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Optimizing Resilience in Sports Science
Through an Integrated Random Network
Structure: Harnessing the Power of
Failure, Payoff, and Social Dynamics

Chulwook Park1,2,3

Abstract
This study focuses on understanding risk-aversion behaviours in sports science by examining system dynamics and network
structures. Various network models for real-world sports were analyzed, leading to the development of a comprehensive
computational algorithm that captures the interactive properties of networked agents. This algorithm dynamically estimates
the likelihood of systemic risk propagation while optimizing principles related to failure, reward, and social learning within
the network. The findings suggest that despite the inherent risks in sports-centric network structures, the potential for pro-
tection can be enhanced through strategically developed, interconnected methods that emphasize appropriate investment.
Strong social learning interactions were found to reduce the probability of failure, whereas weaker interactions resulted in a
broader distribution of eigenvector centrality, increasing the risk of failure propagation. The study highlights key conceptual
and methodological advancements in applying system dynamics to sports science. Furthermore, advanced agent-based net-
work simulations offer deeper insights into the protective potential of interconnected management strategies, offering solu-
tions to mitigate instability and cascading risks in sports.

Plain Language Summary

System Dynamics in Sports Risk Management

� The practical applications of system dynamics were examined through an agent-based model tailored to various
real-world sports networks. This model incorporated risk propagation assessments, sports network measurements,
and an investigation into the effects of protective dynamics on risk.

� An inverse relationship was found between individual gains and failure. Without risk management investments, even
minor factors or small probabilities could lead to widespread failure over time.

� The developed computation approach is expected to enhance decision-making proficiency, facilitating efficient
management of complex sports system dynamics. It can be further expanded by formulating policies across
different scales, offering a sophisticated perspective on systemic risks.
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Introduction

In today’s sports world, success relies heavily on accurate
real-time data interpretation and strategic decision-mak-
ing, thus requiring a multitude of analytic approaches.
This dynamic, interactive entity is continuously influ-
enced by evolving information, which presents both
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challenges and opportunities (Smith & Sparkes, 2009;
Wäsche et al., 2017). Uncovering underlying insights and
projecting outcomes depend on the sophistication of
tools and theoretical frameworks employed (Park, 2022).
Although studies often focus on network constituents
and their interconnections (Korte & Lames, 2018), fac-
tors such as cultural context, research ethics, data valid-
ity, and participant data collection can pose significant
methodological challenges in sports science research.
These factors may limit the capacity to discern beha-
vioural shifts accurately in line with the intent of
researchers (Narizuka & Yamazaki, 2018).

Following the complexities posed by dynamic data
shifts in sports, understanding motor behaviours and
their evolution involves examining both individual inter-
actions (micro level) and the broader environment (macro
level), which act as constraints (Newell, 1986). This
requires a systemic approach that encapsulates dynamic
shifts among myriad factors and multidimensional com-
ponents that impact these behaviours (Park, 2018). With
this in mind, this article proposes a comprehensive net-
worked model that successfully translates these intricate
concepts into sports contexts (Clemente et al., 2016). The
model represents a significant step forward in leveraging
complex data interactions to elucidate behaviours and
optimize strategies in the field of sports science.

Dynamics in Sports Risk Management

The convoluted interplay of diverse elements within the
human body and sports components results in a multifa-
ceted, interconnected network. Autonomous elements,
such as nerve pathways directing movement or players
forming a team, shape these functional network struc-
tures (Sussillo et al., 2015). Even minor disruptions can
trigger instability, underlining the fragile equilibrium
within these systems. Network concepts, which use per-
formance variables to identify patterns in these interac-
tions, have become increasingly prevalent. This relational
approach places the components within a specific context
and integrates individual attributes such as age, sporting
ability, experience, and team position into the network
analysis. This closer inspection of the relationships
between these features and their dynamics within the net-
works, coupled with frequent interactions between spe-
cific units and functions, underscores the potency of the
network approach. It presents a robust analytical tool,
emphasizing the importance of individual actors and
their synergistic interplay (Wickelgran, 1969).

As mentioned earlier, even trivial perturbations can
have ripple effects in delicate sports ecosystems. Systemic
risks, originating from the unstable nature of intercon-
nected elements, can catalyse far-reaching disasters, impair-
ing performance, causing injuries, leading to team losses,

and potentially precipitating industry downfalls. The wide-
spread use of performance-enhancing drugs is a stark
example of such systemic risk, undermining the integrity of
the sports industry and eroding the trust of fans (Trimmer
et al., 2011). To comprehend the mechanisms behind these
phenomena, numerous studies have sought to identify and
establish protection mechanisms against systemic risk pat-
terns (Dehmamy et al., 2018; Lusher, Koskinen, et al.,
2010; Park, 2020). Several studies have employed simula-
tion methods to illustrate how the complexity of inter-
twined components can trigger real-world phenomena
(Pastor-Satorras et al., 2015). In this context, graph theory
has proven invaluable for understanding sports network
structures and facilitating communication among network
elements (Ribeiro et al., 2017).

Network Structures in Sports and Movement Systems

The systems regulating movement in sports exhibit a
broad spectrum of network structures, each with unique
characteristics (Kugler et al., 1980). Understanding these
network architectures by analysing the structure and
behavior of sports and movement systems can inform the
development of effective coaching, training, and injury
prevention programs. We explore five key network topol-
ogies relevant to sports and movement control systems:
small-world, scale-free, random, regular lattice, and neu-
romuscular networks.

Small-world networks, marked by high clustering coef-
ficients and short average path lengths, can model social
interactions in sports, where players frequently form
closely knit groups linked by sporadic long-distance con-
nections (Watts & Strogatz, 1998).

A=G n, p,b½ �, p and b 2 0, 1ð Þ ! Am 3 n ð1:1Þ

This equation represents the conversion of a small-world
graph (G), characterized by a number of nodes n, con-
nection probability p, and scaling parameter b, into an
adjacency matrix A of dimensions m by n. Such networks
improve communication and coordination, thereby
enhancing team efficiency. For instance, an analysis of
the performance of NBA teams during the 2010 to 2011
season revealed small-world network characteristics in
their communication and collaboration (Peña &
Touchette, 2012). Similarly, an examination of elite
rugby teams revealed small-world network attributes in
teamwork dynamics (Duarte et al., 2012).

Scale-free networks, typified by a power law degree
distribution, consist of a few highly connected ‘‘hubs’’
and numerous sparsely connected nodes (Barabási &
Albert, 1999). This structure is evident in competitive
sports, where a select group of elite athletes dominates
rankings and media attention.
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A=G n, p kð Þ½ �, p kð Þ 2 0, 1ð Þ ! Am 3 n ð1:2Þ

This equation describes the process of converting a scale-free
graph (G), defined by the number of nodes n and connec-
tion probability function p kð Þ, into an adjacency matrix A

with dimensions m by n. The increase in superstars and their
impacts can be partially explained by scale-free networks.
For example, an examination of the ATP World Tour and
the PGA Tour showed that the network of professional
players exhibited scale-free properties, with top-ranked play-
ers acting as hubs (Radicchi, 2011). A study revealed that
players with high connectivity degrees were more likely to
win matches and dominate rankings, significantly influen-
cing competition dynamics (Smith et al., 2013).

Random networks, where nodes are connected at a cer-
tain probability, display a Poisson degree distribution
(Erdos & Rényi, 1959). They can model unstructured
sports or recreational activities with random, unregu-
lated participation.

A=G n, d½ �, p 2 0, 1ð Þ ! Am 3 n ð1:3Þ

This equation illustrates the conversion of a random
graph (G), determined by the number of nodes n and
degree distribution d, into an adjacency matrix A of size
m by n. Random networks can elucidate the dynamics of
such activities. For instance, a study of recreational vol-
leyball players showed that player connections followed
a random network pattern, with interactions determined
not by preset roles but by chance encounters and sponta-
neous decisions to play together (Borgatti e al., 2009).

Regular lattice networks, which form a structured
grid-like pattern, can model organized sports teams with
defined roles and positions for each player (Watts &
Strogatz, 1998).

A=G n, d pð Þ½ �, d pð Þ 2 0, 1ð Þ ! Am 3 n ð1:4Þ

The equation indicates the conversion of a regular graph
(G), characterized by a number of nodes n and degree
distribution function d pð Þ, into an adjacency matrix A of
dimensions m by n. Such networks highlight the impor-
tance of strategic planning and communication in achiev-
ing success. For example, a study on football teams
during the competition (i.e., World Cup) showed that
their passing networks resembled regular lattice net-
works, with players maintaining specific positions and
high interconnectivity (Gama et al., 2019).

Neuromuscular networks in the human body connect
neurons and muscles, comprising muscle fibres that con-
tract upon signal reception and neurons that transmit
these signals (Dayan & Abbott, 2001).

A=G n,m(f , s)½ �, m f , sð Þ 2 0, 1ð Þ ! Am 3 n ð1:5Þ

The equation signifies the transformation of a neuromus-
cular network (G), characterized by a number of nodes n

and muscle function m dependent on force f and speed s,
into an adjacency matrix A with dimensions m by n.
Studying these network architectures provides insights
into the complex relationships between athletes and
teams and into the mechanisms underlying human move-
ment. For example, a study of neuromuscular networks
during strength exercises revealed that changes in these
networks correlated with improved motor control and
performance (St.-Onge et al., 2020). Furthermore,
research into injury prevention revealed that targeted
training interventions could reduce noncontact injuries
by analysing the neuromuscular networks of the lower
limbs of professional athletes (Hewett et al., 2006).

Figure 1 illustrates the diverse network architectures
under discussion, offering a detailed analysis of their

Figure 1. Visual representations of diverse network structures. Left plot: Social interactions among members depicted as a small-world
(SW) network, showing how closely-knit clusters can be interconnected to create short path lengths. Middle-left plot: Competition
dynamics expressed as a scale-free (SF) network, highlighting nodes with high connectivity (hubs) that represent dominant competitors.
Centre plot: A recreational sports team depicted by an Erd�o�s-Rényi (ER) random network, highlighting the randomness of interactions in
such an environment. Middle-right plot: A professional sports team visualized as a regular lattice (RL) network, emphasizing the
structured and predictable connections between team members. Right plot: The neuromuscular (N) network is represented as a bipartite
graph in which the cyan and magenta nodes represent neurons and muscles, respectively. For all networks, edge colours and widths
indicate the strength of the connections, with darker and wider edges representing stronger connections.
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interaction within sports and movement systems. This
depiction emphasizes the capacity of these network mod-
els to cultivate novel approaches in coaching, training,
and injury prevention. A thorough examination of these
models within the context of sports science will enhance
our understanding of intricate systems and assist in
addressing challenges related to risk and resilience
management.

Integration of Key Network Structures (Random)

The random network structure forms a fundamental
model in sports science, incorporating the essential char-
acteristics of small-world, scale-free, regular lattice, and
neuromuscular networks. However, the potential rapid
spread of misinformation or damaging behaviors, partic-
ularly evident in small-world networks, must be cau-
tiously monitored within this integrated model (Watts &
Strogatz, 1998). Incorporating the hub-centric structure
of scale-free networks into the random network model
can help identify and cultivate individuals who are criti-
cal for enhancing the network’s capacity to disseminate
knowledge and innovation (Barabási & Albert, 1999). By
equipping these hubs with the finest tools, data, and
training, we can amplify their beneficial impact and sub-
sequently uplift the entire network. Preparing for poten-
tial hub failures by establishing backup connections and
alternate routes will ensure network resilience. Robust
local connections and cooperative interactions, common
in regular lattice networks, can be integrated into the
random network model to enhance resilience, expedite
information exchange, and promote recovery (Er�o�s &
Schweitzer, 2002). Efforts to improve global connectivity
and shorten the average path length within the network
are crucial to ensure the efficient reach of data and
resources across all network sections.

To merge the merits of exploration with the need for
stability and consistency in performance, social dynamics,
such as imitation and exploration, can be incorporated
into the random network model (Centola et al., 2007). By
integrating these social dynamics with the reward
dynamics of game theory, the random network model
can more accurately portray the intricate relationships
and decision-making processes that underpin success and
resilience in sports and movement control systems (Von
Neumann & Morgenstern, 1944). A random network
model that amalgamates the core features of other net-
work structures and dynamics, including failure, reward,
and social interaction, could significantly enhance the
optimization of performance and decision-making in
sports science. By diligently considering these diverse ele-
ments, we can develop strategies that safeguard against
failure and risk propagation.

One method to achieve this objective involves embed-
ding elements of failure, reward, and social interaction
dynamics within the random network model. This inte-
gration enables the establishment of approaches that bol-
ster the resilience of the network to failure and risk
dispersion. For instance, the random network structure
could incorporate the rapid information dissemination
characteristic of small-world networks, enabling prompt
adaptability and response to shifts in the sports environ-
ment (Watts & Strogatz, 1998). In particular, a study
examining the robustness and vulnerability of various net-
work structures in team sports showed that elements of
both random and small-world networks demonstrated
enhanced resilience to failures and disruptions (Grund,
2012). Similarly, another study scrutinizing the interac-
tion patterns among team players during games revealed
that the teams exhibited a blend of random network prop-
erties (Sampedro, Prieto, & Sañudo, 2011). The research-
ers inferred that random network structures could inspire
mitigation strategies and enhance performance by pro-
moting adaptability and efficient communication.

Network Dynamics Through an Agent-Based Model

This research investigates intricate network architectures
and their intrinsic dynamics, extending from the founda-
tional elements of muscles and nerves in perception–
action systems (Jordan, 1997) to the complex interactions
within sports, exemplified by phenomena such as team
spirit (Narizuka & Yamazaki, 2018). Each initiated phase
progressively amplifies, building on the previous phase
until culmination. These phenomena encapsulate the evo-
lutionary rules governing behaviors in response to envi-
ronmental stimuli. Behavioral adaptations, as heritable
traits, follow a process in which successful behaviors are
replicated and strategically propagated through learning;
this process is known as cultural evolution (Fawcett
et al., 2013). Hence, comprehending how these adapta-
tions interact with the sports environment and associated
physical and institutional tools is crucial.

Employing an agent-based model that involves these
evolutionary traits provides a method for examining
these interactions (Hulme et al., 2019). Such models inte-
grate behavioural algorithms with network dynamics,
unveiling natural patterns and facilitating a superior
understanding of adaptation by capturing emergent phe-
nomena. Autonomous agents, representing individuals
constructed from the bottom up, can incorporate learn-
ing algorithms (Reynolds, 1987)). This enables the obser-
vation of rational decision-making based on potential
interactions within an artificial system (Oliva, 2016).
Prior research has used traditional statistical methodolo-
gies in agent-based network models to explore diverse
topics, such as the role of different serial orders in
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movement (Jordan, 1997), tactical positions in team
sports (Korte & Lames, 2018), and health-related issues
(Shoham et al., 2012). However, understanding the com-
plex relationships among ‘‘interactive factors on net-
works’’ (Bittencourt et al., 2016) is regarded as more
crucial for mitigating risks related to motor behavior
and team performance than identifying the causal effects
of individual factors (Hulme & Finch, 2015).

In this study, we endeavored to harness system
dynamics through a unique networked agent model con-
structed upon various real-world sports structures. Our
investigation focused on understanding how protection
dynamics at interconnected macro–micro scales influence
risk and its subsequent interplay with the sports environ-
ment. We incorporated behavioural adaptations into a
sports network and introduced a novel algorithm
designed to deliver quantitative measurements capable of
assessing factors that drive risk propagation. Our model
is distinct from previous approaches in its unique inte-
gration of behavioral adaptations and its applicability to
real-world sports structures. This study not only repre-
sents a step towards a deeper understanding of the com-
plexity of sports science but also serves as a practical
guide for constructing risk models and discovering
insights.

Methods (Model)

We employed a rudimentary framework in which ran-
dom properties delineated the foundational structure.
This structure was extracted from a variety of sports
observation data (refer to Figure 1), with each node
defined as being interconnected in a random manner
(refer to Appendix 1) by undirected connections. These
random characteristics align with previous studies pro-
posing that sports or motor behaviors form a network of
significant systems in which interconnections are mani-
fested by different components of the system, including
muscles and nerves (Purves et al., 2001), social interac-
tions, and tactical positions in team sports (Korte &
Lames, 2018; see Appendix 2).

Subsequently, we harnessed an algorithm (Appendix
3) based on the concept that the impacts of major risks,
such as failures, can be approximated by using the inher-
ent potential of the network properties. Then, we inte-
grated mechanisms for protection by incorporating both
evolutionary and non-evolutionary parameters (Sigmund
& Nowak, 1999). This integration is rooted in a compre-
hensive understanding of the interconnected scale that
emanates from the various structures of sports. By
encapsulating these multifaceted interactions, our model
aspires to provide a detailed and refined understanding
of the dynamics within sports networks and the potential
risks they might pose.

Operating Principle

A proposal is presented for the developed protection
mechanism and its potential impact on the agented net-
work, followed by the subsequent steps for model imple-
mentation. First, nodes (vertices) serve as elements or
individuals—functional structures that generate diverse
movements (Haken, 2012) or interactive properties in a
complex tactical team sports system—while links serve as
edges that connect two nodes. A set [Eii =E(vi, vi)] of
two nodes (vi, vi) linked by edges represents the connec-
tions in functional units or individuals in sports; these are
referred to as ‘‘adjacent’’ nodes (Bohm, 1969), defined as
[A=G n, p½ �, p 2 0, 1ð Þ ! Am 3 n]. The data are input
into a matrix (m 3 n), where the rows indicate that other
individuals are nominating to form relationships and ties
are considered either present (where relations=1) or
absent (otherwise=0). Hence, the resulting matrix (A) is
obtained from the data-driven network (G) properties,
and each vertex is exposed randomly (n, p) to another
vertex to generate a connection (Erdos & Rényi, 1959).
In this algorithm, the probability of a node’s degree in a
network is estimated based on the vertices influenced by
this connection probability [p 2 0, 1ð Þ]. Next, vectors and
arrays are employed to observe the propagation of risks
according to the risk (i.e., failure) probability of the
sports system due to the initially affected vertices, which
can be simply expressed as p_j (1 ł j ł N). Based on the
basic structure and premises, risk propagation and pro-
tection mechanisms are implemented.

Payoff and Failure Dynamics

Nodes represent each vertex in a functional or tactical
unit characterized by capital and strategy using the
dynamics presented below. For instance, in phenomena
frequently observed in sports (e.g., motor learning and
professional expertise), nodes receive a certain amount
of payoff as a reward (trust, passing, and fitness), which
is added to their function or capital c at each stage as
[updated capital = 1+ 1� fm � fp

� �
c]. The capital is

updated at each stage, with portions allocated for protec-
tion fp and maintenance fm. Then, the risk potential origi-
nates from the probability of starting from a node at
each stage pn 2 (0, 1) and the probability of propagation
along a connection of the networked components
pl 2 0, 1½ �. This potential is converted to a failure prob-
ability (1� pp) depending on the investment in the pro-
tection of each individual, which leads to individual
capital loss occurring only in that step:

pp = pp,max=(1+ cp, 1=2=(fpc)) ð2Þ

Here, the protection mechanism pp is a saturation func-
tion, pp,max denotes the maximum protection, cp, 1=2
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represents the reference point, and fpc represents the evo-
lutionary level of protection, including the capital of the
node. As can be estimated from equation (2), various
values of pp can be determined depending on the state of
each component (pp,max, cp, 1=2, fpc).

Evolved Strategy Dynamics

Each virtually created node in this model selects its pro-
tection level fp using heuristics at the truncation.
However, information access in sports is limited, and
decision-making time is restricted (Newell, 1986).
Therefore, each agent selects its protection level based
on the heuristics (fp = fp0 + fp1C) truncated to the inter-
val (0, 1� fm):

fp = fp0 + fp1C, fp fp\0½ �= 0, fp½fp. 1� fmð �= 1� fm

ð3:1Þ

where C is a measure of the centrality (derived from the
data-driven network properties) of the node of the agent
normalized to the interval (0,1). The protection level
selected by each individual under the premise of fast
decision-making (heuristic) becomes

~v!~f ! f ~vð Þ, f ~vð Þ= 0\ f ~vð Þ\0:9, fm = 0:9
0\ f ~vð Þ\0:1, fm = 0:1

�
, ~vjfp = fp0 + fp1C

ð3:2Þ

In this mechanism, two strategies that can be selected by
individuals are defined (fp0, fp1C). To initialize the strat-
egy values, two arrays are added for vectorization
[(fp0 =~wi), (fp1C =C~wi)]. Here, ~wi1 represents the vector-
ization of the designated strategy of (fp0), while ~wii repre-
sents the vectorization of the designated strategy for
(fp1), scaled by the eigenvector centrality from the ran-
dom graph (C). This centrality measure reflects the
agent’s node importance, normalized to the interval
(0,1). To incorporate the interconnected mechanism for
strategies fp0 and fp1, each individual selects through
heuristics, imitation, and strategic search behaviors. In
each stage in a time series, individuals randomly select
others as their role models according to a randomly set
probability (pr 2 ½0, 1�) and imitate the strategy value of
the individual based on the following equation:

pi = 1+ e�vDp
� ��1

, pr � pf =Dp
��

pr = role model ð3:3Þ

where v denotes the strength of the selection of another
individual and Dp denotes the difference between the
capital of the selected individual (pr =role model) and
the individual capital (pf =focal model). According to
this equation, the greater is the capital of a randomly

chosen individual pf , the greater the probability of imi-
tating the individual. Finally, one strategy is selected with
a probability pe 2 ½0, 1�, which is set by the individual at
each stage, and the strategic value of the individual is
changed by a normally distributed increment with mean
(0) and standard deviation

s 2 0, 1½ �, f xjm,s2
� �

=
1ffiffiffiffiffiffiffiffiffiffiffi

2ps2
p exp

� x�mð Þ2

2s2 ð3:4Þ

In this way, x is individual capital, m is the mean fixed
location in (m 2 R), and s denotes the variance with a
squared scale as (s2.0). The model incorporates the
complexity and uncertainty inherent in decision-making
within a sport context, reflecting both the strategic
choices of individuals and the influence of their social
connections.

Results

Our simulation of the model began with the basic data
structure, establishing the functionalities of the mechan-
ism through specific agent relationships. Using a para-
meter to assess the risk impact for networked agents and
embedding the potential for protection, we could esti-
mate the influence of the primary risk along the struc-
ture. This was considered a general failure property,
emphasizing the dynamics of payoff, failure, and
strategy.

Basic Structure (Realistic Sports Network)

In Figure 2, the upper set plot indicates that the func-
tional metrics possess a random-network structure
(Huang et al., 2019). We derived this network property
by integrating various types of sports network character-
istics (see Figure 1). This has also been recreated in previ-
ous data-driven team sports studies (the corresponding
literature reported the random network structure charac-
teristics of team sports), where each connection between
elements was broken down into directions, and their val-
ues were normalized using the total scores of their respec-
tive metrics (Durham et al., 1998) (refer to Appendix 4
for further detail). The plot of the middle set in Figure 2
represents another essential property of this random net-
work, as it no longer signifies the adjacency matrix (A); it
continues to be marked as rows and columns with values
of 1 and 0. The key feature here is the ability to exhibit
the state of each node (1=risk, 0=absence of risk)
based on the time step corresponding to its distribution.
Realistically, using the defined random network struc-
ture (Erdos & Rényi, 1959) as the fundamental property
of this model, we integrated a common account of the
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variations in the different sports network properties
reported previously (Cui et al., 2021).

Failure With Realistic Dynamics

Given the properties of random networks, each
node enters one of two states: failure or nonfailure. In
Figure 2, the plot at the bottom shows that the node
(1 ł j ł N) initially exists in the nonfailure state, and
an array represents the failure probability p 2 (0,1),
denoted as p j. The fundamental property Sij, which
determines failure, is generated from the connection of
each node within the context, and the basic level of risk
is determined by i and j, which occur simultaneously in
the network. This suggests that an individual or an ele-

ment with more connections in a functional unit triggers

a greater bias regardless of their structure. Therefore, the

failure probability can be characterized by the number of

connected nodes (R=s). Assuming constant individual

basic characteristics (k), the risk of sporting events can

be estimated as a function of connections R= k=s

(Lusher, Robins, et al., 2010). This result suggests that a

higher degree (i.e., number of connections) increases the

risk of cascading for the defined structures, thus heigh-

tening the potential for system-wide destruction (see

Table 1; the functional individuals show different cen-

tralities). Additionally, as illustrated in Figure 3, there is

a negative correlation between payoff and risk (as fail-

ure). A key finding from this long-term simulation, which

achieves stationarity (as referenced in Appendix 5),

demonstrates that the degree of connectivity significantly

impacts risk potential. No effort is made via capital injec-

tion, ultimately leading to universal failure.

Figure 2. Prototype of random networks and their failure propagation distributions. Upper set: Displays the properties of the random
network, parameterized by n = int (number of nodes) and p = int (number of edges from a new node to existing nodes). Middle-left
matrix: Presents a time series (horizontal axis) of individual states (vertical axis). Middle-right plot: Shows individual states (0–9), ranging
from non-failure (blue) to failure (red) with lines representing their connections (lines). The lines between the matrix and the networks
indicate their relationships corresponding to their states at the time (nodes = 10, connection p = .5). Bottom plot: Depicts data gathered
(asking team members who they trust most in difficult situations) from a professional athletic team (number of individuals n = 10,
connection probability p = .9) and a social sports team (number of individuals n = 10, connection probability p = .2).
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Protection Dynamics With Interconnected Strategies

In this phase, the protection level fpc evolves with strat-
egy dynamics. This result assumes that in the context
of the applied function pp = pp,max=(1+ cp, 1=2=(fpc)),
the result for a fixed protection level (pp,max, cp, 1=2) can
vary based on the heuristics through imitation pr and
exploration pe along with the network property of cen-
trality C. This setup illustrates that the protection
investment and its risk in individual decisions are
determined by individuals. Figure 4 displays the differ-
ent evolutionary results observed when the probabil-
ities of property C, imitation pr , and exploration pe of
the network were varied with the protection parameters
fixed to pp,max= 1 and cp, 1=2= 0.5 (refer to Appendix 6
for numerical calculation details). These results offer
unique insights into the impact of eigenvector central-
ity (lx p 2 (0,1)) as a parameter on the protection fac-
tors against potential risks associated with the scale of
sports systems. When the connectivity between individ-
uals is low (connection p=0.1), the pattern of weak

interaction increases the distribution of the eigenvector
centrality, whereas higher connectivity (connection
p=0.9) reduces the distribution.

Furthermore, Figure 5 presents the simulation results
obtained by changing the probability of propagation (pl,
pn), setting pr, and exploring pe a random network for
sports systems with the protection parameters fixed at
(pp,max = 0:5, cp, 1=2 = 0:5). These simulations reveal dif-
ferent evolutionary patterns until they reach their statio-
narity. When the initial risk probability between
individuals in a functional movement sports unit is high
(Scenario A; fpc

� �
, pr = 0:9, pe = 0:9), the strong inter-

action (social learning) pattern decreases the failure
probability. However, when the interaction is low
(Scenario B; (fpc), pr = 0:1, pe = 0:1), the failure prob-
ability increases. Therefore, the protection probability
obtained from the interconnected macro–micro scale
serves as a critical external risk potential, prompting
sports systems to behave differently (Cassidy et al., 2008)
(see Appendix 7 for calculation details).

Table 1. Comparison of Node Degrees and Eigenvector Centralities.

Random network N_0 N_1 N_2 N_3 N_4 N_5 N_6 N_7 N_8 N_9

G(n = 10, p = .2)
degree 1 2 3 1 1 3 1 3 4 1
Ax=lx 0.148 0.312 0.427 0.174 0.164 0.402 0.207 0.362 0.509 0.207

G(n = 10, p = .9)
degree 8 9 8 7 8 9 9 9 9 8
Ax=lx 0.302 0.334 0.305 0.269 0.302 0.334 0.334 0.334 0.334 0.305

Note. For a synthetic network produced using G(n, p), n= 10, and p= 0:9 as an example, the expected average node degree is p n� 1ð Þ= 0:9 � 9= 8:1.

To quantify the probability that a node has a degree for all ½0<d< n� 1ð Þ�, note that a node has a degree of zero if not connected to anything.

Figure 3. The simulation results are referenced by connectivity. Left plot: Illustrates a negative correlation between payoff (me-ca) and
risk (failure). Right plot: Represents the long-term simulation, which reaches stationarity by the log-scaled failure probability (vertical-axis)
by connectance (=degree/(n 2 1)) (horizontal-axis). Error bars denote the standard deviation (interquartile range = IQR_1%–99%). Type
of network = random (Erd�o�s-Rényi_graph), Initialized parameters: number of nodes = 100, number of connections per node = 1–99, initial
failure pn = 0.1, pl = 0.3, initial capital (c) = 1, time steps = 1–1,000 (periods 1–1,000).

8 SAGE Open



Discussion

In this study, we operated under the fundamental
assumption that the failure of a single individual within a
sports system has the potential to destabilize or even dis-
mantle the entire network. At the micro level—
comprising individual athletes or functional elements—
sports systems are influenced not only by the interactions
among their constituents but also by the behaviours and
conditions of these individual components (Kugler &
Turvey, 1987). At the macro level—comprising groups,
organizations, and broader institutional scales—the psy-
chological and behavioral variables of sports phenomena
emerge from complex interactions among these entities
(Rosen, 1987). Therefore, each individual element or
actor within these contexts constitutes a critical compo-
nent of the system, capable of triggering instability or dis-
ruption (Narizuka & Yamazaki, 2018).

Key Factors Influencing Sports Systems

Our proposed model provides a comprehensive frame-
work for deciphering the fundamental principles under-
lying diverse and complex phenomena that arise from
the interplay of inherent basic properties and external
system dynamics. Specifically, the model encapsulates
three key factors:

(i) Contagion: When a problem arises in one
element—such as a nerve pathway in a neu-
romuscular system or an individual athlete
within a team—it can influence other ele-
ments or members connected through the
network, leading to the propagation of the
issue throughout the system. This reflects the
interconnectedness of sports systems, where
the state of one component can significantly

Figure 4. Representation of protection dynamic scenarios against risk probability. The plot shows how failure potential turns into a
failure with probability 1-pp, depending on an agent’s investment in protection pp = pp,max=(1+ cp, 1=2=(fpc)) (see Appendix 6). Left plots:
Display a matrix where the horizontal axis represents time steps (1–10), and the vertical axis represents individuals (10); the color of the
matrix indicates the state: failure (red) or non-failure (blue). Right plots: show each individual’s parameter values at each time step
(t= 10, cyan: capital c, red: failure, green: protection potential pp). The initial parameters of the simulations are as follows: nodes t= 10,
connectivity p= 0:9, initialized risk probability pn = 0:1, and initialized risk probability via link pl = 0:3.
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impact overall performance (Borgatti et al.,
2009).

(ii) Concentration: Even minor factors that garner
significant attention owing to their centrality—
such as a star player or a critical functional
hub—can create substantial ripple effects within
the sports arena. For instance, the injury or
underperformance of a key player can disrupt
team dynamics and strategy, illustrating how
central nodes in a network have disproportionate
influence (King et al., 2019).

(iii) Context: In the absence of social interaction
mechanisms such as imitation and exploration,
a failure in one individual operating within a
general environment can lead to similar failures
across all individuals or groups. This empha-
sizes the importance of social learning and
adaptation in mitigating systemic risks. For

example, if a team’s morale declines because of
the failure of a single member, without mechan-
isms to adapt and learn from the situation, the
entire team’s performance may deteriorate
(Stevenson & Lochbaum, 2008).

Our model further reveals a negative correlation between
individual outcomes (payoff) and risk (failure). This indi-
cates that without proactive efforts to mitigate risk, every
individual within the system may eventually fail. A criti-
cal factor in this scenario is social learning through cul-
tural evolution. These mechanisms allow individuals to
adapt their strategies based on the behaviours and suc-
cesses of others within the network (Fawcett et al., 2013).
The influence of these behaviours is governed by network
properties, particularly eigenvector centrality, which
determines the degree of connectivity and thus the poten-
tial for failure propagation.

Figure 5. Readjustments of evolution with strategy dynamics, applying imitation and exploration. Left section: The left plots show a
matrix with the horizontal axis representing time steps (range 1–20) and the vertical axis representing individuals (20). The color of the
matrix indicates the state: failure (red) or non-failure (blue); the right plots show the parameter values of each individual at the time step
(t= 1, cyan: capital c, red: failure, green: protection potential pp). The initial parameters of the simulations are as follows: nodes t= 20,
connectivity p= 0:1, initialized risk probability pn = 0:1, and initialized risk probability via link pl = 0:3. Middle section: The plots show
the parameter values (red = failure, blue = absence of failure, yellow = investment, green = protection potential) of each individual at time
step (t= 20) in the same random network; the node number is the random label of each node, and the node colour indicates the state
(failure [red] to non-failure [blue]). Right section: The plot shows the change in the parameter over time with stationarity; the marker is
the average value of nodes (n= 100) as failure (red) and capital (blue), according to the time step (t= 1, 000).

10 SAGE Open



Eigenvector Centrality and Social Learning

Eigenvector centrality is a measure of the influence of a
node within a network, considering not only the number
of connections of a node but also the quality of those
connections (Bonacich, 1987). In our model, we found
that nodes with higher eigenvector centrality are crucial
drivers of failure potential because their state can signifi-
cantly impact connected nodes. The dynamics of strate-
gies accumulated in the network were examined
concerning variables such as the selection between artifi-
cially devised strategies (fp0 and fp1), imitation probabil-
ity (pr), and exploration probability (pe). These strategies
are implemented based on each individual’s imitation
and exploration behaviors, reflecting how individuals
make decisions in uncertain environments (Smith, 2003).

Our findings suggest that sports systems can be signifi-
cantly affected by the behavioral eigenvector centrality of
individuals, their exploration behaviors, and the distribu-
tion of these behaviors within the population (Hutchinson
& Gigerenzer, 2005). Recognizing individual differences at
the micro level is crucial, as these differences can substan-
tially impact overall system outcomes and behaviors.
Therefore, developing regulatory tools and strategies that
acknowledge and accommodate individual variations is
paramount (Horn, 2015). This includes establishing
unbiased, agreed-upon goals and providing accurate
information to all participants to facilitate effective
decision-making and risk management (Rinehart, 2008).
The effects of eigenvector centrality in relation to the con-
ditions and normal distributions of imitation and explora-
tion probabilities represent potent new insights into
potential protection dynamics in sports systems.
Specifically, our model indicates that the level of protec-
tion or risk mitigation can vary depending on the strategy
adopted and the degree of interconnectedness within the
system. For example, strategies that enhance social learn-
ing and encourage exploration can reduce the likelihood
of systemic failure by promoting adaptability and resili-
ence (Centola et al., 2007). This suggests that by adjusting
protection levels and strategies based on interconnected
ratios of centrality and social learning, more effective risk
mitigation approaches can be developed.

Practical Applications of Agent-Based Models

The model in this study offers a comprehensive under-
standing of the intricate dynamics within sports systems,
emphasizing the significance of contagion, concentra-
tion, and context on system functioning and stability.
Integrating agent-based modelling with network theory,
we can simulate and analyse how individual behaviors
and interactions contribute to emergent phenomena
within the system (Bonabeau, 2002). Agent-based models

are particularly useful because they can capture the com-
plexity of individual decision-making processes and how
these processes influence collective outcomes (Oliva,
2016).

In practical applications, agent-based models have
been utilized to simulate various aspects of sports perfor-
mance and team dynamics. For example, in basketball,
agent-based modelling has been used to simulate offen-
sive and defensive strategies, enabling coaches to predict
how changes in individual player behaviour can affect
overall team performance (Fewell et al., 2012). By model-
ling each player as an agent with specific decision-making
rules, practitioners can identify optimal strategies that
might not be immediately apparent through traditional
analysis. Moreover, our model underscores the impor-
tance of cultural evolution in sports, where successful
behaviours are copied by other individuals, and strategies
propagate through imitation and social learning (Fawcett
et al., 2013). This process is evident in real-world sports
scenarios when less experienced players adopt the training
habits, communication styles, and strategic approaches of
veteran teammates. For instance, in swimming, younger
athletes often emulate the techniques and routines of elite
swimmers, leading to overall improvements in team per-
formance (Côté, Baker, et al., 2007). This model captures
this phenomenon by illustrating how positive behaviours
can spread through a network, enhancing resilience and
reducing the likelihood of failure.

Individuals have evolved learning mechanisms that
enable them to perform effectively across a range of cir-
cumstances. These mechanisms encompass imitation and
exploration in response to current stimuli and include
learning rules for adjusting behavior based on the
actions of nearby individuals (Miller & Dollard, 1941).
In team sports such as rugby or volleyball, players con-
stantly adjust their positioning and strategies based on
their teammates’ and opponents’ actions. Agent-based
models can simulate these interactions, helping coaches
develop training programs that enhance coordination,
adaptability, and collective performance (Clemente
et al., 2015; Duarte et al., 2012).

Developing Risk Mitigation Through Network

The structural components of the network, particularly
the individual choices and opportunities available to
members, play a significant role in reinforcing system
dynamics (Powell et al., 2005). By applying our model to
analyse team dynamics, practitioners can identify key
individuals who act as hubs within the network.
Recognizing the critical roles of these individuals enables
the development of targeted strategies to enhance their
decision-making skills and resilience, ensuring that the
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team’s performance remains stable even under pressure
(Clemente et al., 2015).

These findings are highly relevant for practitioners in
sports science and management. By utilizing agent-based
models to simulate and understand the complex inter-
play of individual behaviours and network dynamics,
coaches, managers, and sports scientists can develop tar-
geted strategies to enhance performance and mitigate
risks (Bittencourt et al., 2016). For instance, in injury
prevention, understanding how an athlete’s movement
patterns may lead to overuse injuries can inform perso-
nalized training adjustments, reducing the risk of cascad-
ing injuries throughout the team. In talent development
programs, the model can help identify the most effective
mentorship pairings, ensuring that positive behaviours
and strategies are efficiently transmitted to developing
athletes (Côté, Salmela, et al., 2007). Our model also
underscores the relevance of network properties, particu-
larly eigenvector centrality, in understanding the poten-
tial for systemic risk. The centrality of an individual or
element within the network is a crucial determinant of
failure potential. High-centrality nodes have greater
influence, and their failure can have more significant
repercussions throughout the network (Bonacich, 1987).
These findings highlight the need for strategies that
account for individual variations and emphasize the
importance of maintaining a balanced network structure
to prevent system-wide failures. Moreover, the model
emphasizes the powerful influence of eigenvector central-
ity and social learning on the dynamics of potential pro-
tection within sports systems. The interconnected nature
of these factors reinforces the idea that behaviours
within systems are not isolated but are part of a complex,
interdependent network (Park, 2024). By analysing these
factors, more effective risk mitigation strategies can be
developed, enhancing the resilience and stability of
sports systems.

Our findings suggest that protection levels can vary
depending on the strategy and the degree of interconnect-
edness within the system (Stacey, 1995). By understand-
ing how different strategies and network configurations
affect the propagation of risks and the effectiveness of
protective measures, practitioners can devise more tai-
lored and effective approaches to risk management. This
includes fostering environments that encourage positive
social interactions, adaptability, and the sharing of suc-
cessful strategies, ultimately contributing to the optimiza-
tion of resilience in sports science.

Conclusion

In this study, we developed an integrated random net-
work model to simulate the interactions of individuals
over time within sports systems. We aimed to facilitate

an empirical understanding of the complex dynamics
inherent in sports networks, highlighting how individual
behaviours and interactions can influence overall system
stability and performance.

To obtain a primary indication of a feasible level of
protection in terms of the dynamic reactions of evolution-
ary and non-evolutionary variables—even within struc-
tures with high risk potential—we demonstrated that
macro and microscale interactions mechanisms can be uti-
lized to lower the propagation of negative sporting phe-
nomena while increasing beneficial protection investments
(Kellmann & Beckmann, 2017). Our findings suggest that
understanding network properties is crucial in identifying
nodes with high failure potential and in developing effec-
tive risk mitigation strategies. This understanding can
improve decision-making competence, leading to more
efficient handling of the complexities inherent in dynamic
sports systems. The calculations and simulations pre-
sented in this study offer valuable insights that can be
extended and applied by establishing policies at different
scales. The implemented rules and their computations can
assist decision-makers in gaining an advanced perspective
on systemic risks within sports organizations.

A desirable system requires a balance of all compo-
nents, and the emphasis on generality in our model aligns
with the study of complex movements and sports phe-
nomena. The mechanism of this model, which encom-
passes a few key dynamics, opens exciting directions for
future research on systemic risks. By extending this
research to analyses of various structures, individual dif-
ferences (Quatman & Chelladurai, 2008), directionality,
and field data, the prospects for more efficiently
addressing problems related to the potential risks of
sports phenomena—in terms of optimal strategies or
decision-making aspects—could be significantly improved
(Fortunato, 2010).
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