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Changes in land use patterns have significant environmental and socio-economic
impacts, making it crucial for policymakers to understand their causes and conse-
quences. This study, part of the European LAMASUS (Land Management for Sustain-
ability) project, aims to support the EU’s climate neutrality target by developing a gover-
nancemodel through collaboration among policymakers, land users, and researchers.We
present a methodological synthesis for treating land use data using a Bayesian approach
within spatial and spatio-temporal modelling frameworks. The study tackles the chal-
lenges of analysing land use changes, particularly the presence of zero values and com-
putational issues with large datasets. It introduces joint model structures to address zeros
and employs sequential inference and consensus methods for Big Data problems. Spatial
downscaling models approximate smaller scales from aggregated data, circumventing
high-resolution data complications. We explore Beta regression and Compositional Data
Analysis (CoDa) for land use data, review relevant spatial and spatio-temporal models,
and present strategies for handling zeros. The paper demonstrates the implementation of
keymodels, downscaling techniques, and solutions toBigData challengeswith examples
from simulated data and the LAMASUS project, providing a comprehensive framework
for understanding and managing land use changes.
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1. INTRODUCTION

Changes in land use patterns have significant environmental and socio-economic impacts,
making it crucial for policymakers to understand their causes and consequences (LeSage
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2008; Chakir and Le Gallo 2013). Studies on land use are valuable for identifying the deter-
minants of these changes, which affect biodiversity, water pollution, soil erosion, climate
change, and economic and social welfare (Hersperger and Bürgi 2009; Chakir and Lun-
garska 2017; Moindjié et al. 2022; Bareille and Chakir 2024). These changes are driven by
a combination of socio-economic factors, pedo-climatic conditions, and policy variables.
Land use models are crucial for analysing these influences and their effects (Chakir and Par-
ent 2009; Hersperger and Bürgi 2009; van Vliet et al. 2015). Moreover, the decision-making
processes surrounding land use are complex, shaped by both local and global biophysical
and socio-economic factors. Therefore, comprehensive knowledge of these influences aids
in evaluating and formulating environmentally friendly public policies.

Various disciplines, including economics, statistics, geography, and land use science,
have developed empirical land use modelling approaches using aggregate or individual data
(Chakir 2009).However,many studies overlook spatial autocorrelation inmodelling land use
or use ad hoc methods (LeSage 2008; Chakir and Le Gallo 2013; Chakir and Le Gallo 2021;
Moindjié et al. 2022), despite its prevalence in economicdecisions.This underscores the need
for more sophisticated spatial econometric models that account for spatial heterogeneity
and interdependence to accurately measure and analyse land use patterns (LeSage 2008;
James LeSage 2009; Elhorst 2013; Chakir and Le Gallo 2021).

This work is part of the European LAMASUS (Land Management for Sustainabil-
ity) project. LAMASUS develops an innovative governance model through collaboration
between policymakers, land users, and researchers. ThisHorizonEurope project aims to sup-
port the European Union’s climate neutrality target by creating an open-access modelling
toolbox for designing effective land use policies within the framework of the European
Green Deal. In the context of the LAMASUS project, this paper presents a methodological
synthesis for the treatment of land use data using a Bayesian approach and in the spatial and
spatio-temporal modelling framework. This approach is integrated in conjunctionwith those
that aim to provide a better understanding of the spatial dynamics of the processes that deter-
mine and drive land use changes. Enhanced understanding also enables the implementation
of land use policies based on models that improve policy formulation.

LAMASUS faces different problems related to land use and land use change analysis.
In this case, there are numerous land use categories, which are aggregated into a small
set to facilitate the determination of the main drivers of land use at different scales, both
administrative (NUTS scales) and high-resolution levels, that is, small spatial scales. From
the aggregated spatial scales, to approximate a smaller scale, spatial downscaling models
or disaggregation models are applied, avoiding dealing with high-resolution data that may
present inconveniences related to the systematic presence of 0’s or being large data banks,
which would pose a Big Data problem. On the other hand, to work with the aggregated data
with many disaggregated land use categories, joint model structures are proposed to deal
with the systematic presence of 0’s and 1’s, while for problems that emerge from Big Data,
a combined procedure of sequential inference and consensus is proposed.

In particular, the aim of this paper is to present different procedures and methods to
analyse land use data in different contexts of spatial and spatio-temporal modelling. In this
sense, Sect. 2 introduces land use data and its analysis byBeta regression,when only one land
use category is available, or within the framework of Compositional Data Analysis (CoDa),
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if multiple land use categories are available. In Sect. 3 we briefly review a selection of those
spatial and spatio-temporal models that are of interest for assessing the spatial and spatio-
temporal structure of land use data. Section4 sets out the proposed methodology for dealing
with the presence of 0’s and 1’s in land use data, both when a single category is available
and when several categories are available. In Sect. 4 is briefly shown the implementation of
the main spatial and spatio-temporal models for land use data. Section5 illustrates how to
deal with the presence of 0’s and 1’s in Beta regression and CoDa analysis. In Sect. 6, we
present downscaling models, also known as disaggregation models, applied to land use and
compositional data. Section7 is related to Big Data in the framework of high-resolution land
use data. Section8 stands for some simulated data and real data from LAMASUS project.
Finally, we conclude in Sect. 9.

2. LAND USE AND COMPOSITIONAL DATA

In this section, we focus on presenting the treatment of compositional data for the analysis
of land use shares, providing a brief exposition of the theoretical framework for CoDa and
the implementation of such analysis to address the drivers and underlying process in land
use shares.

Land use data are usually presented as proportions of land use shares in a given area,
which implies that land use shares, by definition, have a compositional nature (Pirzamanbein
et al. 2020; Thomas-Agnan et al. 2021; Krisztin et al. 2022). Therefore, one approach to
capture the variability of land use shares would be through Beta regression if we focus on a
specific category, or through CoDa to analyse the joint variability of several land use cate-
gories, e.g. cropland, grassland, forest, urban and other. The joint analysis of the categories
in the composition can be considered by different approaches: transforming the logratios
(Aitchison 1986; Aitchison and Egozcue 2005; Greenacre et al. 2023) and modelling those
logratios using multivariate Gaussian models, or using Dirichlet regression models (Con-
nor and Mosimann 1969; Hijazi and Jernigan 2009) for the proportions without needing to
transform them.

In general, compositional data consist of a set of parts that identifies the constituents of the
composition {1, 2, . . . , D}, while components {y1, y2, ..., yD} are numerical proportions in
which individual parts occur (Aitchison 1986). Therefore, CoDa can be defined by a matrix
Yn×D of n observations times D parts of the composition. Each row of the matrix Yn×D

satisfies the following closure condition
∑D

d=1 Yid = 1, and it is also assumed that each
value in the composition falls within the interval Yid ∈ (0, 1). The vector y1×D for the
i-th observation, related to each row of Yn×D , is called composition and it pertains to the
simplex sample space. A simplex space with dimension d, denoted by S

d , is defined as:

S
D =

{

y ∈ R
D : yd ∈ (0, 1),

D∑

d=1

yd = 1

}

, (1)

where due to the closure condition and the property yi ∈ (0, 1), the entire set of observations
of the composition Yn×D does not follow the usual Euclidean geometry RD , but rather the
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Aitchison geometry S
d with dimension d = D − 1 (Aitchison 1986; Greenacre et al.

2023). Additionally, it is also possible to define a subcomposition y1×C of y1×D . This refers
to a subset of C parts of the referring composition of D parts, where C < D and the
subcomposition is also subject to the closure condition

∑C
i=1 yi = 1.

2.1. LOGRATIO TRANSFORMATIONS

In Aitchison’s approach to compositional data analysis (Aitchison 1982, 1986), the focus
was on distributional issues, such as finding a way to transform compositions into interval-
scale multivariate vectors that could validly use the multivariate normal distribution. The
proposed logistic transformations, which aimed to create “transformed-normal” models,
relied on logarithmic transformations. These transformations allowed the use of standard
unconstrainedmultivariate statistics applied to transformeddata,with inferences translatable
back into compositional statements (Aitchison 1986; Greenacre et al. 2023). However, this
reliance on logarithms precluded zero data values, leading to the ongoing debate about zero
replacement and treatment, a topic often overlooked in publications (Greenacre et al. 2023).

There are several proposals for logratio transformations to analyse CoDa, including those
from Aitchison’s original work (Aitchison 1982, 1986), such as pairwise logratios (LR),
additive logratios (ALR), and centred logratios (CLR). Later proposals (Egozcue et al.
2003; Egozcue and Pawlowsky-Glahn 2006; Fiserová and Hron 2011) include isometric
logratios (ILR) and pivot logratios (PLR). These transformations attempt to address various
shortcomings of the alternative methods. However, each logratio transformation has its own
strengths and weaknesses, making it impossible to propose a single transformation suitable
for all CoDa datasets (Greenacre and Grunsky 2019; Greenacre et al. 2023).

In this work, we will focus on two of the logratios proposed by Aitchison (1986): ALR
and CLR. The ALR transformation implies defining a subset of d = D − 1 logratios with
the same denominator, called the reference (r ) part. Therefore, the ALR with respect to a
reference part of the composition is written as

ALR(yi | yr ) = log

(
yi
yr

)

, i ∈ {1, ..., D} : i �= r, (2)

where we define D ALR transformations, depending on the part chosen as reference. In
this case, it is important to use a reference part that satisfies either statistical or meaningful
objective. In fact, if the chosen reference part is almost constant, then the corresponding
ALRs are approximately the logarithm of the parts, up to a nearly constant amount.

The CLR transformation is defined as the logratios of the parts with respect to their
geometric mean g(y) = ∏D

i=1 y
1/D
i :

CLR(yi ) = log

(
yi

g(y)

)

, i ∈ {1, ..., D}, (3)

transformation that turns the sum-to-one constraint into a sum-to-zero constraint
∑D

i=1 CLR(yi ) =
∑D

i=1

[
log(yi ) − log(g(y))

] = 0. The usefulness of this transformation is that Euclidean
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distances between the CLRs are identical to the distances using all possible logratios; in
other words, the CLR is an isometric transformation.

Both logratio transformations allow us tomodel the logratios usingmultivariate Gaussian
distributions y∗ ∼ MVN(μ,�), where y∗ represents the logratios, either from CLR or ALR
transformations. This multivariate model not only accounts for complex structures in the
linear predictors, including spatial and spatio-temporal dependencies, but also captures
the correlations between the logratios through the variance-covariance matrix � of the
multivariate Gaussian distribution (Martínez-Minaya and Rue 2024).

2.2. DIRICHLET DISTRIBUTION

Dirichlet distribution is a generalisation of the Beta distribution for more than two pro-
portions, and its probability density function is defined as

π(y | α) = 1

B(α)

D∏

i=1

yαi−1
i , (4)

where α = (α1, ..., αD) is the vector of shape parameters αi > 0 ∀i , and B(α) is the
Multinomial Beta function, being the normalising constant of the Dirichlet. The sum of the
shape parameters α0 = ∑D

i=1 αi is usually interpreted as a precision marginal parameter τ .
In the Dirichlet distribution the sum-to-one constraint

∑
i=1 yi = 1 is also satisfied by the

data vector y = (y1, ..., yD), yi ∈ (0, 1). Therefore, if y ∼ D(α) denotes a variable that is
Dirichlet distributed, the expected values are E(yi ) = αi/α0, and the relation between the
shape parameters and the linear predictor (ηi ) is given by the log-link function log(αi ) = ηi .
Thus, it is also possible to parameterise the Dirichlet distribution in terms of the mean as
μi = exp(ηi )/(

∑D
i=1 exp(ηi )).

The parameterization of the Dirichlet distribution in terms of the shape parameters (or
the mean) linked to the linear predictor allows us to use complex structures, as in the INLA
framework, by defining Latent Gaussian Models (LGM). These structures can include tem-
poral components, spatial components such as the SPDE-FEM approach, or more complex
spatio-temporal processes. The implementation of the Dirichlet distribution in R-INLA

relies on methodology and R-package presented by (Martínez-Minaya et al. 2023). This
provides the basis to implement complex spatial and spatio-temporal structures for Dirich-
let distributed data inside the INLA framework.

3. SPATIAL AND SPATIO-TEMPORAL MODELS

The land use may present changes along space and time. Consequently, to assess the
variability it is possible to construct spatio-temporal models that can provide a further
description and insights (LeSage 2008; Chakir and Le Gallo 2021). In this section, we
will provide a brief overview of the different structures that can be used in spatio-temporal
modelling for land use data.

In most cases, land use data are provided as areas, i.e. values related to polygons that
typically represent administrative boundaries. This areal data naturally arises when a fixed
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domain is partitioned into a finite number of subregions where outcomes are aggregated.
Therefore, an appropriate way to model this kind of spatial dependency is by building a
structure of adjacency, or an adjacency matrix W, between the different connected areas
and setting a multivariate Gaussian density with a precision matrix based on a modulation of
this adjacency structure (Banerjee et al. 2015), which is quite common in disease mapping
as well (Martinez-Beneito and Botella-Rocamora 2019). This prior distribution defines the
dependence between the connected areas and allows the assessment of spatial structures,
from simpler ones like the Besag model (Besag 1974) or the Besag-York-Mollié model
(Besag et al. 1991) to more complex multidimensional spatial structures (Martinez-Beneito
et al. 2017). These models fall under the class of Conditional Autoregressive (CAR)models,
which are highly popular and can be related to Simultaneous Autoregressive (SAR) models
(Ver Hoef et al. 2018), with the latter being widely used in land use management and
econometrics. For a review of these models, their properties, and applications, we refer to
the works of MacNab (2022, 2023).

In spatial econometrics, the Spatial Error model (SEM), Spatial Lag model (SLM), and
Spatial Durbin model (SDM) are commonly used to analyse spatial dependency (Elhorst
2013; Bivand et al. 2014). These models also define a spatial dependence structure for the
explanatory covariates and the error term. The general framework that summarised these
models is the general nesting spatial model equation (Elhorst 2013)

y = δWy + α1N + Xβ + WXθ + u,

u = λWu + ε,
(5)

where 1N denotes a vector (N ×1) of ones, α is a global intercept, W is an adjacency matrix
of positive defined weights usually normalised such that each row sums to unity (LeSage
2008; JamesLeSage 2009),Wy represents the endogenous interaction effects of the response
variables y, WX represents the exogenous interaction effects among the explanatory vari-
ables X, Wu denotes the interaction among the spatial units, β and θ represent unknown
parameters. Finally, δ and λ are the spatial autoregressive parameter and spatial autocor-
relation parameter, respectively. These models can be reassembled to fit within the INLA
framework (Bivand et al. 2014; Gómez-Rubio et al. 2021) by fixing some parameters and
performing their analysis outside INLA, using Monte Carlo (MC, Berild et al. (2022)) or
Markov Chain Monte Carlo (MCMC, Gómez-Rubio and Rue (2018)).

The temporal terms can be incorporated into the linear predictor of the model in an
additive way, i.e. as a new term evaluating a purely temporal trend. This can be synthesised
into a model with one spatial component and one temporal component y = δWy + α1N +
Xβ + us + ut + ε, where us is the purely spatial component, ut is the purely temporal term
and ε is an independent and identically distributed error term. As an example, the temporal
and spatial components can be integrated into a rewritten form of the SLM to fit within the
INLA framework in the following way:

y = (I − δW)−1 [Xβ + us + ut + ε] (6)
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where ut ∼ MVN(0, Qt ) stands for the purely temporal component, and us ∼ MVN(0, Qs)

is the purely spatial term. In this case, Q∗
t = (I − δW)T · Qt · (I − δW) and Q∗

s =
(I − δW)T · Qs · (I − δW) represents the rewritten temporal and spatial structure for the
spatial error component. Meanwhile, the rewritten precision matrix for the error term is
Q∗

ε = (I − δW)T · (I − δW). The model in this form can be implemented in the R-INLA
software.

In addition to being able to evaluate additive spatio-temporal models, it is possible to
consider different structures for spatial and temporal interaction components. Knorr-Held
(2000) proposed four general structures to define spatio-temporal interaction models, in
which the precision matrix of the spatio-temporal effect is constructed by means of the
Kronecker product of the precision matrix of the spatial component by the precision matrix
of the temporal component Qst = Qs ⊗ Qt (Clayton 1996). Four natural interactions arise
from this formulation: (a) Type I interaction, this is defined as the Kronecker product of the
precision matrices of an unstructured spatial Qs = τsI and temporal effect Qt = τt I, where
the structure for the spatio-temporal component isQst = Qs⊗Qt = τst I⊗I. This interaction
makes sense when space and time have a discretised structure, otherwise this specification
may not make sense. (b) Type II interaction assumes an unstructured spatial effect Qs = τsI
interacting with a structured spatial effect Qt , then the spatio-temporal precision matrix is
Qst = I⊗Qt . (c) Type III interaction is the interaction of a structured spatial effect Qs by an
unstructured temporal effect Qt = τt I, obtaining that Qst = Qs ⊗ I. (d) Type IV interaction
is the interaction between a structured spatial effect Qs and a structured temporal effect Qt ,
which implies that the interacting spatio-temporal component is defined by Qst = Qs ⊗Qt .

The previously discussed precision structures for spatio-temporal effects are separable
in the sense that they can be decomposed as the Kronecker product of a matrix associ-
ated purely with the spatial component and another matrix associated with the temporal
component. However, this assumption can be artificial, as in real dynamic processes, the
spatio-temporal dynamic component does not necessarily have to be separable in these terms.
Therefore, an alternative is to construct non-separable structures, which can be defined based
on a correspondence with stochastic partial differential equations (Lindgren et al. 2024) that
express the dynamics of natural processes, or through a class of non-separable transformed
multivariate Gaussian Markov random fields (Prates et al. 2022), which provide a straight-
forwardway to construct thematrices and interpret the spatial, temporal and spatio-temporal
parameters. In these models, the precision matrix cannot be decomposed into the Kronecker
product of a spatial precision matrix and a temporal precision matrix, i.e. Qst �= Qs ⊗ Qt .

4. IMPLEMENTING SPATIAL CODA MODELS

Implementing spatial models in compositional data can be challenging due to the mul-
tivariate nature of the response variables. Each category or log-ratio of land use may have
its own spatial or spatio-temporal component with a distinct set of hyperparameters. To
address this complexity, rather than defining a separate component for each variable, two
alternatives can be considered. One approach involves replicating some spatial or spatio-
temporal components across different land use categories or log-ratios, resulting in identical
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hyperparameters for these replicated components (Gómez-Rubio 2020). Another approach
is to share spatial or spatio-temporal components across some categories, either scaled by
parameters to be estimated or sharing the same value (Gómez-Rubio 2020).

This can be exemplifiedwith the following toymodel for three logratiosY = (y1, y2, y3),
where Y ∼ MVN(μ,�), and the mean vector μ = (μ1,μ2,μ3) is modelled as:

μ1 = β101 + Xβ11 + u1s(τs, λs) + ut (τt ),

μ2 = β201 + Xβ21 + u2s(τs, λs) + ut (τt ),

μ3 = β301 + Xβ31 + u3s(τs, λs) + ut (τt ),

(7)

where β•0 are the intercepts, β•1 represents the fixed effect vector related to the matrix of
explanatory variables X, u•s denotes the spatial effects, which are three different replicas
from the same Leroux distribution (Leroux et al. 2000), given by u ∼ MVN(0, Qs) : Qs =
τs · [I + λs · (D − I − W)], and ut : ut,i = ut,i−1 + εi (τt ) is a temporal component shared
through the three linear predictors with the same values for each logratio. Finally, � is the
variance-covariancematrix between of logratios, with�−1

i i = τi and�−1
i j = ρi j/(τi ·τ j )1/2,

i �= j .
In R-INLA, it is not possible to model multivariate models directly, as the method

relies on the assumption of conditional independence of the data given the latent field
and the hyperparameters. Therefore, the correlation structure for the multivariate normal
observations cannot be evaluated in the likelihood; instead, it can be represented by a random
effectwith the desired structure in the linear predictor of themodel. To illustrate this, suppose
we have n observations of a D-dimensional multivariate Gaussian distribution. To evaluate
the correlations of this multivariate distribution in R-INLA, we can construct a component
on the latent field u, such that u ∼ MVN(0, Q), whose precision matrix is defined as
Qi i = τi i and Qi j = ρi j/

√
τi iτ j j . Each realisation of this component produces a vector of

D elements, so if this is replicated for each row of observations, we will have n replicas of
this effect evaluated with the same hyperparameters {τ , ρ}. This allows us to express the
D-dimensional multivariate distribution in the likelihood with n components as a univariate
distributionwith n×D observations and fixed precision in the univariateGaussian likelihood
to a high value (log(τ ) 	 1). Therefore, in each term of the linear predictor we will have a
realisation from this effect u corresponding to a category d ∈ {1, ..., D} and an observation
i ∈ {1, ..., n}.

Another way to express this is to consider that we have multivariate observations organ-
ised in rows for each multivariate observation and in columns for the different components
of the variable distributed according to a multivariate distribution. This can be expressed by
defining the model for each multivariate observation in the following way:

y1×D = μ1×D + ε (8)

where ε ∼ MVN(01×D,�D×D). If we incorporate this structure, ε, into the latent field,
then the model can be re-written as follows

yi = μi + εi (9)
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where εi ∼ N(0, τ ), and τ is fixed at a high value. The latent field must then
incorporate a multivariate structure with correlations that relate the components of
the multivariate structure we are re-expressing. If we rearrange the matrix structure
into a vector such that the indices for the multivariate components are represented as
(11, ..., n1, ..., 1d , ..., nd , ..., 1D, ..., nD), then the multivariate component u must follow
this indexing and can be incorporated into the latent field.

This demonstrates the flexibility to define various spatio-temporal structures for mod-
elling compositional data, or more generally, multivariate data. It also highlights the com-
binatorial challenge of defining models within such a framework, where testing all possible
combinations implies defining 2D models for each component of themodel,with D being the
multivariate dimensionality. This issue suggests that constructing models in these contexts
can benefit significantly from expert knowledge, which can help narrow down the feasi-
ble set of reasonable models. This approach avoids the need for extensive model selection
procedures among numerous sets, which can become intractable with even a few compo-
nents. Therefore, implementing spatial models in the context of compositional data requires
establishing criteria based on expert knowledge or other relevant factors to limit the set
of models to be evaluated. This is especially important given the various possibilities for
defining spatio-temporal components that we have mentioned in the previous section.

5. DEALING WITH 0’S IN LAND USE DATA

In the first section, we presented various approaches to analyse land use data: beta models
when focussing on a single category, and multivariate normal models for some transfor-
mation of logratios (additive logratios, centred logratios, isometric logratios) or Dirichlet
models when dealing with multiple categories. These are all different approaches to CoDa
analysis in general, and to land use data provided in proportions in particular. However, a sig-
nificant challenge in dealing with compositional data across all these approaches is the pres-
ence of zeros and ones (Martín-Fernández and Thió-Henestrosa 2006; Martín-Fernández
et al. 2011; Tsagris and Stewart 2018). Zeros can be problematic because they often indicate
the absence of a component, complicating the application of standard statistical techniques
that assume strictly positive data. Similarly, ones can signify the complete dominance of a
single component (inducing zero values in the remaining components), which can distort
correlations and overall analysis. Addressing these issues typically requires specific meth-
ods, such as zero-replacement strategies or transformations, to ensure that the compositional
nature of the data is properly accounted for and that the analyses yield meaningful results.

In general, different types of zeros can be found in compositional data (CoDa): (i) rounded
zeros or below-detection values, (ii) count zeros, and (iii) essential zeros. The first two types
of zeros are associated with “false” zeros, where the structure of the experimental design,
the sample size, or the sensitivity of the measuring instruments results in null values, even
though the underlying phenomenon is not necessarily null. In contrast, the third type of zeros,
also called structural or absolute zeros, assumes that the measurements indeed capture the
real absence or null value of the phenomenon (Martín-Fernández et al. 2011). For the first
two cases of rounded zeros and count zeros, replacement procedures or transformations
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have been proposed (Rasmussen et al. 2020; Lubbe et al. 2021), while for essential zeros,
likelihood modifications such as zero-inflated models or hierarchical structures can be used
(Aitchison and Kay 2003; Tsagris and Stewart 2018; Tang et al. 2022).

In line with Aitchison and Kay (2003), a joint hierarchical model similar to Hurdle
models (Mullahy 1986; Cameron and Trivedi 2013; Martínez-Minaya et al. 2018), which
are widely used in the environmental and ecological sciences, can be proposed to deal with
null values in likelihoods that do not allow them to be evaluated. This approach involves
conditional modelling of the components according to whether each particular component
has a zero or nonzero value. In order to apply a structure similar to that of a Hurdle model,
there must be a correspondence in the modelling of the composition and subcompositions
with that of the null and non-null values of the subcompositions. This implies that we can
use it in the case of dealing with data distributed according to a Dirichlet or when we use the
centred logratios, since it allows us to make the joint analysis of the zeros with the process
that generates the logratios for the CLR, or the shape parameters in the case of the Dirichlet.

Let’s assume that we have a matrix of n observations and D compositions, Yn×D where
each element Yi j is the value for the i-th observation and j-th composition. Then, we can
define an incidence matrix In×D , that for each element Ii j we have Ii j = 0 ⇐⇒ Yi j = 0
and Ii j = 1 ⇐⇒ Yi j �= 0. Each column of the incidence matrix will be the values that
we will model according to a Bernoulli distribution, and in principle this modelling will be
independent between the different compositions. This assumption of strict independence is
not entirely accurate, since all components cannot be null at the same time.However, it is also
not clear how this restriction impacts the correlations thatmay exist between the components
of the different Bernoulli distributions we are considering. Therefore, we propose a simpler
approach by assuming independence, or a weak dependence that would not significantly
affect the estimates. Consequently, considering independence for the incidence matrix, the
model for each composition integrating the vectors of incidence id = I1:n,d can be written
as:

i1 ∼ Ber(π1)

logit(π1) = Xβ1 + ∑K
k=1 fk,1(zk) + ust,1

...

iD ∼ Ber(πD)

logit(πD) = XβD + ∑K
k=1 fk,D(zk) + ust,D

(10)

where βd is the vector of linear coefficients, fd are nonlinear components and ust,d the
spatio-temporal components for the d-th component. While for the models for the values of
the compositions, if we use the CLR we can write Y∗ = CLR(Y), we have the following
multivariate Gaussian model for the logratio of the compositions Y∗ ∼ MVN(0,�). How-
ever, in this case, it is important to distinguish between rows where there is a component
with a zero value, or where there is one component with a unit value and the rest are zeros,
and rows where no values are zero, in order to analyse them analogously to how it is done
with Hurdle models.

The multivariate model can be rewritten as D univariate Gaussian models in which the
marginal precision is fixed at a very high value and the variance-covariance structure is
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evaluated by a random effect as described in the previous section in order to implement
these models in R-INLA:

y∗
1 ∼ N(μ1, τ

∗)
μ1 = Xβ1 + ∑K

k=1 fk,1(zk) + ust,1 + u
...

y∗
D ∼ N(μD, τ ∗)

μD = XβD + ∑K
k=1 fk,D(zk) + ust,D + u

(11)

where τ ∗ is a fixed precision with a high value (log(τ ∗) 	 1), u is the random effect that
accounts for the variance-covariance structure, u ∼ MVN(0, Q), such that Q = �−1. In
addition, for each observation row with a zero value component, the CLR transformation
is re-evaluated to exclude those null values. This procedure is the same whether we use the
Dirichlet distribution or the Beta distribution, which is a simplification of the Dirichlet when
only two categories are available.

6. DOWNSCALING MODELS

Empirical studies involving land use change often use aggregate data for regions, coun-
tries, or other geographic scales (Chakir 2009; Chakir and Le Gallo 2013). However, some
land use studies have had access to individual parcel-level data for analysing water quality,
the extent of urban sprawl, carbon sequestration costs, and habitat fragmentation (You and
Wood2006;Chakir 2009). The spatial pattern of land use is of particular interest and has been
useful in identifying factors that drive changes in land use at the disaggregated level (Chakir
2009; An and Lee 2020). In a more general sense, this issue of aggregated, disaggregated,
and different scales of data availability and analysis can be related to fusion models (Wang
et al. 2018; Wang and Furrer 2021; Villejo et al. 2023), data misalignment (Moraga et al.
2017), change of support (Gelfand 2001; Bradley et al. 2016) and disaggregation modelling
or downscaling (Nandi et al. 2023). In this general context, different issues arise concerning
the availability at different scales of information concerning the response variable, as in
data fusion models (Wang and Furrer 2021), or availability at different scales of relative
information, as in downscaler models (You and Wood 2006; Berrocal et al. 2010). This
implies extracting information from an aggregated scale to a disaggregated or continuous
scale using an effect with a continuous spatial or spatio-temporal structure, structure that is
commonly used in geostatistics to account for the data spatial dependence. This is possi-
ble to implement in INLA thanks to the definition of spatial models using the SPDE-FEM
approach, which is integrated in the R-INLA package (Lindgren and Rue 2015; Bakka et al.
2018).

6.1. SPDE-FEM

TheSPDE-FEMapproach (which stands forStochasticPartialDifferential Equations and
Finite Element Methods) allows for expressing the continuous spatial structure by approxi-
mating a Gaussian Field with a Gaussian Markov Random Field. This makes the inferential
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process efficient by reducing computational costs. This approach was initially proposed in
(Lindgren et al. 2011) by means of an approximate stochastic weak solution to the SPDE
in Eq. (12), proving that a stationary SPDE solution has a Matérn covariance function and
allowing to calculate directly its precision matrix, bypassing the need for resource-intensive
inverse processes. Thus, formally we get that the structured spatial effect ξ with precision
τ is related to a non-structured Gaussian random effect (white noise) through a filtering
operator (κ − )α/2:

(κ2 − )α/2τ · ξ(s) = W(s),
s ∈ D, α = ν + d/2, κ > 0, ν > 0,

(12)

where s are the locations; κ is a spatial scale parameter positive defined and related to
ρ and ν through κ = √

8ν/ρ; α controls the smoothness of the performances, which by
default is 2; τ regulates the variance, so it is also a parameter defined positive as τ 2 =
�(ν)

[
�(α)(4π)d/2κ2σ 2

]−1
; and D is the spatial domain D ⊂ R

d , being d the Euclidean
spatial dimension of such spatial domain. Additionally,  = ∑

i ∂
2/∂s2i is the Laplacian

operator andW denotes a spatial stochastic Gaussian process with unit variance. Therefore,
the solution for ξ(si ) leads to a Gaussian field with a covariance matrix defined by the
Matérn function correlation C(h), where the covariance is the correlation multiplied by the
marginal deviation:

C(h) = σ 2 · 2
1−ν

�(ν)

(√
2ν · h

ρ

)ν

Kν

(√
2ν · h

ρ

)

. (13)

In the above equation, σ is the marginal standard deviation, ρ is the spatial range, Kν is a
modifiedBessel function of the second kind of order ν, where ν is a parameter of smoothness
defined as ν = α−d/2. In INLA, α = 2 is taken by default, and in our cases, the dimension
of the analysis space is the plane (d = 2), resulting in a constant smoothness parameter
value ν = 1. Furthermore, under the SPDE approximation, the spatial range ρ is considered
as the distance at which the correlation value is close to 0.1 (Lindgren et al. 2011).

This approach allows defining a spatial effect whose precision structure is sparse and
approximates the solution of a continuous Gaussian field with a variance-covariance struc-
ture belonging to the Matérn family; where one particular case of this family is the expo-
nential covariance function when ν = 1/2. This spatial effect is defined by a Gaussian
Markov Random Field (GMRF), u ∼ GMRF(0, Q), whose precision matrix for the stan-
dard case of d = 2 and ν = 1 can be expressed as Q = τ 2(κ4C + 2κ2G + GC−1G).
Here, C and G are two matrices that can be computed through the structure of a constrained
refined Delaunay triangulation T by Finite Element Methods. The GMRF realisations at
the node locations sn can be projected to any other point within the mesh domain, usually
to the observation locations so, through a linear basis approximation synthesised in the
matrix product of the projection matrix A(sn, so) with the GMRF realisation at the mesh
nodes u(sn), u(so) = A(sn, so)u(sn). This allows the spatial effect u(so) to be rewritten as
u(so) ∼ GMRF(0, AT QA), which is clearly equivalent to u(so) = A(sn, so)u(sn).
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6.2. DOWNSCALING MODEL WITH SPDE-FEM

The definition of a spatial effect whose structure is continuous in space and space-time
allows for spatial and spatio-temporal downscaling. Let’s assume we have the following
structure for the linear predictors of the model of our data:

ηi,1 = Xβ1 + ∑K
k=1 fk,1(zi ) + ust,1(Ci , ti )

...

ηi,D = XβD + ∑K
k=1 fk,d(zi ) + ust,D(Ci , ti )

(14)

the downscaling is defined for the spatial structure when, for each area Ci , the spatially
structured effect is calculated as follows:

ust (Ci , ti ) =
∫

s∈Ci
ust (s, ti )ds

|Ci | ≈
∑n(si∈Ci )

i=1 ust (si , ti )

n(si ∈ Ci )
= A(sn, si )ust (sn, ti )

n(si ∈ Ci )
(15)

where si are integration points, allowing the approximation of the integral in the region Ci

by averaging the sum of the field at the integration points, and n(si ∈ Ci ) is the number
of integration points in Ci ; being the area of Ci determine as |Ci | = ∫

s∈Ci
ds. If a spatio-

temporal downscaling is implemented, then the integration would be performed in both
dimensions, spatial s and temporal t , using integration points for each corresponding volume
Ci × ti . Additionally, this procedure can also be applied to establish sub-models for those
covariates with a spatial structure that are given in areas. These sub-models would involve
the modelling of such covariates by incorporating the integral of the covariate scaled by a
linear regression coefficient, analogous to how it is done in error models (Muff et al. 2015,
2017) in cases without downscaling. The linear predictors in Eq. (14) can be associated with
either a Dirichlet distribution or a multivariate normal distribution related to some of the
logratio transformations previously shown. If they correspond to a logratio transformation, it
is necessary to re-write the linear predictors to incorporate the variance-covariance structure
� of the multivariate normal distribution, as explained in previous sections.

The downscaling approach not only provides a way to obtain estimates on a continuous
scale of the spatial effect but, due to its structure and implementation, also allows us to
consider the same spatial effect for different spatial supports. This has several implications,
as detailed in the initial references. One particular implication we would like to highlight is
that when the spatial support varies over time-such as in the case of small areas for disease
mapping or NUTS3-the use of a downscaled spatial or spatio-temporal effect ensures a
coherent structure across the different supports, maintaining the spatial or spatio-temporal
dependence of the data. Furthermore, this does not depend on the specific use of the SPDE-
FEM approach, as it can be implemented with any other Gaussian field, such as spline and
two-dimensional spline bases, or any other continuous field.

7. BIG DATA

Public smart card data, Wi-Fi access point data, wireless sensor networks, and data with
spatial location information -such as social media data, mobile phone tracking, and other
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Figure 1. Scheme of the sequential consensus procedure. This approach assumes sequentially updating the fixed
effects and hyperparameters, followed by performing a consensus for the random effects after these sequential
updates (Figueira et al. 2024).

sensing information from Internet of Things devices- can provide useful ancillary data
for LULC (Land Use and Land Cover) mapping. Compared to traditional geospatial data
acquisition, these geospatial big data (GBD) are typically obtained at a lower cost and offer
different coverages and better spatio-temporal resolutions (Liu et al. 2020; Zhang and Li
2022). They contain abundant human activity information, which can compensate for the
lack of socio-economic data (Liu et al. 2020). By leveraging both Remote Sensing (RS) and
GBD, it is possible to examine the physical and socio-economic characteristics of the urban
land system (Martí et al. 2019). Despite the great potential of integrating RS and GBD for
enhanced insights into urban land use, significant challenges remain in storing, managing,
analysing, and visualising these data due to differences in spatial data quality (e.g. semantics,
timestamps, and scale), technical formats, and data structures (Li et al. 2016). Therefore, a
large amount of land use information is accessible, particularly with global and low-scale
land use data, which gives rise to a big data problem.

This entails dealing with very heterogeneous and high dimensional data, particularly
when data are available at global scale (Stanimirova et al. 2023) or when LULC data at
regional scales are available at fine grid (You andWood 2005; Chakir 2009). The joint anal-
ysis of data that are at different scales and whose spatial structure is in different supports, as
well as combining different sources of information, means that modelling structures can be
particularly complex (Figueira et al. 2023, 2024). In order to deal with these large databases
and complex modelling structures, sequential inference procedures can be implemented in
INLA, which reduces the computational cost. In particular, a sequential consensus infer-
ential procedure can be established and implemented in R-INLA (Figueira et al. 2024).
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This procedure, summarised in Fig. 1, involves the marginal updating of fixed effects and
hyperparameters over a given partition of the data. The partition of the data can be done
along the various sources of information available, such as different likelihoods or groups
of likelihoods, or by leveraging the structure of the latent field (spatial, temporal, or spatio-
temporal). Once the sequential inference is performed, the random effects information is
combined using a consensus approach according to their (i) marginal or (ii) multivariate
distributions. This approach also accommodates complex models with shared components
between different likelihoods.

This procedure reduces computational burden in terms of memory and CPU usage by
solving the dataset or the original model through partitions.While it provides good estimates
for the latent field, the evaluation of hyperparameters may differ from that obtained by
analysing the full model without partitioning. This is because only the marginal information
is updated, and hyperparameters can exhibit non-negligible correlations in the posterior
distribution.

8. EXAMPLES

In this section, several examples are provided to illustrate the implementation of the
various methodological approaches described in the previous sections. These range from
handling zeros and ones using adaptations of Hurdle models-widely used in environmental
and ecological sciences-to methods for downscaling and procedures for managing large
databases or complex models.

The first example demonstrates how to handle compositional data with 0’s and 1’s, using
simulated data. The second example illustrates the results of a downscalingmodel applied to
real land use data from the European LAMASUS project. Finally, the third example uses a
large simulated dataset to showcase the effectiveness of the sequential consensus procedure
in analysing extensive datasets and accurately estimating the underlying process.

8.1. DEALING WITH 0’S EXAMPLE

In this first example, we present two cases that illustrate how to handle the presence of
zeros in CoDa. The first case uses data simulated from a Beta distribution to exemplify
the simplest scenario, proving the Hurdle model for dealing with zeros. The second case
also addresses CoDa, analysing 3 categories through a multivariate model of the CLR
transformation.

In the Beta case, we simulate the data from the following hierarchical conditional model:

Zi ∼ Ber(πi ),

logit(πi ) = βB + α · (β0 + β1 · xi + ui ),
Y j | Z j = 1 ∼ Beta(μ j , φ),

logit(μ j ) = β0 + β1 · x j + us j ,

(16)

where Zi are Bernoulli random variables explaining the process that generates the incidence
vector (incidence matrix for CoDa), such that zi = 0 ⇐⇒ yi = 0 and z1 ⇐⇒ yi �= 0.
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Figure 2. Simulated spatial effect, spatial distribution of zero and nonzero values, inferred spatial effect (mean
and standard deviation), differences in themean and standard deviation of the spatial structure between the Beta and
Hurdlemodels, and posterior distributions of the fixed parameters and hyperparameters are presented. Distributions
from the Hurdle model are shown in red, while those from the Beta model are shown in blue.

Y j are Beta random variables conditioned on Z j = 1, which implies that Y j �= 0. The
latent field comprises an intercept β0, a linear coefficient β1 related to a covariate x, and
a spatial effect us following a Leroux structure. The spatial adjacency structure is built by
partitioning mainland Spain with a Voronoi diagram, as shown in Fig. 2. This latent field is
shared in the linear predictor of the Bernoulli process, scaled by α and including an intercept
βB that controls the overall proportion of 0’s. Finally, φ stands for the precision of the Beta
distribution.

Figure2 shows the simulated spatial structure and the distribution of null and nonzero
values, along with the inferential results of the beta model without incorporating the zeros
and the Hurdlemodel incorporating the null values. It can be seen that, in general, the Hurdle
model better captures the true values of the spatial effects where there are many zeros, as
well as the posterior distributions of themodel parameters. In the figure, we can see a slightly
better identification of the β components, alongwith improved identification of themarginal
precision τ and, in particular, the spatial dependence parameter λ of the Leroux distribution.
To assess these improvements, we consider the DIC of the models and the RMSE for the
spatial trend, as we have the true values of the spatial pattern from the simulation. RMSE is
used to evaluate the improvement in identifying the spatial pattern according to the model.
The DIC values for the models are −359 (Beta model) and −363 (Hurdle model), while the
RMSE values are 0.56 for the Beta model and 0.51 for the Hurdle-like model.

The CoDa simulation is performed considering that only one (Y1) of the 3 categories
(Y1, Y2, Y3) can present zero values. This model serves as a conceptual example of how it
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Figure 3. Simulated spatial effects, spatial distribution of the zero and nonzero values, and inferred spatial effects
(mean and stdev.), along with the posterior distributions of the fixed parameters and hyperparameters.

can be implemented for CoDa, dealing with zeros and ones in several categories. Therefore,
the model structure when no null values are present is as follows:

Zi1 ∼ Ber(πi ),

Y j1 | Z j1 = 1 ∼ N(μ j1, τ
∗),

Y j2 | Z j1 = 1 ∼ N(μ j2, τ
∗),

Y j3 | Z j1 = 1 ∼ N(μ j3, τ
∗),

(17)

where the linear predictor for the CLRs are defined with the same structure as the one used
for the Beta example with the addition of the u effect to take into account the correlation
between the categories, ηid = β0d + β1d xi + usid + ui . However, when Zi1 = 0 the CLR
change to the remaining two categories (Y2, Y3) using the same underlying process in the
linear predictors as before.

Figure3 shows the simulated spatial effects and the distribution of the zero and nonzero
values for the first composition (Comp. 1). The figure also shows the inferred spatial effects
(mean and stdev.) for the different compositions, along with the distributions for the fixed
parameters and hyperparameters. In the figure, we can see an improved identification of the
β components, along with improved identification of the marginal precisions τ and slight
changes in the spatial dependence parameters λ of the Leroux distributions for the spatial
effects.
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In both cases we can observe an improvement in the estimation of the model by incor-
porating the Hurdle-type structure to integrate the analysis of the zeros. To assess this
improvement, the DIC is also considered for the two models, the Hurdle-like model and
the standard model. As a measure for evaluating the improvement in identifying the spatial
pattern according to the model, RMSE has been used, given that we have the true values of
the spatial effect from the simulation. The DIC between the models is:−4615 (Hurdle-like)
and −2754 (standard model), while the RMSE is (0.50, 0.25, 0.20) for the Hurdle-like
model and (0.54, 0.34, 0.31) for the standard model, for spatial effects of component 1, 2,
and 3, respectively.

8.2. DOWNSCALING EXAMPLE: LAMASUS DATA

In this example, we present the implementation of the downscaling procedure for real
land use data from the European LAMASUS project. In the context of the LAMASUS
project, we aim to identify the components that determine or drive land use and land use
change in Europe over the last decades. The data used in this example is spatially structured
at the NUTS3 level between the years 2007 and 2018; where NUTS (Nomenclature of
Territorial Units for Statistics) is the hierarchical system for dividing the economic territory
of the European Union. The land use data analysed in this example is classified into five
aggregated categories to avoid the presence of zero and unit values. These categories are:
(i) cropland, (ii) grassland, (iii) forest, (iv) urban, and (v) other natural land. A wide range
of explanatory variables are available to analyse the underlying processes that determine
land use, including socio-economic and demographic variables such as GDP, GVA, and
employment, as well as environmental variables like aspect and elevation.

We begin by focussing on the proportion of agricultural land use, specifically the cropland
category. To model exclusively the proportion of cultivated land use, we employ a down-
scaling model using a Beta distribution. Specifically, we use a spatio-temporal hierarchical
Bayesian model, as outlined as follows:

Yit ∼ Beta (μi t , φ)

logit (μi t ) = βXit + ∫
s∈Ci

u(s)ds
|Ci | + ut ,

(18)

where Yit represents the random variable for the proportion of cropland use in a specific
region i and year t . The conditional distribution of Yit follows a Beta distribution with mean
μi t and precision φ. The mean is linked through the logit function to the linear predictor.
The covariates are represented by Xi t , and the vector of the linear regression coefficients
are β. The downscaling spatial effect is u(s), while the temporal effect is modelled as a
first-order autoregressive process ut = φt ut−1 + ε(τt ), where φt and τt are the temporal
autoregressive parameter and the marginal precision of the temporal autoregressive effect,
respectively.

The selection of covariates to be included in the model was performed by exploring all
possible combinations of models without spatial and temporal effects. The combination
with the lowest Watanabe-Akaike Information Criterion (WAIC; Watanabe (2013)) was
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Figure 4. Cartographic representation of the continuous spatial effect and the temporal effect of the downscaling
model.

selected. This means that for the 22 explanatory variables available, all possible inclusion
and exclusion combinations were analysed, resulting in a total of 222 models. The model
with the lowest WAIC was chosen.

Some results are shown in Fig. 4. As the figure shows, the temporal effect is small. As
for the spatial effect, it captures the variability not explained by the covariates. We can
observe that, in certain areas, the spatial effect has a greater impact on the overall average
effect than in other regions, where its impact is less pronounced. Regarding the covariates,
some notable ones include decoupled payments (in euros) normalised by the total used
agricultural area (in hectares), and less favoured area subsidies (in euros) normalised by the
total used agricultural area (in hectares). Additionally, other relevant variables are the area
of the region, elevation of the terrain, GVA, and total output (in euros).

The analysis for the 5 aggregated land use categories is performed using a multivariate
Gaussian model with the ALR transformation of the categories. To select the covariates,
we implemented a stepwise search algorithm driven by the WAIC of the models after a
pre-selection where highly correlated (ρ > 0.75) variables were extracted. This algorithm
involves the following steps: (i) a forward search among the covariates until no additional
covariate can be included, then (ii) a backward step until no covariate can be deleted,
and (iii) repeating steps (i) and (ii) until there is no change. The base model into which the
algorithm is implemented encompasses a specific intercept, spatial, and temporal component
for each ALR. The final model includes 9 explanatory covariates, and the model for the
mean μ = (μ1, . . . ,μ4) of the multivariate Gaussian distribution MVN(μ,�) is written as
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Figure 5. Cartographic representation of the continuous spatial effects and the temporal effects for the different
ALRs of the downscaling model.

follows:

μi1 = β01 + Xiβ1 + usi1 + uti1 + ui ,
μi2 = β02 + Xiβ2 + usi2 + uti2 + ui ,
μi3 = β03 + Xiβ3 + usi3 + uti3 + ui ,
μi4 = β04 + Xiβ4 + usi4 + uti4 + ui ,

(19)

where usid is the downscaled spatial effect, usid = ∫
s∈Ci

usd(s)ds/|Ci |, and the component

u accounts for the correlation�−1 between the categories, as explained in the corresponding
section.

Figure5 shows the downscaled continuous spatial effects for the different ALRs, together
with the temporal effects. In this case, we can observe the scaling effect for the different
ALRs, which implies a common spatial dependency structure over the years. This is com-
bined with the temporal effect for the log-ratios, where the trend is similar for the first three,
while the fourth shows a temporal effect with greater uncertainty and is less pronounced.

8.3. BIG DATA EXAMPLE

In this final example, we present the implementation of the algorithm summarised in
Fig. 1 for evaluating large databases of compositional data. The purpose of the simulation
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is not merely to demonstrate the results of the algorithm implementation for handling large
databases, but also to showcase its versatility and its application to spatio-temporal down-
scaling models. This enables the processing of structured data in areas with spatial support
that varies over the years.

The simulation is conducted for three categories evaluated using theALR transformation,
so the multivariate Gaussian structure will have a dimension of 2. The spatial structure is
simulated using a continuous Gaussian field aggregated over three different spatial supports,
each structured into areas. Specifically, the aggregation is based on three distinct areal struc-
tures, with 200, 250, and 300 areas, as shown in Fig. 6,making the downscalingmodel purely
spatial. The Gaussian field is a separable spatio-temporal effect, defined by the following
precision matrix: Qst = Qs ⊗ Qt . The spatial precision matrix is defined using an SPDE
in two dimensions, while the temporal part is determined by a first-order autoregressive
structure with 600 (temporal) nodes. To construct the different spatial supports, the territory
of mainland Spain has been partitioned using Voronoi diagrams.

The model used to simulate and infer the data is as follows:

μi t1 = β01 + ∫
s∈Ci

u1(s, t)ds + uit ,

μi t2 = β02 + ∫
s∈Ci

u2(s, t)ds + uit ,
(20)

where β0d are the intercepts, ud(s, t) are the spatio-temporal effects aggregated over the
different spatial supports for each ALR. Finally, the effect u accounts for the correlation
structure between the different ALRs, allowing for the implementation of the multivariate
Gaussian distribution in R-INLA.

Figure6 shows the mesh for the spatial effect and the different spatial supports in which
the data was aggregated over the various years. It also presents the aggregated spatial effect
using simulated data, as well as the desegregated spatial effects obtained from the inferential
process of the two ALRs for the first temporal node. The data set was divided along the
temporal scale, grouping into 6 temporal nodes, as larger groupingwould exceed the server’s
memory capacity, which had 253 GB of RAM and 93 cores. Additionally, the complete
analysis by the sequential consensus procedure for the entire dataset took 314.28 minutes.

9. CONCLUSIONS

In the field of land use science, the application of spatial or spatio-temporal models is
essential for evaluating the key factors that modify and direct land use and land use changes.
Assessing spatial patterns alongside temporal patterns provides a precise understanding of
their distribution in space and their temporal evolution. To achieve this, approaches often
use either large-scale aggregated data or small-scale disaggregated data. In the latter case,
when small-scale data are available, two natural problems may arise: the presence of null
values and computational complications when handling large databases. Conversely, when
dealing with large-scale data, the issue of changing the spatial aggregation support over time
may occur. This study presents methodologies to address the problem of null values, down-
scaling procedures for spatial or spatio-temporal structures, and big data challenges. These
methodologies are illustrated with various examples to demonstrate their implementation.
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Figure 6. Mesh for spatial effects, spatial supports for data aggregation and outputs, comparing the aggregated
simulated data with the downscaled spatial fields obtained from the inference for the first temporal node.

The results presented in the examples show the improvement when the presence of zeros
is integrated into the analysis, alongwith the ability to perform dowscaling or disaggregation
models using continuous Gaussian fields, specifically through the SPDE-FEM approach.
Additionally, the implementation of a dowscaling model on a large dataset across different
aggregation supports was shown. This highlights the possibility of encountering aggregated
data in different spatial structures over the years, and how to deal with them in a Big
Data context. This can be achieved by implementing the sequential consensus algorithm;
otherwise, computational limitations would render the analysis unfeasible.
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