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ABSTRACT

The effect of soil property uncertainty on drainage system design was
presented in the first of a series of papers on methods for optimal
design of agricultural drains. A First Order-Second Moment (FOSM)
approach was developed for the Hooghoudt steady-state drainage design
,equation to provide an estimate of the of the uncertainty of the dewater­
ing zone between the drains as a function of the design variables and the
uncertainty in the soil properties. In this paper, a Stochastic Program- .
ming Model for optimal design of drains under uncertainty, based upon
the FOSM approach , is developed. The Stochastic Programming Model
incorporates uncertainty in the objective function of the model as the
expected loss in crop production as a function of uncertainty in the dewa­
tering zone. The Stochastic Programming model is extended to included
a multiple cropping situation and finally , the Chance Constraint
approach ,presented in the first paper ,is compared with the Stochastic
Programming Approach to drainage design and advantages of each are
presented.
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DESIGN OF AGRICULTURAL DRAINAGE
UNDER UNCERTAINTY,2,
A STOCHASTIC PROGRAMMING APPROACH

Kenneth M. Strzepek, David H. Marks and John L. Wilson

1. Introduction

This paper is the second in a series that presents tools for the

"optimal" design of agricultural drainage. The issues of the design of

agriculture drainage were presented in the first paper of this series

[Strzepek, Wilson and Marks, 1982] , and it was shown that there is a need

to incorporate uncertainty and economics in drain design. The approach

presented in the first paper was Chance Constraint Programming which

provided a drain design that meets a certain reliability on the drain per-

formance at minimum cost. In this paper, uncertainty in drain perfor-

mance is addressed not by a reliability approach ,but by "Stochastic Pro-

gramming" which incorporates information of the entire probability dis-

tribution into an expected value of system performance. The Stochastic

Programming approach to uncertainty in mathematical programming was
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developed by Dantzig [1955] and is possible if there exists a relationship

between system response and system output.

It is possible to calculate an expected crop yield as a function of the

drain design if a crop yield versus dewatering zone (DWZ) and a probabil­

ity density function of the dewatering zone exist. It was shown in first

paper that the first two moments of the dewatering zone midway between

the drains (DWZ and aDlfZ) can be calculated by the First Order Second

Moment (FOSM) analysis of the Hooghoudt equation and that these

moments defined the parameters of a probability density function of

DWZ. For demonstration purposes, the normal distribution was chosen,

altough other distributions will work. For the drain design problem there

is empirical data relating system response, crop yield, to 'system output,

the dewatering zone being midway between the drains. It is possible to

calculate an expected crop yield as a function of drain design.

The first paper [Strzepek, et at. 1982] presents a detailed descrip­

tion of soil property uncertainty in soil permeability and recharge rate .

An analysis of uncertainty in soil permeability revealed that this uncer­

tainty could be decomposed into information uncertainty and spatial vari­

ability. It was shown for certain forms of the spatial structure that small

scale variability can be ignored and large scale variability assumed con­

stant for soil permeability between two drains. When this condition exists

the uncertainty in the soil permeability between two drains can be

described by the information uncertainty. A FOSM analysis of the

Hooghoudt steady-state drainage equation [Strzepek ,et at. 1982], is

presented as a method for analyZing uncertainty in drain performance

due to information uncertainty in soil permeability and recharge rate.
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A Chance Constraint Model which minimizes the cost of drain instal­

lation while meeting a given reliability on the dewatering zone midway

between the drains was developed. This approach ,however ,leaves the

designer with a number of questions to answer before an "optimal solu­

tion" can be determined: (1) Which level of the dewatering zone should be

chosen as a design criterion? (2) What reliability should the design dewa­

tering zone achieve? (3) What design criterion is used for lands where

more than one crop is grown? The Chance Constraint approach can only

provide an optimal design based upon the values of the dewatering zone

and reliability given by the designer, but it cannot determine which

values of these parameters maximize the net benefits of drainage to crop

production.

The Stochastic Programming Model(SPM), examined in detail below,

is a second approach to optimal drain design under uncertainty. The SPM

for drain design is formulated to minimize the sum of the capital costs of

drain installation and the expected value of the annual crop loss due to

non-optimal soil water conditions over the life of the drains subject to

certain physical constraints. The selection of an optimal drain design in

the SPM formulation occurs when the marginal capital costs of providing

a smaller expected crop loss equals the marginal savings from reducing

the expected crop loss any further. The SPM approach resolves the

problems of .the choice of a design DWZ and design reliability , left

unanswered by the Chance Constraint Model. The expected crop loss is

based upon economic rather than physical criteria ,so it is possible to

extend the method to a multiple crop formulation.
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2. Stochastic Programming Model for Agricultural Drain Design

2.1. Formulation

The Stochastic Programming approach incorporates the expected

value of system performance in the objective function of the Mathemati-

cal Programming Problem (MPP). In this way, the uncertainty in drain

design is captured by an economic measure in the objective function,

whereas the Chance Constraint approach accounts for uncertainty by a

physical measure in the constraint set. The Stochastic Programming

MPP minimizes the sum of capital costs CC(D,L) and the Present Value

of Expected Crop losses EL(D,L) , subject to constraints on drain depths,

Dmax non-negativity of D and spacing L , and the FOSM Hooghoudt defini-

tions . 1i and ak where,

7i.L / 2 : f l(L,d',N,K)

=-d' + [d" + ~r
d': f 2(L,d,r)

(1)

if 0 31 < !!... L

d':

d if 0.0 < ~ s; 0.31

1 + f12.55ln(~ - 3.55 - 1. 6( ~ ~ +2( ~ ~2

L (2)

(3)

DWZ: D - h

DWZ=D-7i.

a 2 - a2
D'fI'Z - k

(4a)

(4b)

(4c)
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The parameters DWZ and aDPIZ of the probability density function of DWZ.

are used in the objective function to calculate the expected loss, EL (D,L).

The mathematical formulation of the Stochastic Program for Tile

drain design is:

MIN Capital Cost (D,L )+ExpectedLoss (D ,L)

Subject to:

DWZ =D -11.

aDlfz = a~

11.£/2 =! l(L,d',N,K)

d'=!2(L,d,r)

2 ! --ah
LI2

= 3(L ,d ',N,aN,K,aK,PKN)

D ~ Dmu

d=Z-D

D,L ~ 0.0

(5)

(6a»

(6b)

(6c)

(6d)

(6e)

(6f)

(6g)

(6h)

The objective function contains the same capital cost function for

drain installation as used in the Chance Constraint Model. It is defined as:

C 1 I c ICapitalCost (D ,L) = TT2D 3 + c 4 (7)

where c 1.c2.c3.andc 4 are coefficients that are a function of technology

soil type, and regional economic costs. The expected loss function ,

EL (D ,L) ,is described in detail in the next section.

2.2. Expected Loss Function

The Hooghoudt equation for the dewatering zone mid-way between

the drain is a steady-state model. As such, the predicted levels are

assumed to be constant over the entire growing season of each crop and
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the same for each growing season over the life of the drains. From experi­

mental and field data, crop yield as a function of dewatering zone can be

determined. Figure I presents a range of crop yield functions that have

been observed for steady-state field conditions in various places in the

world [Visser, 1958, and Ministry of Irrigation, ARE, 1965]. The appropri­

ate function must be determined specifically for each crop, soil condition,

and climate, as well as other factors affecting crop yield. The Type I func­

tion represents the situation where there is no contribution from the sub­

surface water table to crop water use. Type III represents the situation

where a great deal of the crop's water use comes from the subsurface

water table and lowering the water table will dramatically affect yield.

Neglecting effects of salinity, these two forms represent the extremes of

the situation to be found in the field. These two extremes rarely occur,

and Type II, which represents a combination of both effects, is Widely

observed [Amer,1979].

The curves shown in Figure I are a measure of the crops' yield as a

function of the dewatering zone mid-way between the drains. These func­

tions integrate the effects of the spatially varying dewatering zone

between the drains and express this effect as a function of the dewatering

zone mid-way between the drains. If this were not the case, and the func­

tion reflected a point response of the crop to a value of the dewatering

zone, the approach proposed is still valid. The expected value of crop

yield could be found at each point x between the drains, based upon

FOSM of the Hooghoudt equation as a function of x. This spatially varying

expected yield function could then be integrated over the drain spacing.

L, to determine the expected yield for that drain design.
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Figure 1. Crop Yield Functions
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With a functional relationship between crop yield and the dewatering

zone, the expected yield for any crop over the growing season can be

found by integrating the product of the yield function and the probability

density function of the dewatering zone over the entire range of dewater­

ing zones. The steady-state annual expected yield for each crop can be

used to generate an economic measure of drain performance. The differ­

ence between the projected yield under optimal soil water conditions, Y·

,and the expected yield as a function of the drain design ,E[Y] , is

defined as the annual expected yield loss. This annual yield loss is then

multiplied by the price for that crop CP to obtain an annual economic

loss assumed constant over the life of the drains. The present worth fac­

tor for interest rate ,i ,over the life of the drains ,t, PWFf is used to deter­

mine the present value of the expected crop loss as a function of system

design EL (D,L) as:

EL(D,L) = [Y· - E[Y]]XCPXPWFf (7)

The integral for determining the expected yield function cannot be

evaluated analytically, but can be evaluated numerically to sufficient

accuracy.

2.3. Solution Technique

The sum of capital costs and the present value of expected losses

define the objective function of the Stochastic Programming MPP. From

the description above, it is seen that the objective function is non-linear

and the non- definition constraints are linear. (The definition constraints

are actually part of the objective function, but are put in the constraint

set for clarity). The drain design stochastic programming problem is a
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two-dimensional non-linear programming problem with a linear constraint

set. To assure a global solution to the minimization problem, the con­

straint set must define a convex feaSible region, and the objective func­

tion a unimodal or quasi-convex function.

It is necessary to show that these condition exist before we proceed

with an application of the model. The Embabe Region in Egypt presented

in the first paper [Strzepek,et a1,19B2a] will again prOVide the data for

examining the validity of the modelling approach. A plot of the objective

function using Embabe data and defined over the feasible region is shown

in Figure 2. Strzepek. et at, [19B2b] have shown that for the Embabe case

study data and the three forms of the yield function presented in Figure

1. the objective function is quasi-convex over the feasible region.

The most widely used solution technique for this class of MPP is the

gradient search approach. However, in this problem the objective func­

tion is so complex that the calculation of the gradient at each iteration is

computationally burdensome. However, the objective function is unimo­

dal in both D and L. Taking advantage of this property, a recursive algo­

rithm is used which minimizes over D a function G which is the minimum

over L of function F for each D, as follows

MIND G(D)

subject to

(B)

(9)

Each one-dimensional problem was solved using the golden-section

search method [Strzepek et at, 19B2bl. This provides a solution accuracy

well within the tolerance of drain installation.
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2.4. Case Study Applications

The Stochastic Programming Model for drain design has been

presented together with a solution technique. However, before a solution

can be generated, a number of parameters must be defined, such as pro­

jected crop yield, crop prices, interest rates, and the life of the project.

Although the results may vary as these parameters vary, Strzepek, et al.

[1982b], have shown that for the range of values possible for the Embabe

case study, the results are stable and the most important parameter

which must be determined is the type of yield function that the crop

possesses. In Table 1 part A, the model parameters for the Embabe case

study region in the Nile Delta are presented. Based upon these parame­

ters, Table 1 part B presents the model solutions for the three types of

yield functions presented above. The results show Type I to have an

expected cost much less than, and a design much different to ,both Types

II and III. This is due to the fact that for Type I, the yield remains at the

optimum level for values of DWZ greater than DWZ·. The model's goal is

to find the design that minimizes the capital costs plus the losses due to

reduced yields. Thus, the model will attempt to design a system such

that DWZ will be close to DWZ· and uDriZ will be as small as possible ,to

concentrate the probability density at the optimum point and achieve the

highest possible expected yield. However. as is seen in the model as DWZ

increases and uDriZ decreases, reducing expected losses, the capital cost

of the drain increases. So the model must trade-off between the reduc­

tion of expected losses and the increases of capital costs.
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Table 1. Optimal Drain Design Sensitivity to Crop Yield Function

A. Model Parameters

Z
K
N
Cl

C3

Crop
DWZ·
i

=7.Om
=0.085m/day
=0.0004m/day
=52.2
=0.365
=Qover
=l.Om
=10%

D·
uK
UN
C2

C4

Yield
t

=2.Om
=0.0815 m/day
= O. 0004m/day
=1.646
=55.892
= 200LE/feddan
=50 years

B. Model Results

Yield Function
Type I Type II Type III

2.00 1.46 1.43
43.17 21.95 20.57
89.14 138.23 147.43

8.93 60.09 57.21
98.07 198.32 204.64

Drain Depth,D (m)
Drain Spacing,L(m)
Capital Cost
Expected Loss
Total Cost

Note: All cost in LE per feddan.

There is little difference in the optimal design for Types II and III

because the model provides a design such that the probability density is

concentrated at a point near DWZ· and has little density in regions where

the yield is low. There is a great difference between Type I and Type II

and III results, because the model allows UDrtZ in Type I to be large since

the yield function is constant at the optimal value and the expectation

will not change if the probability density is concentrated or distributed in

this region. These results emphasize the necessity to obtain the best pos-

sible data on the shape of yield function for the crop for which the drains

are designed.
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3. Multiple Crop Stochastic Programming Model

The model presented above only partially answered the questions

raised by the Chance Constraint approach. The question of design under

multiple crops remains. Since the Stochastic Programming approach has

transformed the measure of performance of the drains from a physical

measure to an economic measure and since the economic measure can

be handled in an additive way, the objective function can be extended to

include the expected losses of each crop affected by the drain design.

The objective function in the single crop stochastic programming model

minimized total cost of capital costs and expected losses. In this manner,

the approach can be extended to minimize the sum of capital costs and

the expected losses of each of the crops that are grown over the year on

the land drained.

The expected loss function, as defined above, can be determined for

each crop, given a yield function and crop prices. The expected loss func-

tion for each crop can then be weighted by the average area cultivated in

that crop Aj by the drains. The summation of the weighted expected loss

functions becomes a new multiple crop loss function. The capital cost

function remains the same, so that the objective function for a Multiple

Crop Stochastic Programming model becomes:

MIN CaptialCost (D,L) + j~AjX[Y;- E[Yj]]XCPjXPWFf (10)

where the subscript j represents each crop up to NC. the number of

crops. This multiple crop objective function replaces the objective func-

tion in the single crop stochastic programming formulation .equation (6),

to provide a new Multiple Crop Stochastic Programming model.
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3.1. Case Study Application

The assumption is made that for the Egyptian Delta conditions, the

appropriate yield function is the form of Type II. This assumption is

based upon the soil physics. irrigation practices. climate, and experimen­

tal data from the Nile Delta [Ministry of Irrigation, 1965] which show that

for all crops of major importance to agriculture in the Nile Delta, the

yield function follows a Type II form. Table 2 lists the data for the impor­

tant crops for a non-rice area in the Nile Delta similar to the Embabe

region.

Table 2. Multiple Crop Yields in the Nile Delta

Crops

Cotton Maize Wheat Vegetables Berseem

Area
0.25 0.58 0.25 0.17 0.62

(per feddan)

Yield
0.35 2.14 1.72 8.40 24.66

(m. ton/fed.)

Price
466.67 51.2 50.00 60.00 0.44

(LE/m. ton)

Total
40.83 63.55 21.50 85.68 6.73

(LE/feddan)

DWZ·
1.3 1.15 1.1 1.0 1.0

(m)

With this data, a multiple crop expected loss function can be defined. Fig­

ure 3 is a plot of the objective function for the multiple crop stochastic
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programming model using the data from Tables 1 and 2.
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Figure 3. Multiple Crop Objective Function
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Strzepek et al. [1982b], have shown that this is a quasi- convex function.

The same constraint set as for the single crop model is used .The con­

straint set defines a convex feasible region, so a global minimum can be

found using the existing solution technique. The optimal solution for this

case is a drain depth D=1.38m, spacing L=21.96m. This results in a cap­

ital cost of 137.9 LE/feddan expected loss of 86.6 LE/feddan and a total

cost of 224.5 LE/feddan.

4. Stochastic Programming versus Chance Constraint Approach

Thus far. in this two-paper series, chance constraint and stochastic

programming have been presented as alternative methods to include

uncertainty in optimal drain design. This section will examine the proper­

ties of the two approaches.

The chance constraint approach to uncertainty is a reliability

approach. It requires that a system output target be met with a certain

reliability. The target value for the system output is usually an optimal

value of system performance. In drainage design the target value is the

optimal dewatering zone for crop production. As the problem has been

presented, the greater the reliability, the better the system perfor­

mance. This approach assumes that if the system output surpasses the

target values, the system performance will be as good, if not better, than

below the target value. In other words, the system benefit function is a

monotonically non-decreasing function. Figure 4 illustrates this argu­

ment. In Case (b), the target value Z· is met with a reliability of 95% and

the expected system benefits are greater than case (a). in which the tar­

get value is met with 80% reliability. This illustration shows the logic
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behind the chance constraint approach to uncertainty. However ,the

chance constraint approach is valid only as long as the benefit function is

monotonically non-decreasing or the sign of the slope of the function does

not changes over the range of possible output. When this condition does

not occurs the result will be that a greater reliability of the output tar­

get will produce poorer system performance than lesser reliabilities.

Figure 5 illustrates this pOint. In Case (a), a reliability of 50% on the tar­

get value provides substantially more expected benefits than a 95% relia­

bility on the target value in Case (b).

The implication of the above arguments for drainage design is quite

clear and important. In Figure 1. general forms of typical crop yield func­

tions were shown. Three functions were presented and only one was a

monotonically non-decreasing function. The two others had slopes that

changed sign. m:aking the present chance constraint approach invalid. If

a monotonically non-decreasing function is assumed in a chance con­

straint analysis and the actual yield function is not the assumed form,

there will be a "regret."

To quantify the magnitude of this regret for drainage design in the

Nile Delta an experiment was performed. In Figure 1. three possible crop

yield functions were illustrated. Type I is a monotonic non-decreasing

function while Type II and Type III are not. An analysis was done to quan­

tify the "regret" that would result if a drainage system was designed

assuming a Type I crop yield when, in fact. the function was actually Type

II or Type III. The measure of regret was the difference in expected losses

as described above. The system was designed for a 98.5% reliability of a

dewatering zone of 1.0 meters for clover. Table 3 is a summary of the
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results which shows that the regret can be quite substantial. This points

out the necessity to carefully define the crop yield function before

proceeding with a chance constraint approach.

The question that arises then is: "What is the appropriate design reli­

ability for a crop yield function with a slope that changes sign?" To

answer this question, another experiment was performed. For each type

of crop yield function. a system design was found using the stochastic

programming model. Then the corresponding reliability , ex, on the

optimal dewatering zone ,DWZ· was found. Table 4 presents a summary

of results. For Type 1, the result is as expected, 96.5% reliability. For

Type III, the reliability is 50%; this can be expected, since the crop yield

function is symmetric around DWZ· , so that the model will concentrate

the densest portion of the probability (the mean) at the optimal yield.

Although one could design for 50% reliability, this would neglect informa­

tion about the variance of DWZ which has been shown above to be very

important in determining expected yields.' ·For Type II. the reliability is

54%. In this case, the crop yield function is assymetric and defining

a priori a reliability which would reflect the optimal system performance

is impossible.

5. Conclusions

These results make a strong argument for the use of stochastic pro­

gramming. Chance constraint programming has been used when little or

no information about the benefit function is known. This analysis has

shown that this convention can lead to large losses due to the regret of

assuming the wrong yield function since the chance constraint approach
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Table 3. Economic Regret Due to incorrect Yield Function.

1. Drain Design based upon: Type I Yield Function

DWZ· =1.0 m
Reliabiltiy, a. =98 %
Depth, D =2.0 m
Spaci:ng, L =34.17 m
Capital Cost =89.1 LE per feddan

II. Economic Regret due to actual yield function being

Type I
Type II

218.8 LE per feddan
578.5 LE per feddan

Table 4.Stochastic Programming Implications for Chance Constraint Programming.

Crop Yield Function
Type I Type II Type III

2.00 1.46 1.43
43.17 21.95 20.57
89.14 138.23 147.43

8.93 60.09 57.21
98.07 198.32 204.64

Drain Depth,D (m)
Drain Spacing,L(m)
Capital Cost
Expected Loss
Total Cost
DWZ ·Equivalent
Reliability}
0.%

98.5 54.0 50.0

Note: All cost in LE per feddan.
DWZ· =1.0 for all Types.

1 this reliability is found by examining the probability density
function produced by the stochastic programming results and
determining the resulting reliability on the optimal dewatering
zone DWZ·

assumes a form to the benefit function.

An alternative approach, but still using chance constraints, is to

require the system output to be greater than a lower limit and less than

an upper limit with a certain reliability, thus defining a feasible range of

values. However. this approach has two problems. First, to decide upon
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the appropriate upper and lower bounds requires almost as much infor­

mation as needed to define the entire benefit function. Second, due to

the irreducible uncertainty in input parameters. it may be infeasible to

design a system in which the probability distributi.on of the ouput can

meet the desired reliability for the design interval. Thus, the range of

reliability would have to be changed to provide a feasible solution.

The material presented in this paper reveals that the chance­

constraint approach ,outlined in Paper 1 of this series, has problems that

under certain conditions cannot be overcome. The stochastic program­

ming approach is not plagued by these problems, but requires more infor­

mation and additional computation. The stochastic programming

approach also provides for an explicit trade-off between economic bene­

fits and cost of drain design and allows for analysis of multiple crop

areas.

The analysis has shown that chance constraint programming is not as

robust as presently perceived. Drain design using this formulation can. in

certain cases, actually provide misleading results. The additional efforts

needed to gather the information necessary to define the full yield func­

tion and the additional computations necessary for the stochastic pro­

gramming model are well worth the effort.
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