample ACF (top left), sample PACF (top right) and their cumulative sums (bottom).

As it is evident form the top panels in Figure 1, the variation in sample ACF and
sample PACF of the simulated white noise decreases as the lag increases. Furthermore,
the mean and median of the sample ACF and sample PACF oscillate near zero, with values
slightly smaller than zero.

The bottom panels of Figure 1 illustrate that the cumulative sums of the sample ACF
and sample PACF up to a certain lag (∑h≤H ρ̂(h) and ∑h≤H ϕ̂hh, for H = 1, . . . , T − 1) exhibit
a decreasing trend. As the number of lags included in the summation increases, the mean
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and median of the cumulative sum of the sample ACF converge to − 1
2 , consistent with

Hassani’s − 1
2 theorem, while the variation diminishes toward zero after an initial increase.

On the other hand, while the cumulative sum of the sample PACF also shows a
decreasing trend, its variation increases as the number of lags in the summation grows,
and the summation does not converge to a specific value. Additionally, both the cumulative
sums of the sample ACF and sample PACF exhibit slight skewness in their distributions,
as indicated by the difference between their mean and median values.

The skewness in the cumulative sum of the sample ACF becomes noticeable at inter-
mediate lags, exhibiting positive skewness, as the mean exceeds the median. Conversely,
the skewness in the cumulative sum of the sample PACF appears at later lags and shows
negative skewness, with the median positioned above the mean. These patterns are more
pronounced in the statistics derived from the sample ACF and PACF of simulated Gaussian
white noise. Figure 2 presents the standard deviation, skewness, kurtosis, and Kullback–
Leibler divergence from the theoretical asymptotic normal distribution for the sample ACF,
sample PACF, and their cumulative sums.

Figure 2. Standard deviation (top left), skewness (top right), and kurtosis (bottom) for sample ACF,
sample PACF and their cumulative sums.

As shown in the top-left panel of Figure 2, the standard deviations of the sample ACF
and sample PACF decrease as the lag increases. The standard deviation of the cumulative
sum of the sample ACF initially increases with lag up to a certain point before declining,
whereas the standard deviation of the cumulative sum of the sample PACF increases
monotonically in a nonlinear pattern. The top-right panel of Figure 2 reveals that the
cumulative sums of the sample ACF and sample PACF exhibit skewness, with the sum of
the sample ACF skewed to the right and the sum of the sample PACF skewed to the left.
Meanwhile, the skewness of the sample ACF and sample PACF themselves remains close
to zero but gradually shifts negatively as the number of lags increases.

The bottom panel of Figure 2 also shows that the kurtosis of the sample ACF, the
sample PACF, and the cumulative sum of the sample PACF remains around 3, which
corresponds to the kurtosis of the normal distribution, except for the later lags, where the
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kurtosis of the sample ACF increases due to its summation as a constant value. The kurtosis
of the cumulative sum of the sample ACF, however, is noticeably larger than 3. The skew-
ness deviating from zero (as seen in the top-right panel of Figure 2) and the kurtosis
deviating from 3 (as shown in the bottom panel of Figure 2) suggest that the distributions
of the sample ACF, sample PACF, and their cumulative sums may deviate from the the-
oretical asymptotic normal distribution. To assess how closely the distributions of the
sample ACF, sample PACF, and their cumulative sums align with the theoretical asymp-
totic normal distribution, the Kullback–Leibler divergence is computed. The divergence
measures the difference between the empirical distributions of the sample ACF, sample
PACF, and their cumulative sums (estimated using a kernel density approach) and their
theoretical asymptotic distributions, based on the following formulation:

DKL =
1
2

(
N

∑
i=1

p(xi) log
p(xi)

q(xi)
+

N

∑
i=1

q(xi) log
q(xi)

p(xi)

)
,

where p(.) is the estimated density based on simulated data, q(.) is the theoretical asymp-
totic normal density and N is the number of simulated sample paths. The Kullback–Leibler
divergence, DKL, is calculated for each lag of the sample ACF, sample PACF, cumulative
sum of the sample ACF, and cumulative sum of the sample PACF. The resulting values are
presented in Figure 3.

Figure 3. Kullback–Leibler distance from theoretical asymptotic normal distribution for sample ACF,
sample PACF and their cumulative sums. A zoom is given in the left figure.

As shown in the left panel of Figure 3, the divergence between the density of the
cumulative sums of the sample ACF and PACF from their theoretical asymptotic normal
distributions increases rapidly, even at small lags. In contrast, the distributions of the
sample ACF and sample PACF deviate from the asymptotic normal distribution at higher
lags, as illustrated in the right panel of Figure 3.

It is important to recall, as previously shown in Figure 2, that the variance of the cumu-
lative sum of the sample ACF is not monotonic, while the variance of the cumulative sum
of the sample PACF follows a nonlinear monotonic pattern. If the sample ACFs at different
lags were independent and shared the same variance, the variance of their summation
would be expected to follow a linear monotonic pattern as the number of lags increases.
The same principle applies to the sample PACF and its summation. To investigate the
independence of the sample ACFs and PACFs across different lags, Spearman’s correlation
is calculated and statistically tested. Since, in practice, only the first few lags of the sample
ACF and sample PACF are commonly utilized, the results are presented for the first 25 lags.

Figure 4 presents the Spearman correlation between the first 25 lags of the sample ACF
(left) and the first 25 lags of the sample PACF (right) in the top panels, with diagonal values
removed as they are always equal to 1. The correlations fluctuate between approximately
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−0.04 and 0.04. The bottom panels highlight in bold the correlations that are statistically
significant at the 0.05 significance level.

Figure 4. Spearman correlation between lags of sample ACF (left) and sample PACF (right) based on
simulated Gaussian white noise.

It is not surprising to observe statistically significant correlations among the sample
ACFs, even for white noise, despite the theoretical expectation of zero correlation. Accord-
ing to Hassani’s − 1

2 theorem, the cumulative sum of the sample ACF always converges
to − 1

2 , regardless of the type or length of the series. This applies to white noise as well,
implying that there must be some degree of correlation among the sample ACF values
for a white noise series. Therefore, the theoretical assumption of zero correlation between
sample ACF values does not hold perfectly in practice.

3.2. Impact of White Noise Empirical Characteristics on Models Selection

It should be noted that a fundamental principle in time series analysis and model
building is that the extracted residuals should exhibit white noise behavior. In other words,
time series models are typically constructed as a combination of a signal component and a
white noise component. Based on this foundation, a key criterion for selecting a suitable
model is that the extracted residuals should conform to the characteristics of white noise.
Consequently, a variety of statistical tests have been developed to assess whether residuals
meet this criterion, many of which rely on the sample ACF and PACF.

The gap between the practical characteristics of the sample ACF and PACF raises
the question of whether it is possible to distinguish between residuals from different
fitted models. For example, it questions whether, when the order of an ARMA model
is not correctly identified, the residuals of the fitted model would exhibit a different
autocorrelation structure compared to the original white noise (referring to the white noise
in the true model from which the data were generated). More importantly, it also raises the
question of whether models with incorrect orders result in lower forecasting accuracy.

To investigate the distinction between the residuals of fitted models and the original
white noise, a simulation study is conducted. In this study, 5000 sample paths are generated
by following ARMA(2,2) model:
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Xt = 0.1 Xt−1 + 0.89 Xt−2 + 0.1 Zt−2 − 0.85 Zt−1 + Zt, Zt ∼iid N(0, 1).

The order of the model is selected based on two different methods. In the first method,
the model is chosen based on the minimum Bayesian Information Criterion (BIC) using the
auto.arima R-function from the package forecast [27,46]. In the second method, the selected
model is the smallest model (with the lowest combined AR+MA order) for which the null
hypothesis of the Ljung–Box test is not rejected at the 0.05 significance level. The rationale
behind this second approach is that, according to theoretical assumptions, if the order
of the fitted model is smaller than that of the true model, the residuals will retain some
dependency. Therefore, the smallest model yielding uncorrelated residuals would likely be
close to the true model.

Figure 5 presents the selected orders from 5000 simulated sample paths. As shown,
the orders selected based on both methods exhibit substantial variation. The correct model
order (AR = 2, MA = 2) is more frequently identified in models selected using the Ljung–Box
test compared to those chosen based on the minimum BIC. Among the models selected
by minimum BIC, the null hypothesis of the Ljung–Box test (at five lags) is rejected in
61.68% of the cases, and the correct order ARMA(2,2) is identified in only 26.68% of cases.
For models selected using the Ljung–Box test, the null hypothesis is accepted in all cases (as
per the selection criterion), with 51.4% of the models correctly identifying the ARMA(2,2)
structure. This indicates that even models with incorrect AR and MA orders can still pass
the Ljung–Box test for uncorrelated residuals. In line with these observations, Hassani’s
− 1

2 theorem is employed to further explore the limitations and power of the Ljung–Box
test in detecting the correct order in ARMA models (for more information, see [3,8]).

Figure 5. The selected orders based on the minimum BIC (auto.arima R-function) and Ljung–Box test.
The size of the shapes represents the associated frequencies.

Since it has been shown that some models selected based on the minimum BIC produce
correlated residuals (i.e., residuals that are not white noise), a further question arises: do
such models also exhibit lower forecasting accuracy?

Hassani and Silva’s Kolmogorov–Smirnov Predictive Accuracy (KSPA) test [1] is also
employed to compare the residuals of the fitted model with the original white noise to test the
following hypothesis. {

H0 : FOriginal(e2) = FFitted(e2)

H1 : FOriginal(e2) > FFitted(e2)
,

where FOriginal(e2) is the distribution function of the original squared white noise,
and FFitted(e2) is the distribution function of squared residuals from the fitted model.
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Rejection of H0 implies that the original model has better accuracy than the fitted model [1].
The P-values for the above KSPA test are presented in Figure 6.

Figure 6. The P-values of the KSPA test for comparing the accuracy of the original model with the
selected models for each method: minimum BIC model (left), Ljung–Box test (right).

As can be seen in Figure 6, the minimum BIC method provides fitted models that do
not all have the same accuracy as the original model.

Figure 7 shows the out-of-sample forecasting performance, where 20% of the data
are used for out-of-sample forecasting and 80% are used for training the model. As can
be seen in Figure 7, the minimum BIC method provides fitted models that do not all
have the same out-of-sample squared error as the original model. Figures 6 and 7 both
confirm that deviations from the original model negatively impact modeling and forecasting
performance. It is evident that any departure from the theoretical assumptions affects the
model-building process and, consequently, the forecasting accuracy.

Figure 7. The P-values of the KSPA test for comparing the out-of-sample squared error between the
original model and the selected models for each method: minimum BIC model (left), Ljung–Box
test (right).

The findings of this study highlight critical practical implications for practitioners
in finance and economics, particularly in the selection and validation of time series mod-
els. In these fields, accurate model specification is paramount, as forecasting errors can
have significant financial and policy implications. The results demonstrate that model
selection criteria, such as the Bayesian Information Criterion (BIC) and the Ljung–Box
test, can yield differing outcomes in identifying the true underlying model order. Notably,
while the Ljung–Box test more frequently identifies the correct model, it also allows for
models with incorrect orders to pass as valid, raising questions about the robustness of
residual diagnostics in practical applications. This insight underscores the importance of
supplementing traditional selection methods with additional tests, such as the KSPA test,
to ensure residuals closely resemble the original white noise properties.

For financial and economic practitioners, this research emphasizes the potential risks
of over-reliance on minimum BIC for model selection, as it may lead to residuals that exhibit
autocorrelation and, consequently, reduce forecasting accuracy. Conversely, the Ljung–Box
test, while more robust in identifying uncorrelated residuals, does not guarantee perfect
model specification. Importantly, these findings suggest that even models with incorrect
AR and MA orders can produce forecasting accuracy comparable to the true model. This
has significant implications for real-world applications, where perfect model specifica-
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tion may be unattainable. Practitioners are encouraged to prioritize models that achieve
uncorrelated residuals over strict adherence to theoretical model order, as such models
often perform comparably in terms of forecasting accuracy. These results advocate for a
balanced approach, integrating theoretical insights with practical diagnostics, to enhance
the reliability of time series modeling in finance and economics.

4. Conclusions
This study provides a comprehensive analysis of white noise properties and their

implications for time series modeling and signal processing. Through extensive simulation
studies, we have demonstrated that the empirical characteristics of white noise, particularly
in terms of sample ACF and PACF, can differ significantly from theoretical assumptions.
These deviations impact model selection and diagnostic processes, as evidenced by the
varied accuracy of models chosen using minimum BIC and the Ljung–Box test. Our
findings underscore the importance of carefully assessing residuals and model diagnostics
to ensure that fitted models adequately capture underlying processes. Moreover, this study
highlights the limitations of relying solely on theoretical assumptions and emphasizes the
need for practical validation in real-world applications. This work contributes valuable
insights for researchers and practitioners, improving the robustness of time series analysis
and enhancing the reliability of forecasting models in various fields.
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