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PREFACE

Methodologically, the IIASA research program on Regional
Development reflects the general attitude of the majority of
regional scientists. Among other things, this means that the
models developed deal with discrete sets of regions or loca-
tions. For planning purposes, this approach is extremely
efficient, due to computational advantages. On the other
hand, systematic information about regional structures, of
the geometric flavor associated with classical location
theory, is hard to obtain if one discretizes space from the
outset.

To complement this main stream of regional analysis,
two scientists currently trying to revive continuous modeling
of the space economy, Martin J. Beckmann and Ténu Puu, were
invited to ITASA in September 1979. They started writing a
comprehensive monograph intended to present the state-of-the-
art in the field of continuous regional modeling. The comple-
tion of such an extensive work was not possible in the brief
period of three weeks.

The authors are currently continuing work on the project.
This paper by Tonu Puu constitutes one chapter of the forth-
coming monograph. It was completed during his visit to IIASA
in August 1982 and follows the chapter circulated as CP-82-11.
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Whereas the preceding chapters dealt with commodity trade
models with unique patterns of flow, the present one describes
a simple interaction model cast in a continuous format. Given
a specified need for communication and accommodation, optimal
land use (balancing traffic congestion and population crowding)
is discussed. 1In addition to the problems of optimal communica-
tion routes, the paper focuses on equilibrium population distri-
butions such that communication and housing costs are in balance.

Laxenburg, August 1982

Boris Issaev

Leader

Regional Development
Group
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AN INTERACTION MODEL
Introduction

A1l the previous chapters have dealt with trade models of various
kinds. For each commodity there was a unique flow, representable by a
well-behaved vector field. In some cases there were several commodity
flows, but their number was always finite, and the flow for each com-
modity unique.

Uniqueness results from rationality of behaviour in our simplified
world of single transportation systems, where backhauling is ruled
out. Whenever this is the case it seems superfluous to record the in-
formation of the origin and destination of each single piece of commo-
dity. It is immaterial whether such a piece, delivered to consumers at
a certain location, has followed a flow line all the way from pro-
ducers at a distant location, or has been entered at an intermediate
location to substitute an identical piece in the orginal flow.

But, what if the pieces "produced" at different locations are all
unique? As Tong as we deal with commodity trade this would seem to be
an unnecessary complication, as any real commodity has a sufficient
degree of homogeneity to justify the mild abstraction from individual
variations. At least we should be able to break the set of commodities
down in a more refined, but still finite, set of brands for which the
abstraction is justified.

If we, however, deal with general purpose communication (or interac-
tion) between individuals at different locations, rather than with
commodity trade, then the "pieces" produced and consumed are all dif-
ferent as soon as either the origins or the destinations differ,

A1l locations need to communicate with all the other locations, and no
such communication could be replaced by an equivalent communication,
obtained by changing the origin or the destination. There exist no

equivalents!



By this we are in the world of interaction models. If we wish to main-
tain our continuous paradigm, we have to deal with a non-denumerable
infinity of vector fields, each one corresponding to a fixed origin or
a fixed destination. These vector fields do not fuse to one resultant
field, as they will do in any physical application. They co-exist
separately, so that through each location there pass an infinity of
flows in different directions, all of them having different origins.
The aggregate of the norms of all there flows is a measure of traffic
through that location.

Traffic, defined in this way, will be one of the important variables
in the following model of regional structure. Ultimately, traffic
depends on the demand for communication between various locations, and
on the choices of optimal routes for all these communications.

The demand for communications is assumed to depend multiplicatively on
population densities at the locations of origin and destination. This
is a very simple variant of interaction theory, where the cost-dis-
tance dependence is altogether deleted, along with the so called
balancing factors.

The reason for the first deletion is that otherwise minimizatijon of

communication costs could be attained by the absurd method of making
communication so difficult that people abstain from it altogehter. Of
course, we could evaluate communication and balance the value of com-
munication against the cost of it. But, it is easier to just stipulate
a pattern and volume of communication as a constraint and minimize the
costs of realizing it. As we have a limited urban area in mind, this

is not too unreasonable.

The skipping of the balancing factors is reasonable as we deal with
general-purpose communication. As absurd as it is when dealing with
commuting that a doubling of workers and jobs entails a quadrupling of
trips, as sensible is it that total communication quadruples in a
doubled population. This is so because a growing population also
entails an increase in the diversity of activities.



So far we have discussed the demand for communication. In order to
determine the (infinity of) flow fields in our model, we also have to
consider the choice of routes. This problem will be dealt with as
elsewhere in the book, by choosing routes so that the path integrals
of local transit costs are minimized along them. The transit cost is
again a location-dependent, but direction-independent (isotropic),
scalar field. However, we présently do not take it as a given datum,
but assume it to depend on congestion measured as the ratio of traffic
to road capacity at the location.

These two piecés of theory, the simple interaction model for communi-
cation demand, and the optimal routing paradigm, make it possible to
derive all the flow fields and hence the traffic distribution. We
should note that a complicated feed-back mechanism is involved, as
traffic depends on optimal routing, which depends on traffic! So, the
resulting traffic distribution is an equilibrium one and may be hard
to actually compute.

The given data, resulting in an equilibrium traffic distribution, are:

the distributions of population and of road capacity.

Before considering those, and the rest of our model, let us just note
that we are in the position of computing the communication costs for
each Tlocation along with the flow field having its origin there. We
know the numbers of communications terminating at each one of the
other Tocations, we know the best routes of communication, and we know
the local transit costs along them. We can imagine that a location
separated from the main part of the population by some highly congest-
ed area will suffer from high communication costs.

Suppose people are free to move from one location to another. What
then can make them accept such high communication costs? Low costs of
housing is an obvious answer. So, let us stipulate a spatial invari-
ance of the sum of communication and housing costs as a condition for
equilibrium in the spatial population distribution.



Like we assumed that each individual needed a certain number of commu-
nications with each of the other individuals we also assume that each
individual needs a certain living space. If few peoplie live in an area
we can house them in one-storey buildings of weak construction, but
with a growing population density we have to build higher and higher,
at an increasing capital cost per unit of artificial housing space
created. The assumption is thaf it is more expensive to provide an in-
dividual with his required Tiving space the higher the ratio of popu-
Tation to the space available for housing.

We are now in the position of closing the model. The natural space
available for housing obviously is the part of it not used for the
transportation network. For each patch of land we have the option of
using it to facilitate housing or communication. If we use it for the
first purpose, the result will be decreased crowding of population and
residential construction costs, and increased traffic congestion and
local transit cost. A balance obviously has to be struck for land-use
at each location so that the sum of housing and communication costs is
as small as possible.

On the other hand, we also stipulated that this sum should be a spati-
al invariant. This was the condition for a population distribution in
spatial equilibrium. This equilibrium condition removes our last
degree of freedom.

Optimal flows
Let us now formalize the model. As usual denote the region studied A
and its boundary 3A. In the present model we deal with pairs of origin

and destination locations. Let them be denoted £ = (51,52) and x =
(xl,xz) respectively. Next, define the population density function

P = p(x;5x)) | (1)



For convenience we abbreviate population p = p(&l,sz) at the origin,
whereas we let p = p(xl,xz) denote population at the destination. This
convention is useful as we keep the origins fixed as long as we deal
with individual flow fields. (We could have chosen the destinations as
fixed instead. This would have worked equally well). Total population
is

P = ffA p dxl dx2 (2)

As already indicated, an individual flow field can be defined uniquely
when the origin is fixed. Denote it

$ = (¢1(x1,x2), ¢2(xl,x2)) (3)

Of course, the vector field also depends on the location £ of origin,
but keeping it fixed we can delete it as an explicit argument in (3).
It should be noted that with a fixed origin all the vector operations,
like taking the divergence, are carried out with respect to the vari-
able x-coordinates, not the fixed £-coordinates.

According to our assumption on communication demand the number of
"communications"” originating in & and leaving the flow ¢ in the desti-
nation x equals the product pp of population densities. This is the
sink density, and so we obtain

div ¢ = - pp (4)

as our relevant divergence law. To avoid confusion we state once more

that the divergence, 3¢./9x, + a¢2/3x2, is taken in the x-coordinates.

171

In order to write down the gradient law we must define the transit
cost function. Presently, it is not a given function of location, but
depends on the ratio of traffic to capacity as a measure of conges-
tion. Denote traffic by i and capacity by m. Then transit cost is



k = k(i/m) (5)

Using this, the gradient law, as always, reads

Kk -2 = grad A (6)
|¢]
Two observations on A are in order. First, like ¢, it must depend on
the location of origin &, and only when we keep the origin fixed can
we delete its coordinates as arguments of the scalar field. When we
regard £ as variable we get a double continuum of vector fields 4, and
likewise a double continuum of scalar fields A. Second, A is presently
an undetermined Lagrangean multiplier function, associated with the
constraint (4). Below we will give an interpretation. But observe that
(6) tells nothing more than that the unit flow field is gradient to
some, yet undetermined, function whose gradient norm equals local
transit cost.

Let us multiply both sides of (6) by the unit vector ¢/|¢l. In the
left hand side the unit vectors multiply to scalar unity and so
k(¢/|¢|)2 = k. In the right hand side we get grad x-¢/|¢| = di/do,
where ¢ is an arc length parameter. This is so because ¢/|¢| is the
unit vector in the direction of the optimal route. Thus

k = d\/do (7)

and, integrating along any optimal route having its origin at &, we
obtain

A= fskdo (8)
0

because (dA/do)do = dA is an exact differential. In equation (8) we

have chosen the arbitrary integration constant to be zero. By this, A
becomes the path integral of local transit costs along the most effi-
cient routes of communication. Thus, the potential A will have zero



value at the origin and increases in all directions at the rate of
local transit costs. Any positive A defines a closed curve surrounding
the origin £, and consists of points as far as possible from E when
the total amount A is spent on transportation.

Let us go somewhat deeper into the matter of the determination of the
unit flow field ¢/|¢| from equaiton (6) above to make sure that it
does not matter that X is an unknown Lagrangean. To accomplish this
task we will make a little abuse of the terminology from vector ana-
lysis and regard curls and cross products as scalar quantities. A
cross product of two vectors (in three-space) actually is a vector,
perpendicular to the plane spanned by those vectors, and pointing in
the direction that forms a right handed set of axes with those two.
The norm of the cross product is the area of the parallelogram spanned
by the two original vectors.

Likewise, the curl actually is a vector along the axis of rotation in
a flow, pointing in the direction which makes the rotation counter-
clockwise, and having a norm equal to the velocity of revolution.

As we deal with vectors in the plane, both the cross products and the
curls always point in directions perpendicular to this plane. Thus,
they have only one nonzero component. Our abuse will be to disregard
the vectorial character of these two concepts and treat them as if
they were identical with the (scalar) values of the single non-zero
components. This simplification can cause no confusion. The only rem-
nant of the vectorial character is the sign (or sense), which depends
on whether the resultant vectors point outwards or inwards from the
plane.

Using this abuse terminology, the formal definition of the cross pro-
duct of two arbitrary vectors ¢ and ¢ is ¢ x p = ¢1w2 - ¢2¢1.

Likewise, for an arbitrary vector field ¢, we define curl ¢ = 3¢2/3x1
- a¢1/ax2.



About the cross product we should note the trigonometric formula ¢xy =
|¢||¢| sin a, where a is the angle between the directions of the
vectors. As we similarly have ¢y = l¢||¢\ cos a we derive the useful
relation (¢xy)/(¢+¥) = tan a.

After these preliminaries we_are prepared to start out with equation
(6) by taking the curls of both sides. Now a gradient field is always

irrotational and the curl is hence identically zero. So,

curl (L ¢/|¢|) = 0 (9)
Expanding this expression we get

grad k x ¢/|¢‘ + k curl (¢/|¢|) =0 (10) .

(Note the similarity of this expression to the corresponding one for
the divergence).

Next, denote the direction of grad k by w and the direction of ¢/|¢|
by 8. Using our trigonometric relation betweeen cross and dot
products, and noting that grad k-¢/|¢| = dk/do, we get

dk/do sin(8-w) + k cur1(¢/|¢|) cos(6-w) = 0 (11)

But, ¢/|¢| = (cos 8,sin 8) and so, by definition of the curl, and
using the chain rule,

curl (¢/|¢|) = cos O ae/ax1 + sin 8 38/3x (12)

2

However, as (cos 8,sin 9)
(12) into

(dx1/dc,dx2/dc), we immediately transform

curT (¢/|¢|) = d9/do (13)

Substituting into (11) we get



sin(6-w) dk/do + k cos(6-w) d6/do = 0 (14)

Let us consider (14) a little. The angle w is defined by the gradient
direction to k, ‘the local transit cost, which is known. The variation
of this cost in the direction of the route, dk/do, only depends upon
the direction. Accordingly, (14) involves as unknowns only the direc-
tion of the route, 6, and its rate of change, d8/do, as we follow the
route. We thus have a differential equation for the route direction
with arc length as argument.

This differential equation, in fact, justifies our assertion that (6)
would allow us to derive the flow lines, despite the fact that X is
unknown. Its character is most easily understood by some special
cases.

First, assume that w is invariant in space, so that dk/do = 0 and we
can drop the first term in (14). What remains can be written

d/do(k sin(8-w)) = 0 (15)
which has the first integral
k sin(6-w) = constant (16)

Obviously, the sine of angular difference between the directions of
maximum transit cost increase and of the route is related reciprocal-
1y to transit cost. If the route takes us to locations where transit
cost increases, we decrease the angular difference in order to pass
the high cost region as fast as possible. If transit cost decreases
along the route we increase the difference in order to profit from the
low costs during as long a transit as possible.

Equation (16) again reminds us of geometrical optics. In a separation

point between two media with refraction indices k1 and k2 (and w = 0
arbitrarily as it is not defined when k1 and k2 are sectionally con-
stant) we have
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kl/k2 = sin 61/s1n 92 (17)
This is Snell's law telling that the sines of incidence angles have
the same ratio as the refraction indices. It is noteworthy that the
corresponding refraction law for transportation, partly on land, part-
ly on sea, with different transit costs (kl’kZ)’ was discovered by two

economists, Palander (1935) and v Stackelberg (1938).

Second, relax the constraint of a constant k, but assume it to display
circular symmetry. So, we can write k(p), where p = /(x% + xg). In
view of our complete model this, of course, means that the congestion

ratio, i/m, itself depends on location x via p = |x| only. From this
circular symmetry of k, we get

grad k = dk/dp(xl/p,xz/p) (18)

But, as w was defined to be the angle of the gradient of k, we can
jdentify the vectors (xl/p,xz/p) and (cos w,sin w). So,

>
n

] =P COsw (19)

bal
n

p sin w (20)

and we note that what we have done is to introduce polar coordinates
for the cartesian ones.

Let us now differentiate (19)-(20) with respect to the arc length
parameter o, and for convenience denote derivatives with respect to
arc length by a dot. So,

X4 p COS W - pW Sin w (21)

p sin w + pw COS W (22)
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However, & being the direction of the route, ;1 and iz denote the
direction cosines as differentiation is with respect to arc length.

Accordingly
il = cos 9 (23)
X, = sin @ (24)

We substitute from (23)-(24) into (21)-(22) and use Cramer's rule to

solve for 5 and p&, which are treated as the two unknowns in the re-
sulting system. In the explicit solutions we make use of the formulas
for the cosine and the sine of a difference to obtain

6 = cos(6-w) (25)

ow = sin(6-w) (26)

These trigonometric expressions are now substituted back into our ori-
ginal differential equation (14), which reads

pak + kpd = 0 (27)
If we now differentiate (26) with respect to arc length once more and

use (25) for cos(8-w), we get kpd = 2kpw + kpw. Substituting this into
(27) and collecting terms (27) turns into

d/do(kow) + kpw = O (28)

But this is the same as

d/do (ko%s) = 0 (29)
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which has the first integral

kpz& = constant (30)

The last formula is well known from the mechanics of central fields
(1ike planetory motion). To understand the character of this new dif-
ferential equation, let us denote the constant by ¢, write out w =
de/do, and note that the arc length element do equals /(p2 + p‘z)dm
(where p' = dp/dw). Thus @ is the reciprocal of /(02 + 9'2) and (30)
reads

kp2 = c/(p2 + 9'2) (31)

which is an ordinary differential equation expressed in polar coordi-
nates. It has been much studied in theoretical mechanics, and in fact
its solution can a1wajs be obtained by integration (if the independent
and dependent variables are interchanged).

Explicit solutions are hard or easy to obtain, depending on the cha-
racter of k. Before giving some illustrations, let us just notice that
if we substitute arc length do = /(p2 + p'z)dm into (8) it reads

2+ 0'%)du (32)

A= fz kv (p
If we regard p(w) as an unknown function, that we have to choose so as
to minimize A, then we get (31) as the proper Euler equation for this
variational problem. This corroborates the gradient law as we obvious-
1y get the same condition by seeking the optimal routes one by one (as
parameterized curves p(w)) so that they minimize transportation

costs. We also see that once we have solved for the flow lines, so
that we know p(w), then we can calculate A, This, of course, is true
for the given origin £. For another origin we have to run through the

whole process again.
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Let us finish the section by giving a very simple illustration by

power functions

Unless a is zero, the solution is

02 = a sec(aw + B) (34)

This is a two-parameter family of routes, but fixing a point of origin
removes one, and so we obtain a set of radiating curves. From (32) we
can also calculate A, using (33)-(34), and obtain

a = /(S2a + 22 25%%os(aw - aa)) (35)

where p and w are the polar coordinates for the fixed point of origin
£, and p and w are the polar coordinates for the variable point of de-
stination. The calculation of (35) is a bit awkward and therefore not
reproduced. The logic is, however, simple evaluation of (32) with sub-
stitutions from (31)-(34) being made.

For constant A, (35) describes a set of concentric transportation cost
contours to which the routes defined by (34) are orthogonal. It should
be stressed that the sufficency conditions for extremality are ful-
filled for (34)-(35) only in a neighbourhood of the origin, more spe-
cifically in a wedge with vertex in the origin (of the coordinate
system, not the central flow field).

It is easy to recognize the geometrical characters of these solution

curves for low integral values of a. The value zero is a special case
for which (34) does not hold. It will be dealt with below. The simpl-
est of the remaining cases is when a = 1. Then, transforming (34) back

into cartesian coordinates, we get
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cos B x; - sin B X, = a (a =1)

This is obviously a two-parameter family of straight lines. This cha-

racter of the routes is intuitively obvious as k = p% = 1 makes tran-
sportation cost equal to route length according to (32).

If we Tet a = 2, so that k = p, we deal with a case where transporta-
tion is cheap in the centre and gets more and more expensive towards

the periphery. We expéct that optimal routes are deflected from the
straight line and become convex to the origin. This is verified by the

formal solution. Passing again to cartesian coordinates we have
cos B(xz-xz) - sin B8(2x.x,) = a (a =2)
172 172

This formula represents the family of all hyperbolas that can be
arranged symmetrically around the centre (of the coordinate system).
By varying a we fill the four sectors, formed by a pair of orthogonal
axes through the centre, by rectangular hyperbolas. By varying 8, we
simply rotate any such set of axes and its corresponding family of
hyperbolas.

Next, letting a = 3, so that k = p2 we note that the transportation
advantages in the central parts become greater. We suspect that the
convexity of the routes is even more pronounced. This is confirmed by
the formal solution

cos B(xi-3x1x§) - sin B(3x§x2-xg) = a (a = 3)

Now, for any fixed B the space is split in six equal sectors (with
vertices in the centre). This is like the previous case where space
was split in four sectors. Again, the sectors are filled by hyperbolic
curves, now more sharply convex as they are compressed in angles of
60° (instead of 90°). We deal with a so called monkey saddle flow,
whereas we dealt with ordinary saddles in the previous case. Changing
the value of B again rotates the whole system of solution curves.
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From the fact that space is split into sectors (of 60° or 90°) in the
two last cases, we can understand that there is no solution curve
according to (34) that joins an origin and a destination, separated by
a larger acute angle than one of 60° or 90°. So, it becomes intelligi-
ble that (34) only provides a local solution as hinted at. Fotunately,
for the remaining cases there exists another solution to the optimal
routing problem, namely radiaﬁ]y from the origin in to the centre and
out to the destination again.

As we know sufficiently much about positive values of a, let us now go
in the reverse direction. Put a = -1. Then (34) in cartesian coordi-
nates reads

cos 8 xy - sin B x, = a(x% + xg) (a = -1)

This equation represents the set of all circular arcs through the

centre of coordinate space. As expected, the shape of the routes is
now concave to the origin. As k = p"2 it is least expensive to travel
in the periphery and avoid the centre as much as possible.

Our final case of (34) is with a = -2. We expect the avoidance of the
central parts to be even more pronounced. The formal solution

2 2 . 2 2.2
cos B(xl-xz) - sin B(2x1x2) = a(x1+x2) (a = -2)

represents the family of lemniscates through the centre. Again, for
each 8, space is split in four sectors. These sectors are now elliptic
(not hyperbolic). These cases should be enough to help intuition to
understand the solution (34) in general.

Let us finally record the special case of (33) where a = 0. Then

Inp =a + Buw (36)
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is the solution that replaces (34). The value of (32) is obtained
according to

A =/(Inp -1n5)2+ (0- )% (37)
which replaces (35).
Traffic

As indicated in the introduction, we define traffic at the location x
by

i=]/f, |¢| dg, de, (38)

We integrate the norms of all the vector fields passing through x with
respect to all possible points of origin &. But before being able to
integrate according to (38) we must calculate the norms |¢|, which we
do not know yet. A1l the previous discussion concerns the routes of
communication, not the volumes.

In the introduction we indicated how the demand for communication, by
a gravity type of model, determines sink density and thus flow vol-
umes. As a matter of fact we have already written down the exact
mathematical condition for how flow volume changes with sink density
in equation (4) above.

Observe that when we know the unit flow field ¢/|¢| then equation (4)
renders a partial differential equation in flow volume alone. As ¢

[o](e7]¢]), we get

div ¢ = grad |o| - ¢/|¢]| + |¢| div(e/|s]) (39)

where ¢/|¢| and div(¢/|¢|) are known as soon as we know the flow
lines. The only unknowns in (39) are |¢| and grad |¢|, i e, the flow
volume and its partial derivatives. So, (4) indeed supplies a
differential equation for |¢l.



- 17 -

Once we know ‘¢| for all £ we can proceed to the integration (38) and
calculate traffic.

We will illustrate the procedure by a few examples. First, suppose
that transit cost is constant, i e, k = 1 on the whole region. More-

over, suppose we deal with uniform population density, p = 1, every-

where and that the region we deal with is the unit disk,

A= {(xl,x2)|x§ + xg < 1}. This is the simplest imaginable case.

Put a =1 in (33). Then we know that (34) is a solution. For the pre-
sent case it reads

p = a sec(w + 8) (40)

which is the familiar equation of a straight line written in polar co-
ordinates. It is not surprising that the optimal routes with constant
transit cost are straight lines, as in all classical location models.

It is more convenient to put the equation of these straight lines in
parametric form. Using our familiar notation, where 61,62 are the co-
ordinates of the point of origin, and 6 is the, presently constant,
angle of the flow line, we write

Xy =€y *+ocos8 (41)

X, =§, + 0 sin 6 (42)
As always, o denotes the arc length parameter. Obviously (41)-(42) is
an expression equivalent to (40) when we deal with a set of lines with

a common point of intersection.

From (41)-(42) we can easily calculate arc length

o = y’((xl-El)2 + (x2-52)2) (43)
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Let us now check the gradient of this arc length measure. Obviously
grad o = ((xl-El)/O, (XZ-EZ)/U)

(cos 6,sin 8) (44)

o/ 4]

We can thus identify the unit flow field with the gradient of the arc
length. As arc length is measured along straight lines, we obviously
deal with an enclidean metric. The loci of equal distance then are
concentric circles as defined by (43) for any given o, and the pencil
of radials through their common centre obviously is the gradient field
to this, the simplest of all, metrics.

Now, using (44),

grad [¢| + ¢/|¢| = grad |¢| - grad o (45)
and
div (¢/|¢|) = div grad o (46)

But the Laplacian div grad o = azo/axi + azo/axg

calculated from (43) to equal 1/o. On the other hand grad |¢| . grad o
obviously is the derivative a|¢|/ao. So, according to (39), and (45)-
(46),

can easily be

div ¢ = a|¢|/ao + |¢\/o (47)
Using our information that p = p = 1, equation (4) becomes

3|e|/30 + |#|/9 + 1 =0 (48)
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which is quite easy to solve. As neither 6, nor any derivative with
respect to it appears in (48), we can treat it as an ordinary diffe-
rential equation with o as the only independent variable. The depen-
dence on the angle & is confined to a variation of the arbitrary inte-
gration constant only.

Denoting this constant by 52, we obtain the solution
o] = 5(5%-6%)/ (49)

As we deal with communication within the closed disk only, there is no
flow crossing the boundary. As, moreover, the routes are straight
lines, radiating from interior points of the circular region we see
that no route can be tangential to the boundary curve. So, the condi-
tion that no flows cross the boundary translates to a condition

that all flow volumes are zero on the boundary, i e, |¢| = 0. From
(49) we see that S = o on the boundary which means that S can be
interpreted as the straight line distance to the boundary 3A from the
point £. In another wording, S is the distance from £ to the boundary
in the direction 6. This Tast formulation indicates how S depends on
9.

Our next task is to evaluate the double integral (38) from (49). But
in order to make the integration efficiently we start by changing
integration variables from 51’52 to 0,6. Now, (41)-(42) tell us that
51 L - 9 cos 8 and 52 = X, = 0 COS 8. Observe that when we
integrate according to (38) we treat the point X1sX, S fixed, thus

=X

reversing the roles of £ and x in comparison to the previous discus-
sion. It is easy to evaluate the Jacobian of the coordinate transfor-

mation as

3(€,,6,)
3(0,8)
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Accordingly

dEl d§2 = ¢ dod6 (51)

and, from (38) and (49),
i =5 [f,(s%-0%)dode (52)

The evaluation of the innermost integral is messy, but straight-
forward, and yields the result

I AN IR ) R T g UL P (53)
where
. 2 .2
S' = /(1-p° sin“8) - p cos (54)
P 2 .2
S* = /(1-p° sin8) + p cos © - (55)

Note that S' and S" are the lengths of the two segments into which &
divides a chord of the unit circle in the direction 6, Now,

3 3 3

(Sl + Su) S - S» = 35'5"(5' + Su) (56)

and from (54)-(55)

'St = (1-p%) (57)

2

(S' + $") = 2/(1 - 0% sinZe) (58)

Substituting from (56)-(58) into (53) yields

2

i= (1-6%) [2V( - sin28)de (59)
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where we note that we have been able to move S'S" = (1-92) outside the
integration sign, as it does not depend on 8. The rest of our expres-
2 2

sin~9)
taken over an angle n/2 defines the complete elliptic integral of the

sion too is a handy one. We note that the integral of v (1l-p

second kind. As sinze has a perfect periodicity over n/2 our integral
is simply four times the elliptic integral, denoted as usually by
E(p). And so, finally,

i(e) = 4(1 - p2)E(p) (60)

For the convenience of the reader we record the Taylor series for
E(p), which is the most handy way of computing it. Thus

2 4 6
E(p) =5 (1 - (P28 - D25 - @2 - .. (61)

The resulting traffic distribution is illustrated in Figure 1. Several
comments are in order. First, we note that, even though the volumes of
each flow, according to (49), did not possess circular symmetry, the
traffic distribution has such symmetry. This is reasonable as the
whole model is symmetric. The region is a circular disk, population is
uniformly distributed, and transit cost is spatially invariant. So,
traffic, i, should, according to intuition, have the symmetric proper-
ty. On the other hand, the origin £, associated with the flow volume,
|¢|, is in general asymmetrically located in the disk, and so we

should not expect any symmetry.

Our second observation is that the traffic distribution was relatively
hard to derive despite the fact that we dealt with an extremely simple
case, As our second example we will take one that is much easier to
treat, but this is an ‘exception. In general, we can expect a lot of
computational difficulties. For a detailed discussion of traffic
distributions and simulation techniques the reader is referred to Puu
(1979).
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Figure 1
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Now consider our second example. What happens with the solution (34)
if the exponent in (33) increases? If we draw the curves (34) for in-
creasing a we see that they become more and more sharply convex to the
origin. In the limit, as a goes to infinity, the routes become as con-
vex as they can, i e, they degenerate into pairs of radials joining
the points of origin and destination to the centre of the region,
which is still fhe unit disk. So we arrive at the case of radial
transportation that is so familiar from von Thiinen and the New Urban
Economics with its CBD.

Along with the disk-shaped region we retain the assumption of a uni-
formly dispersed population. As now from each point of origin all com-
munations first go to the centre and then radiate out from there in
all directions we conclude that the present flows all are in the
direction of grad p. So, ¢/‘¢| = grad p and all the formulas from (43)
to (48) go through with o replaced by p and & = 62 = 0. The differen-
tial equation, equivalent to (48), is now
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aM/ap + |¢|/p +1=0 _ (62)

Its solution resembles (49), but is simpler:
o] = H1-0%)/0 (63)

The main simplicity is due to the fact that the distance to the bound-
ary is presently a unitary constant, independent of 8. Accordingly,
integration with respect to all the origins amounts to multiplication
of (63) by the area m of our region. This results from the invariance
of (63) with regard to £. Finally we have to keep in mind that we have
only accounted for communication radiating out from the centre. There
is as much communication radiating in to the centre, and hence we must
double our measure. Thus, we get

i(p) = n(l-Dz)/D (64)

This traffic distribution is illustrated in Figure 2. As traffic
becomes infinite in our centre, we have removed the infinite peak at a
certain level. It is not surprising that radial transportation leads
to a higher degree of traffic concentration at the centre than does
linear transportation.

We should note that the fact that traffic is infinite in the centre
does not mean that total traffic, the volume under the surface shown
(including the infinite peak), is infinite. In fact total traffic
ff idx,dx, is an improper integral that converges. Thus

[fpm( 1-p2 )/p dxq dx, = 4= 2/3 (65)
which can be compared to

HA4(1-92)E(p)dx1 dx2 = 128w /45 (66)
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Figure 2
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As 4n2/3 = 13.2 and 128n/45 = 8.9 about 50 percent more traffic is
created by radial than by linear transportation. As linear transporta-
tion should lead to minimum total traffic, because it corresponds to
the choice of the shortest route for each communication, the excess
created by radial transportation is surprisingly small.

These two examples, expressly chosen to admit analytical treatment,
should not give the impression that it is an easy task to derive ex-
plicitly all traffic distribution for any case we may wish to treat.
On the contrary, the computation is in general very hard. This is par-
ticularly unfortunate, because we should deal with the formidable task
of deriving an equilibrium traffic distribution when traffic is fed
back, via congestion, into local transit cost, which determines the
choice of routes and ultimately the traffic distribution itself. We
have to conclude that we are not able to actually compute the final
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equilibrium traffic distribution by analytical methods. Computer simu-
lation could be helpful, but considering the whole model it will be a
formidable task.

Communication cost

As we noted above, we are able to calculate, in principle, of course,
the communication costs for each point of origin once we are so far
that we can calculate traffic.

Let us start by deriving a general relation between various expres-
sions for communication costs. According to our assumption, if B peo-
ple live at £ and p live at x, then they need the number pp of commu-
nications. Each of these has a cost of XA, as defined by (8) when opti-
mal routes are chosen in view of the given transit cost function k.
So, the most obvious expression for transportation costs is

T = [f,pp A dxy dx, (67)

To be exact T depends on the location of origin £. This point is fixed
and the integration runs over all points of destination. Observe that
this is the reverse of the case when we derived traffic distributions.

wa, equation (2) makes it possible to substitute -div ¢ for the pro-
duct pp. So,

1 dx2 (68)

T = -IIA A div ¢ dx
We can transform this expression in a nice way by using Gauss's theo-
rem, but there is one snag in it. The theorem is not applicable to the
region A, because the vector field is not regular on it. The trouble-
some point is just the single location & of origin. If there were no
net outflow from this singularity there would be no trouble, but we
know there is!



- 26 -

So, we will use the artifice of defining a new sort of region with a
small hole in it. The hole must contain &, but can be as small as we
wish. For convenience,'as we know that the constant A contours are
concentric closed curves surrounding &, we let the boundary of the
hole be defined by some A = constant. Denote this boundary 3'A and the
region with the hole A'. Obviously, we can make the hole as small as
we wish by letting A + 0. In other words, we can make A' as equal to A
as we wish by this 1imiting procedure. The important feature of A' is
that ¢ is regular on it, which makes Gauss's theorem applicable.

Consider the formula
[fpe div(ae) dx; dx, = [5,, A(¢) do (69)

stating that the surface integral of the divergence of value flow A¢
equals the curve integral of the normal component of this flow along
the boundary. This boundary 3'A is the inner boundary of the hole. Of
course, there is an outer boundary, %A, of the whole region, but, as
we only study internal communication in the region, we can delete this
boundary integral from the outset, (¢)n being zero on all of 3A.

In (69) we can move A outside the sign of integration, as the curve

9'A was conveniently defined by a constant X. Next we use Gauss's the-
orem once more to transform the remaining curve integral of (¢»)n to a

surface integral of div ¢. Thus,

fa'A A(¢)ndo = AHAI div ¢ dx, dx, (70)

But, div ¢ = -pp, where p as a constant can be moved outside the inte-
gration signs. What then remains in (70) to be integrated is popula-
tion density. Let us denote total population of A' by P', in analogy
to (2). Accordingly,

jalAA(¢)ndc = -AﬁP' (71)



- 27 -

By letting A approach zero p remains constant whereas P' goes to P,
the population of the whole region A. Formally,

Lip [3iar(¢)do = O (72)

because p and P are finite, whereas A goes to zero.

In this 1imiting process A' goes to A, and so we get from (69) the
following relation for our (improper) integral on A

ffA div(x¢) dx, dx2 = 0 (73)

Next, use div(x¢) = grad X « ¢ + X div ¢ to get

fngradA-¢dx1 dx2=-ffAAd1'v¢dx1 dx,) (74)
We are now prepared for the last step. From (6)

grad A « ¢ = L|¢| (75)
and this substituted into (74) yields

- ffA A div ¢ dx, dx, = ffA k|¢| dx, dx, (76)
But this, according to (68) equals transportation cost and so

T = ffAk|¢| dx, dx, (77)

It is interesting to compare the starting equation (67) with the final
derived equation (77). Transportation costs, originally expressed as
the aggregate of the number of trips from the origin to other loca-
tions multiplied by the cost of each trip, can obviously also be ob-
tained by taking the aggregate of the flow volume at each of the other
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locations multiplied by the local transit cost. In passing we should
note that the equivalence of (67) and (77) applies to all flow fields,
not only the optimal (cost minimizing) one, provided A is defined as
accumulated transit cost along the arbitrary flow lines. This is so as
we do not need the optimality condition (6) itself, but only its weak-
er consequence (75).

Our equation (77) is much more useful than (67) both in actual compu-
tation and in the general discussion to follow.

Let us now give a simple example of how transportation costs can be
derived for the case of k =1, p=1, and A = {(xl,x2)|X§ + Xg < 1}.
This is the familiar case of homogeneous space, and hence linear
transportation, and uniformly distributed population on the unit

disk. We derived traffic distribution for this case.

As indicated it is useful to start from (77). As k = 1 we get
T = ffA|¢| dx1 dx2 (78)

Note the difference between this and the expression (38) above, defin-
ing traffic. The integration with respect to destinations x, not the
origins &, makes a big difference, and the outcome will be different
from (60).

However, part of the derivation leading to (60) is still relevant. So,
we can use (49) directly. To facilitate integration, we again use the
coordinate transformation (41)-(42). The Jacobian is

a(xl’XZ)
R R 79)

It happens to be the same as the one in (50) due to the symmetry of x
and £ in the formulas (41)-(42). Accordingly,
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dx, dx, = g dod® (80)
and so we get from substituting (4) and (80) into (78)
T = % [14(58-0%)dade (81)

Now, we remember that S denotes the distance from & in direction 8 to
the boundary circle. The chord segments (distances in directions 6 and
8+ ) have been recorded in (54) and (55). However, we only need one of

them. So, we can put
. 2 .2 - |
= /(1-p°sin“6) - p cos © (82)

Observe that we take p, not p, which again has to do with the fact
that presently the origin, not the destination, is fixed.

We still have to fix the limits of integration in (81). Obviously, 6
has to make a full round of 2r, but as the second half round only
repeats the first one, we can let 6 range from 0 to m and take twice
the integral (81) with the limits for & thus fixed. As for o it ob-
Qious]y ranges from 0 to S.

To evaluate the innermost integral is trivial. We just get

fs 2_2)4q = 263 (83)

w

Thus (81) becomes

_2 (m 3
T--3-f05d6 (84)
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with S being defined in (82). This last integral is a bit complicated
to evaluate. Expanding the third power of (82) we get four terms, two
of which involve cos 8 and cos © sinze. Now, the integrals of these
from 0 to = are zero. The remaining terms are (1-52)/(1-5251n26) and
452c0s% /(l—Ezsinze) respectively. Both these have a perfect periodi-
city over n/2 and so

2 m/2 2 2 2

T4 In/z /(1-2sin20)do + -—f cos20 ¥/ (1-psin0)ds  (85)

Here we recognize, again, the definition of the complete elliptic
integral of the second kind in the first integral. The second can also
be evaluated in terms of complete elliptic integrals, but of both the
first and second kinds. We already recorded the series expansion of
the elliptic integral of the second kind in (61) above. For conven-
jence we write the corresponding expression for the elliptic integral
of the first kind

1 3)2 0 (15)2 6, o)

Flo) = J(1+(m)% 0% + (3 - (86)

which is similar to (61). In fact the minus signs have been reversed
and the denominators of the powers of p deleted, but otherwise they
are the same.

Using these elliptic integrals we finally have

16

(1-52)E() + 2o((145)E(B) - (1-67)F(3)) (87)

—
n
w| >

The distribution of transportation costs is illustrated in Figure 3.
Obviously, transportation costs are lowest for those living in the
centre and increase monotonically the farther the origin of communica-
tions is from the centre. This is appealing to intuition.

We could also compare Figures 1 and 2. Both resulted from integration
of the same |¢|, the first with respect to g, the second with respect
to x.
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Figure 3
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The difference between the two Figures illustrates the importance of
which coordinates we take for integration. However, the volume under
the two surfaces is equal. Whether we take the integral of (60) with
respect to x or the integral of (87) with respect to &, we arrive at

[IpJIq)0] dxq dx, d&; dE, = 128n/45 (88)

as the order of integration is immaterial. One interpretation of this
integral is total traffic, as we have seen. The other one is that of
total communication cost. As local transit cost is unitary, we can
equate total communication cost to total communication distance, or
total transport work in a more familiar terminology. Hence, total
traffic equals total transportation work. This is a conclusion that is
not limited to the illustration case, but holds in general.
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Land use and equilibrium settlement

Up to now we have considered how the choice of optimum routes in con-
nection with the demand for transportation determined the distribution
of traffic on the region considered and the distribution of communica-
tion costs for various points of origin. We considered the computa-
tional aspects of this in some detail in order to show how complicated
an analytical solution can become even in mildly complicated cases. In
this process the local transit cost was taken as a given datum. We
only noticed that it depended on the congestion ratio of traffic to
space available for transportation, and we noted that, due to the feed
_back mechanism via traffic, we could not regard transit cost as a
datum, even if we assumed the fraction of space allocated to transpor-
tation as given everywhere.

We must now take in consideration the fact that the quantity of land
available for transportation results from a decision concerning the
use of land. What determines the quantity allocated to transportation,
is the value of the best alternative use of land, which, in the frame-
work of our model, is housing. The value of land use for housing, on
the other hand, depends on population. If we, as indicated in the in-
troduction, seek a spatial equilibrium where locations are indiffer-
ent, due to exactly balancing costs of housing and communication, then
we must consider even the distribution of population as something
variable in the model. But let us deal with the problems in order.
First, we consider land use, then we proceed to equilibrium settle-
ment,

We have already, in equation (5), defined local transit cost, k, as an
increasing function of the traffic to carrying capacity congestion
ratio, i/m. We already have a lengthy derivation of i. Let us there-
fore say that total land avajable at a location is divided in two
fractions, m, used for the transportation network, and, n, used for
housing. "Housing" must be understood in a broad meaning, to include
construction of buildings for productive purposes, along with residen-
tial construction, if our simplified model is to make any sense.
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Let us now discuss a bit the dependence of k on i/m. Obviously, numer-
ous empirical, as well as theoretical studies (of e g "follow-the-
leader" type), suggest a monotonically increasing relation. This in-
crease is very drastic as there is usually a critical congestion level
at which the velocity of traffic flow comes down to zero, and hence
its reciprocal, the transit time (a proxy for transit cost), goes to
infinity. The general picture is not altered, even if we let k include
capital costs for maintenance, as the need of repair due to wear
obviously increase with congestion, as do the locomotion costs pro-
per. We can also imagine that the transit cost function takes care of
the fact that it is possible to push away the critical congestion
ratio to a higher value, by creating artificial space, setting up
several storeys of elaborate networks. However, capital costs for such
constructions obvious]j increase with the ratio of traffic to natural
space available, and so we can keep our specification.

We have said that a decision for land use has to be reached. Now, the
use for transportation has been accounted for, but we still have to
formalize the use for housing (in a broad meaning). So, let us suppose
that there is a cost function

h = h(p/n) (89)

for providing each individual with his required living space. This
cost increases with the crowding ratio, measured by the quotient of
population to natural space availaable for housing. Like the case with
land use for transportation, we have in mind a process of creating
artificial space at an ever increasing capital cost, the more artifi-
cial space, in relation to natural space, has to be constructed. As
the need of space was proportionate to population, p/n is the correct

argument. Finally, we can state equation (5) once more for convenience
k = k(i/m) (90)

and the fact that the proportions of land, used for the two purposes
included in the model, add up to unity
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m+n=1 (91)

Now we have to choose the proper expression to optimize by the choice
of m and n. In the introduction we argued that it would be reasonable
to let the sum of housing and communication costs be minimized. How-
ever, it would be a little absurd to do this for each location sepa-
rately. From an empirical point of view the planning of land use is
something taken care of by public agencies planning for whole re-
gions. Also, from the theoretical point of view all the communica-
tions, not only those from a certain point of origin, will be affected
by changing transit cost there. Therefore, we can expect trouble with
the analysis if we put up a local optimum condition for something hav-
ing global effects.

So, dealing with the region as a whole, the total transportation costs
are obtained by integrating (77) with respect to £ and using the defi-
nition (38), as

ffAk(1/m) i dx; dx, (92)
On the other hand total housing costs are
[Jan(p/n) p dx; dx, (93)

Accordingly, we can minimize the sum of housing and transportation
costs (92)+(93) with respect to the m and n, subject to (91).

This yields

c (1/m)(1)2

< h 2 _

= h (p/n)(ﬁ] = U(xl’xz) (94)
where u is a (location dependent) Lagrangean multiplier associated
with the constraint. This optimum condition has the nice property that
it stipulates a universal relation that must hold everywhere between
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the local traffic congestion and population crowding ratios. We con-
clude, supposing second derivatives to be positive (as is reasonable
with respect to our discussion above), that a high cost of transit due
to congestion is coupled to a high cost of housing due to crowding. As
a condition for optimal land use this seems reasonable.

We can also see that (94) and (91) together determine both m and n
once i and p are given. The same is true then about k and h. Suppos-
ing that we have managed to solve the complicated feedback process of
traffic as a determinant for route choice somehow and obtained the
equilibrium traffic distribution we see that the single remaining
degree of freedom is the spatial distribution of population.

We suppose that there is no incentive to migration if the sum of
transportation costs and housing costs is a spatial invariant, i e, if

fIak(i/m) ] dx) dxp + h(p/A)F = constant (95)

Observe that the barred symbols again refer to conditions at the fixed
point & of origin.

The model is now complete. If we 1imit our discussion to the case of a

region with circular symmetry, we conclude that something like the
case illustrated in Fiqures 1 and 3 comes some of the way to an equi-

librium solution. Of course, this is only true in a very general

sense.

However, the traffic displayed in Figure 1 arose from unit population
density and linear communication routes. The latter occurred if tran-
sit cost was a spatial constant. Now, transit cost depended on the
traffic congestion ratio. As we see from Figure 1, there is a traffic
concentration to the centre of the disk. Accordingly, we have to allo-
cate more land to transportation in the central parts in order to
arrive at the constant transit cost (i e constant congestion ratio).
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On the other hand, little land is available for housing in the central
parts as it is used for transportation. So, housing should be expen-
sive in the central parts. As for communication costs, we see from
Figure 3 that they are low in the centre and high in the outskirts. It
is thus possible that housing and communication costs could balance
everywhere,

There is only one qualitative feature in this case that violates our
conditions. We saw namely that, for optimal land use, the high popula-
tion crowding in the centre should be balanced by a high congestion
ratio. The latter, however, was a spatial constant.

So it seems that we should either have lower crowding or higher con-
gestion in the centre, A higher congestion ratio would in equilibrium
lead to avoidance of the centre, and via the feedback to a reduction
of the concentration of traffic there. It could be brought about by
allocating less land in the centre to transportation and more to hous-
ing. This change would lead to a better balance between crowding and
congestion. As, however, the cost of communication would be increased
for all having to communicate via the central parts, not only for
those living there, whereas the housing costs would be decreased only
locally it is likely that such a reallocation of Tand would make the
centre more attractive and make people migrate there.

Finally, we are recognizing the features of reality. Congestion and
crowding in the centre, a tendency to avoid the central parts for
trips not originating or destined there, but nevertheless a consider-
able concentration of traffic, more land used for transportation than
for housing in the centre, and high costs of housing, offset by cen-
trality of location. It is meaningless to discuss matters in closer
detail, because the general case is far too complicated to allow
explicit solution,





