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A DIRECTIONAL IMPLICIT FUNCTION THEOREM
FOR QUASIDIFFERENTIABLE FUNCTIONS .

V.A. Demidova and V.F. Demyanov

1. INTRODUCTION

In this paper we consider problems related to the deriva-
tion of analogues in quasidifferential calculus to the implicit

and inverse function theorems of classical differential calculus.

Let us first recall some definitions. A function ¢ defined
and finite on an open set S of Em is called quasidifferentiable
at x€8 if it is directionally d;fferentiable at x and if there
exists a pair of convex compact sets §¢(x)<ZEm and 93¢ (x)C Em such

that for any gEEm

0 (x) - 1lim % [¢ (x+og)=-¢(x)] = max (v,g) + min (w,qg).
3g - a=>+0 v EIP(X) wE 3¢ (x)
The pair D¢ (x) = [3¢(x),0¢(x)] is called a quasidifferential

of ¢ at x; it is not unique. The properties 0f quasidifferentiable
functions were first investigated in [1-3]. This work led to the
development of quasidifferential calculus, which is a general-
ization of classical differential calculus (see, e.g.,[4-6]).

Some extensions to Banach spaces are discussed in [4] and [5].



The implicit and inverse function theorems of classical
differential calculus represent an essential element in the struc-
ture of the calculus and have important applications. The problem
of deriving analogous theorems in quasidifferential calculus
was introduced and briefly examined in [5,6]. In the present

paper we continue our study of this problem.

2. AN IMPLICIT FUNCTION THEOREM
Let z = [x,v], XGEEm, y<EEn, and let the functions fi(z)

(1€ 1:n) be finite quasidifferentiable on Em+n

Consider the following system:

£,

l(x,y) =0 viel:n .

This can be rewritten in the form
f(z) =0 (1)

where

f= (fi’--o’fn)’ OeEn .

The problem is to find a function y(x) such that

fi(x,y(x)) =0 ¥X € 1:n, VxEEn .
Unfortunately we cannot solve this very general formulation

of the problem for an arbitrary quasidifferentiable system of

type (1). But what we shall try to do is to solve this

problem for a given direction gGEEm. We shall call this a direct-

tional implicit function problem.

Suppose that zg = [xO,yO] is a solution of system (1), i.e.,

=0 ¥iE€ 1:n



Consider the system of equations
f(x0 + ag, y(a)) = 0 (2)
where a>0

Since the functions fi are quasidifferentiable for any

qEEEn, we have from (1)

afi(zo)
fi(XO + ag, Yo + aqg) = fi(xo,yo) + a 3Tq,al
Bfi(zo) :
- 3
+ oi(u,q) % 3Tq9,q + Oi(d,Q) (3)
where
0f; (z) _ max [(vy: )+ (v,y.,q)] +
TTg,al ~ v €35 (z) -
rd 1T 2{ Y0
o an o HEgee)l ¥ el (4)
i &9Fit%g
Here Dfi(z) =-[gfi(z) §fi(z)] is a quasidifferential of fi at z;
gfi(z)<:Em+n’ afi(z)(IEm+n are respectively sub- and superdifferen-
tials of fi at z (convex compact sets); v, = [V1i’v2i]’ and
Wi = Qwggewyyl

Let qOEEEn be a solution to the gquasi-linear system

Bfi(zol .
2 ¥i€1:
a[glqo] 1 n ° (5)
Suppose that in (3)
Oi(Ot,CI) . 0 (6)
o o~+0

uniformily with respect to



q€s,(qy) = {q€E_[la-qgll<e},

where 8>0 is fixed.

Is it possible to find a vector function t(¢) with @.>0

0
such that
fi(xo +oag, v, ot oc[q0 + t(a)])=0 v¥i€1:n, aez[O,aO] (7)
where T () eEn ¥o € [O,ao]?

Take €>0 and introduce the sets

= >
R, {viezgfi(zo)l(v1i,g) + (v2i,q0)

2 max [ (v

rg) + (Vzquo)] - 5}1
vie_a_fi(zo)

+ <
,g) (wzirqo)

1g) t (Wyisqy) ] + e},

I
3
@
b
<

It is clear that all these sets depend on 25r9:94- Note that
mappings R, (1) and Ry (1) are upper-semicontinuous (i.e., closed)

and that for any €>0 there exists a 61>0 such that



(01) ©o(rm) x4+ (101 o4 (1) Ty = (1)°Ta

SuUOT3OUNI BY3 IDPTISUOD

. |IIAMWVMMI + (1) Tls = (170) %1 oxoum
(1+ Yy O
ﬁﬁp~avﬂu+AH~APVHN3+Apvﬂm>v_anAﬁp+owva+o>~oa+oxvﬂm

(€) woxy ‘snyl

(6) - uil>1TA 0= (0)tx

Jeyl SMOTTOT 3T (g) woxg *sSnonuT3juoD aJe AHVHFH pue

0
b‘b T
Onb1e ()7,
(7z) " 3¢
- 1
3rU3l suesuw STYUL
- (0)Tg> Tm R E

T s s .\ T T s s . T 0<S S
usyas M = (T1)mpue ‘A T2 (C1)a g E C1 1T

T T—
‘snonuTjucOTWSS-I19ddn aIe (1) ¥ pue (1) ¥ 80UuTS

o) ) ey = (1)'a

ComTES 1) )Tl o ()T

c(Ob (1) Fm) & B (1)) + (OB ()T + (B (1) Tha) = (1) Tl
aI9UM

o T e (1) = 2+ OB Tia) o+

+ (B(1)ttm) + (1 4 oU~AHVHN>v + Am~ﬁpvﬂ_>v _ HPmOmeum

(“2) Fze

(1) woag

(8) (0) 9% 314 ‘ur1o1a “Tao(mTw PTEo (1TE



Here v, (T)GEVZi(T), Wzi(T)éEWZi(T), where

i
NZi(T) = {v21\3v1iezEm:[v1i,v2i]ezgi(rf}{
Wy, (1) = dw, [ w, €E :lw Wy JER (DT .
The mappings v1i(1) and w2i(T) are upper-semicontinuous. Now

introduce the set M(t) of matrices such that A€ M(1t) if A is a

matrix with i-th row [v_. (1) + w .(T)]T where
21 21

~

v2i(r) eVZi(T) and wz,l(r) EW,,; (1)
For any fixed 1 the set M(1) is convex and upper-semicontinuous.
Let us denote by M (where € = 0) the set of matrices defined

as follows:

A
- {4 _ T _
Mg ={A= By = Ly Wyl Vo  €Ry Mo ERy gy
A
n
From (8) it is clear that
M(T) CMe V’L’ES(S (0) . (11)
1
Note that if 61 = 51(8) in (11) then (8) is satisfied.
Theorem 1. If for some £>0 we have
min det A > 0 (12)
A€M€

then for o positive and sufficiently small there exists a solution

T(a) to system (7) or, equivalently, to the system

Fia(T) =0 ¥ie1:n



Proof. Let us construct the mapping

M (r(e,1) = ¢ (1)

M (1) = (B = A" (1) |A(1) eM(1)}

From (11) and (12) it follows that ¢a(T) is upper-semicontinuous
(for any fixed ae [0,04]) in 165561(0) and that

4, (S5 (0)) CS¢ (0)

1 1

This means that all of the conditions of the Kakutani theorem
(see [7,8]) are satisfied and therefore there exists one point

T(a) which is a fixed point of the mapping ¢a(r):

(t(a)) = t(0)

From (6) and (9) it is also clear that

T () »0

Now from the above equation and (10) it follows that

Fioltl@)) =0 . Q.E.D.
Corollary. 1If 9 is a solution .to (5) and the condition
(12) of Theorem 1 is satisfied then system (2) has a solution y(t)

defined on [O,aol(where n.>0) such that

0

. 1
y;(0) = lim — [y(a) = y(0)] = g
+ art0 @ 0
We shall call Theorem 1 a directional implicit function theorem,
Of course, there could be several solutions to (5), or

none at all.



It is important to be able to solve systems of equations

of the form

max [((v,.,g) + (v )1 + min [{w,.,9) + (w21,q)] =

_ 11 2i'4 11
Vi€914 i€ %1
= b. ¥i€ 1:n
i
where v; = [V1i: V2i]’ W, = [W1i, Wzi]' and 91i “Eqsn and

021(:Em+n are convex compact sets.

We shall call systems of this type quasilinear.

. and o.. are convex hulls
1i 21

of a finite number of points) the problem of solving quasilinear

In some cases (for example, if o

systems can be reduced to that of solving several linear systems

of algebraic equations (we shall illustrate this later on).

3. AN INVERSE FUNCTION THEOREM

Now let us consider a special case of the problem, namely,

where system (1) is of the form

X+ ¢o(y) =0 (13)
i.e.,
xP L y) =0  w¥.e1:
iy 1= A
where
X = (x(”, ,x(n)) €E_, y = (y(”, ,y(n))eEn

and the functions ¢i are quasidifferentiable on En'

Suppose that 2g = [xo,yo]<EE2n is a solution to (13), 1i.e,

X, + ¢(yo) =0 .

Choose and fix any direction gEE . We now have to consider

two questions:



1. What conditions are necessary for the existence of
a positive &4 and a continuous vector function y(a) such that the

expressions
y(0) = y4r Xg + 0g + ¢(y(a)) =0 va € [0,0,] (14)

are satisfied?
2. If y(a) exists does
y,(0) = lim = Iy(a) - y(0)]
a>+0

necessarily exist?

To answer these questions we turn to Theorem 1 and its
corollary. Let D¢i(y) = [§¢i(y),§¢i(y)] be a quasidifferential
of 5 at y. We then have

b, (yn + aq) = ¢.(y,) + a max (v.,q) +
i'40 i'40 [Vieé(bi(yo) i
min (Wi Q)| + o; (a,q) . (15)

In this case equation (4) takes the form

max (Vi'q) + min (W.,q) = -9, ¥i€1:n .(16)

i
vie§¢i(y0) wiegcbi(yo)

Suppose that qOGEEn is a solution to (16) and that in (15)

a a++0

uniformaly with respect to qéssé(qo).

We now introduce the sets

R;j. = {vi€§_¢i(y0)|(vi,q) > maf (v - el o,
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R. = {w. e€36¢: (ya)|(w,,q) < min (w,;,q) + €}
ie 1 170 1 wi658¢i(y0) i

Let M€ be a set of matrices defined as follows:

i
. N T = .
Mg =0 AL Ay = [vy +wilh vy Ry, W ERye W1
A
n
where ¢ 2 0
Theorem 2. If for some & > 0 we have
min det A > 0 (17)

AeM
€

then there exist an g > 0 and a continuous vector function y{(a)

such that

y(Q) = Yo, X9 * o9 + d(y(a)) =0
and
H
Yy (0) = qo
Remark 1. In the case where each of the sets §¢i(yo) and

§¢i(yo) (for all values of i) is a convex hull of a finite number
of points, it can be shown that Theorem 2 is valid if (17) holds

for € = 0. An analogous result can also be obtained for Theorem 1.

Remark 2. Suppose that [xoiyo] is a solution to (14). Then
to solve the directional inverse function problem it is necessary
to find all the solutions to (16) and check whether condition
(17) 1is satisfied.

As an illustration of Theorem 2 and the use of the technique

outlined above we shall now present a simple example.

(2))<EE y X5 T

1
Example. Let x = (X(1),X(2)) EEzl Y = (Y( )/Y 2 0

= (0,0), YO = (0,0)
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Consider the following system of equations:

This system is simple enough to be solved directly.

(1)

2) + |y M-y

+ )y

2
- 2|y(

(2

)

y

0

0

not difficult to derive the following solutions:

if

if

if

if

It is
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(1 (1) (2)
5 ) = - - 2X (23)
YKZ) - _X(U - x(2)
if
yeas = {y = (v (M ,y@ y“) <o0,vy? <o, y My > o3,
6. y(1) = —x(1) + 2x(2)
(24)
y(2) _ _x(1) + X(2)
if
In this example it is obvious that [XO,YO] satisfies (18). Now
consider the (arbitrarily chosen) four directions g, = (1,0),
g2= (-1,0), g3= (1,1}, gq_—- (-1,"1)

For g, we have Xq + ag, = (0.,0). We now look at each of

the possible solutions in turn.

From (19), Y11(a) = (d,d)<591 Ya = 0, i.e., y11(a) satisfies
(14) for all o 2 0 and therefore y11(a)isa.directional inverse
function of (13) in the direction g, and

Y"|1+ (0)y = (1,1) = 991

Solution (20) yields the same directional inverse function
as (19).

From (21) we obtain y13(x) = (- %—a,—

y13e;Q3 ¥a>0 and therefore y13(a) is not a directional inverse
function of (13) in the direction gq-

%-a); in this case

= (L 1
From (22) y14(a) = (3 a, 3 o) & Qu .Va>0, and therefore y1u(a)
is also not a directional inverse functionof (13) in the direction

9q9-
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Solutions (23) and (24) yield the functions y15(a)
= y16(a) = (—CL,—OL), where

Y15(0L) € Qg and y16(a)eS26 Yo = 0

Thus y15(a) = y(a) is a directional inversezfunction of
(13} in the direction g4 and y%5+(0) = (-1,-1) = do5
Thus there are two directional inverse functions of (13) in the
direction gq ¢ y11(a) = (a,a) and y15(a) = (-a, -a)

Now let us consider g, = (=1,0). From (19),

Yyqla) = (-a, —a)¢§21 ¥a>0,

and therefore y21(a) is not a directional inverse function of

(13) in the direction g, In the same way we obtain (for o>0):

yZZ(O«) = (= ar_a) QQZI

. 1
y23(0t) = (;—a,:;—a) ¢Q3I YZLL(OL) = (- ;_OLI" ?OL) gﬂu_-

Yog () (a,0) Elgs Yye(a) = (a,a) Elg.

This means that there is no directional inverse function of the

system(13) in the direction 9,-

The same is also true for the direction 95 = (1,1) since
for o> 0

Y31(G) = (-a,0) ¢Q1, Y3, = (30, 2a) ng’

Ya3(e) = (=e,0) #85 ygy(a) = {a,0) &8,

Y3g(a) = (=32, -2a) %QS’ Yy (@) = (a,0) 2

In the same way we find that there are two directional

inverse functions of (13) in the direction a, = (-1,-1):

y“_»] (o) = YQ3(G') = (alo)l Yuu_(a) = YLI_G(Q) = (—alo)l

and
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v 14 (0) = ¥'y5,(0) = (1,0), ¥ e (0) = ¥4, (0) = (=1,0)

Now let us solve the problem again using the results of
Theorem 2. System (18) can be rewritten in the following form
(see (13)):

x + ¢(y)y =0

2) o @

where ¢= (¢,7105), 04(y) = ly D -21y#) |, and o, (y) = v "

The functions ¢4 and ¢, are quasidifferentiable. We first find

their quasidifferentials at Yo = (0,0):

Doq(vy) = [30,(vg), 363(vg)]1, Déy(yy) = [36,(yy) s 302(¥g))

(25)
where

30 vy = (v = M@ eMe 7, ¢ 0 -

= co{ (-1,0),(1,0)} ,

3¢1(Y0) = {w = (w(1),w(2))|w(1)= 0, w(Z)EE[-Z,Z]} =

= CO{ (01—2)1 (012)} ’

§¢2(Y0) = col{(~-1,1), (1,-1)1}, §¢2(Y0) = {(0,0)}

For any fixed g = (g(1), g(z)), we have to solve (16) and
find qO = (q0(1), qo(z)). From (25) and (16) we obtain the
system

mnax V1(1)q(1) + nin w1(Z)q(2) - g(1)
v1(1)e (=1,1] w1(2)€ [-2,2]
(26
max (VZ, q) = _g(2)

v26co{(—1,1),(1,—1)}



-15-

In general we cannot solve (16) but if 3¢i and §¢iare convex
hulls of a finite number of points, as is the case here, we can
solve (26) by considering the following eight linear systems of

algebraic equations:

] e\ g2 L ()
(27)
S DR S ¢ )
, q(Mo g o g
(28)
2
gD Z g2 L@
3 gy 2q@ o (M)
(29)
G DIRSIC- R ¢
4 LMy g @) L g
(30)
g(M- g@ o @
\
5 Mo g2 - g g
(31)
M 4@ L @)
5 aMo 2@ 2 g
(32)
Mo @ _ @
; (M 2g @) o g
(33)
My @) o @)
o M 2q@ - g
(34)
¢ g2 @
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The systems (27) - (34) are all nondegenerate and thus

solutions exist for any g €E,-.

Take g9q = (1,0). Solving (27) - (34) we obtain four different

vectors:
4y = &+ 1) (from (27) ana (28))
a;, = (=1,~1) (from (29) and (30))
a;3 = (1,1 (from (31) and (32)) ,
a;, = (- +/= T) (Erom (33) and (34))

Now it is necessary to check which of the values of g4 are

solutions to (26), i.e., satisfy

max v + min w q = -1
(1) 1 (2) !

€ [- -
max (v2 q) = 0

VZECO.{(—‘]IT)I (11—1)}

A guick check shows that only vectors q15 and 913 satisfy (35).
For dqp = (=1,-1) we have

Rig = {vi€39,(yg) | (vq aqy) = min  (Vy,4q,,)} = {1,001,

Rig = fwy €80, (g) [ vy qyp) = min - (wy,qq) 0 = L0,
w, €3¢, (y,)
Ryg = (v, €30,lyg) vy qpy) = max (Vyrag)t =

Vo €39, (yg)

=CO{(_1I1)I\1I-1)} ’
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Ryp = {(wy €30, (yg) [ (wy ay,) = min (wy dqp)} = {(0,00} .
Then
a1 T —
Mo = A= ey )2 T Vi v wilTy vy €Ryp, Wy E Ry (= colRg By

£
=y
®

R

0]

N

]
|
- N
N—
>
[N}

|
’ (I
|
NN
S——

Note that
-1 2
= 1 =

= 0, i.e., condition (17) is not satisfied. But we

0

and det AO

should remember that condition (17) was originally introduced to
deal with Oj(a,q) in (15) .and that it is a sufficient, not necess-
ary condition for the existence of a directional inverse. In our
case 01(a,q) = 0 for all values of i and g, and therefore there
must be a vector function y12(a) such that
= >

Xg + ag, + ¢(y12(a)) 0 Wa 0

and

' (0) = qq, = (=1, -1) .

Moving to q13 = (1,1), and following the same line of argum-

ent we deduce the existence of a vector function y13(a) such that
. >
xg *t agy + olyqy(a)) 0 ¥a =0

and

Y'13+(0) =q13= (1,1) .
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Thus there are two solutions to (15) for g, = (1,0): y12(a)
and y13(a). This duplicates the result obtained earlier.
For g, = (=1,0) we again arrive at the four vectors
= (.5 = (=1, =), 4y = (1,1) = (- r -
921 33 92 ' 923 P Ay 373
calculated previously as solutions to (27) - (34); however, none

of them satisfies (26). Thus the system (13) has no directional

inverse function in the direction gs-

For gy = (1,1), solving the systems (27) - (34) yields six
different vectors:

(1,0) (from (27) and (29)),

(-1,0) (from (32) and (34)),

12
d33 = (= 3 §) (from (28)),

=L -2
A4, = (3 3 ) (from (33)),
d3g = (=3, -2) (from (30)),
d3g = (3,2) (from (31))

These values should then be tested by substituting them into
(26) (for q(1) =1, q(z) = 1). We find that none of these six
vectors satisfies (26), and therefore system (13) has no direction-

al inverse function in the direction 95-

For g, = (-1,-1 ) we obtain the same six vectors as for 95
1 = (1,0, qu, = (=1,0), g4 = (- v+ %), q,, =
41 r¥)r Mo ’ roHay3 373 77 H4y
1 2
= { 3—" '3—)1 qus = (-31-2)1 qu6 = (3,2) [}
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but now dyq = {1,0) and Y, = (-1,0) satisfy (26) (the four other
vectors still do not). Condition (17) does not hold but it is

not essential to invoke Theorem 2 in this case since in (15)

Oi(cx,q) =0 %o =20, w¥ie1:2

Thus for the direction gy = (=1,-1) there are two directional

inverse functions yu1(a) and yuz(a) such that

1
o
%
Q
\%
o

Xy + ag, + ¢(yu1(a))

|
o
€«
Q
v
o

xg + ag, + 0(y,, (@)

and

Y (0 = (1,00, y'y,, (0) = (=1,0)

This again duplicates the results obtained earlier.
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