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AN ALGORITHM FOR MINIMIZING A CERTAIN CLASS
OF QUASIDIFFERENTIABLE FUNCTIONS

V.F. Demyanov, S. Gamidov, T.I. Sivelina

1. INTRODUCTION

One interesting and important class of nondifferentiable
functions is that produced by smooth compositions of max-type
functions. Such functions are of practical value and have been
studied extensively by several researchers [1-3]. We treat them
as quasidifferentiable functions and analyze them using quasi-

differential calculus.

One special subgroup of this class of functions (namely,
the sum of a max-type function and a min-type function) has been
studied by T.I. Sivelina [4]. The main feature of the algorithm
described in the present paper is that at each step it is neces-
sary to consider a bundle of auxiliary directions and points,
of which only one can be chosen for the next step. This reguire-
ment seems to arise from the intrinsic nature of nondifferentiable

functions.

2. THE UNCONSTRAINED CASE

Let

f(x) = F(x,y1(x),...,ym(x)) (1)



where

XEE ., y; (x) = max ¢ij(xL I, £ 1:Ng
JEer;

and functions F(x,y1,...,ym) and ¢ij(x) are continuously differ-

entiable: on En

+m and E v respectively.

Take any gekE, . Then for a > 0 we have

9y (%)
v (x+ag) = y; (x) + a + 0, (2,9)
3g
where

3y (x) Y. (x+og) = y. (x)
-t = 1im 22 L = max (¢i-(x),g) ’

g o>+0 a jERi(x) J

30 . . (X)

¢i-(x) = =) ’

J ox

Ol(alg)
0 . (2)
a a~>+0
This leads to
BF (v (x)) 3F (y(x)) °¥i (X
f(x+ag) = £(x) + a (———X————,g)-+ z +o(a,q9) (3)
9x iel ayi 3g
where
I = 1:m, y(x) = (x,yl(x),...,ym(X)) '
and
O(a,g) . (U)
a a++0

It is clear that convergence in (2) and (4) is uniform with respect
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* o . Ce s . +
For x €Ej to be a local minimum point of £ it is sufficient
that

— * . *
-3f(x ) Cint 3f(x ) .

The following lemmas can be derived from the above necessary and

sufficient conditions:

Lemma 1, For any set of coefficients
%X eI (x),JeR (x),As>0, T A 1}
Lo |1 _(x ),3J (x ), AL, >0, L. =
ij i ij jERi(x*) ij
there exists another set of coefficients
{x eI, (x),JER (x7), A, >0 ) A 1§
RN X v ] X ) AL ’ s s =
ij + i ij — jERi(x*) ij
such that
3F (v (x 7)) 3F (y(x)) *
y\X )J) 4 Z X Z . Xij¢i'(x y =0 . (6)
3%y ier 3y JER; (x ) J

ES
(g SELX ) _ 5 put ‘i =0 VjERi(x*).)

aYi J

Condition (6) is a multipliers rule - note the difference between

it and the Lagrange multipliers rule for mathematical programming.

*
It follows from (6) that x 1is a stationary point of the
smooth function

/

Fy(x) = Flx, ) M

Do (X)) e z A } (%) '
jER, (x¥) 13

' s
J jER (X*) mj 'mj I
™
%*
and if 3f(x ) consists of more than one point then the set {Aij}
is not unique. (Of course, it may not be unigque even if Af (x*)

is a singleton.)

+ . o , . .

For an arbitrary quasidifferentiable function condition (7)
is sufficient for a minimum only with certain additional assumptions.
However condition (7) is sufficient for functions described by (1).
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*
Lemma 2. If for any weB(x ) there exist sets

n+1
{vi|1.e1:(n+1)} and {ailai >0'i£1ai:=1}

such that the vectors {vi} form a simplex (i.e., vectors {vi-vn+1|

n+1
*
i€1:n} are linearly independent) and w = vy, then x 1is a
i=1

local minimum point of £ on En‘

We shall now introduce the following sets, where € >0, u>0:

Rig(x) = {jEIi|<bij(x)iyi(x) -c} .,
3E(x) = co{vEEnlv=%)—)+ ) BF(B‘(’x)) q)'i'(x)’jeRie(X)}’
1€1, (x) Yi ]
OF (y (%)) . ]
B (x) = <WEE_|w = ¥ SEYAXI) gt (x),3ER, (x)+ .

*
Let f be defined by (1). A point x €E, will be called an e-inf-

stationary point of £ on E if
- * *
-3f(x ) C@{f(x ) .

We shall now describe an algorithm for finding an e-inf-

stationary point, with € >0 and u >0 fixed.

Choose an arbitrary xOGEEn. Suppose that Xy has been found.
If

—9£ (%)) C3_£(xy) (7)

then Xy is an e-inf-stationary point and the process terminates.
If, on the other hand, (7) is not satisfied then for every weEBu(xk)
we find

min fw+vil = Hw+vk(w)H
VEief(Xk)



w+vk(w)
If w + vk(w) # 0 then let gk(w) = - W;:;;TGTW and compute
gig f(xk+agk(w)) = f(xk+ak(w)gk(w)) . (8)

If w + vk(w) = 0 then take ak(w) = 0 and find

WEBu(xk)

We then set
Xppq T X T oo (Wwpdgp (W)
It is clear that

f(xk+1) < f(xk) . (9)

By repeating this procedure we obtain a sequence of points {xk}.
If it is a finite sequence (i.e., consists of a finite number of
points) then its final element is an e-inf-stationary point by

construction. Otherwise the following result holds.

Theorem 1. If the set D(xo) = {x(EEn]f(x)_if(xo)} is bounded
then any limit point of the sequence {xk} is an e-inf-stationary

point of £ on En'

Proof. The existence of limit points follows from the bounded-
* *
ness of D(x,). Let x be a limit point of {xk}, i.e., x = lim x, .

It is clear that ks_)cu S
*
x ED(XO)

*
Assume that x 1is not an e-inf stationary point. Then there

) * *
exists a w eEBo(x } such that

*
min . lw +vll = a > 0 . (10)
ves f(x7)



_7_
*
We shall denote by Wi the point in Bu(xk) which i1s nearest to
*

* : * *
w and by p(wk) the distance of Wi from w . It is obvious that

> 0. It may also be seen that the mapping @ef(x)

*
p(wy )
S k -

S
is upper-semicontinuous. From (10) and the above statements it

follows that there exists a K <« such that

) * * * a
min lw, +vll = Ww,_ +v(w, )I =a, > = ¥k_ > K . (11)
k k k. — 2 ]
ved _f(x, ) s S s s
—€ k
s
Now we have
£ = £(x" i =
(xy +agy ) = £(x +(x, -x +agy )) =
s s s s
N af (x ) *
f(x ) + + o(llx, =x +ag, ) (12)
* k k
3[xk X +agy ] S S
s s
where
* *
Wy vy (W )
S s s
gk = gk (Wk ) - * ’
s s s Hwk +vy (wk M
] s s
* * *
af (x ) [9F (y(x )) SF (y(x )) %
= = . z . max . + q)Jl.j (x ) ’
a[xks-x +agks] ier (x7) JER, (x7) X Y4
*
X, =% +ag + ) nin (SF(Y(X & 81, (%) "4 ) (13)
- 1 -_— P X ’ X =X (lg .
Ks kKs!  ser” (x*) jER, (x*) 3y, i3 ks g
Since
max a; + min b, < max [ai+bi] < max a; + max b,
ie1 ier iel iel iel
min a, + min b, < min [a.+b;] < min a; + max b, ,
ier * dier * T ier Y7 ier Y ier *

it follows from (13) that
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3. THE CONSTRAINED CASE

Let us consider the set

2 = {x€E_|h(x) 20} (15)
where
h(x) = H(x,ym+1(X),-.-,yp(X)) '
yi(x) = max ¢ij(x) ' Ii = 1:Ni , 1€ (m+1):p ,

J€T .
&L

and the functions H(x,y ...,yp) and ¢ij(x) are continuously

m+1’

differentiable on En and En’ respectively. Let the function

-m+p
f be of the form (1). The function h is guasidifferentiable and
its gquasidifferential can be described analogously to that of £

in Section 2. The set Q defined by (15) is called quasidiffer-

entiable.
The problem is to find min f£(x). As in (3) we have
XeEQ
3H (Y (x)) SH(Y (%)) 9Y; (%)
h(x+oag) = h(x) + a[———————— + ) Y = + o' (a,q9)
3% ier' Y %9
where
' v . 0" (a,9)
I = (mb1):ip; ——tL ——= 0
y(x) = (x,ym;1(X),---,yp(X)) .
Let
' _ 1 aH(?(X))
I+(X) = lGI’T> 0
\
I (x) = iel

Now we have
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OH (¥ (x) ) dH (¥ (X)) '
h(x+ag) = h(x) + a z max ( + ¢ij(x),g +
ieIL(x) jeRi(x) 3x ayi
oH '
) min (——ig!ill ¢ij(X),gg'+ o' (a,9)
ie1! (x) jeRr, (x) Y4
where
Ri(x) = {jEIi‘d)ij (x) = Yi(X)} .
We now introduce the sets
Rie(x) = {] eIl|¢l] (x) > Yi(x) -e} ’
dH (T OH (v '
g h(X) = CO VEEn{V=——(y—(X)—)+ z ;(X)_)_ d)i' (X)'jeRiE(x)f
£ 9% ieIl_(x) ’c)yi ]
' JH(Y (x)) ]
B = €E ‘w== —_— .. (x),] ER, (x)ﬁ
T JLW n ie%i(x) Y 4 %13 S

where € >0, u>0.

Several equivalent necessary conditions for a minimum have
been obtained [6,7,8]. Here we take the necessary condition in

the form proposed by A. Shapiro [8]:

* . 4 3
In order that x €0 be a minimum point of a quasidifferenti-
able function f defined on a quasidifferentiable set 2, it is

necessary that
—_— * * *
- 3f(x ) C Af (x ) for h(x ) < 0 (16)

~[TE(x™) + Th(x")] Ccoldf(x) = Fn(x"),3h(x") - 3E(x") }
(17)

*
for h(ix ) = 0 .

*
Take € >0, 1 >0. We shall call x €Q an (g,1)-¢tnf-stationary point
of £f on @ if
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—_, * *
- of(x ) Cca fix) for h(x ) < -t ,

~[3f(x") + Fh(x")] Ceold f(x) =3 h(x"),3 h(x) -3 £(x )}

*
for -t <h(x ) <0
We shall now describe an algorithm for finding an (e,7)-inf-

stationary point with € >0, u>0 and 1 >0 fixed.

Choose an arbitrary xofEQ. Suppose that xkEEQ has been found.

If condition (16) or (17) is satisfied at Xy, then Xy is an (g,1)-
inf-stationary point and the process terminates. There are two

other possibilities:
< =T

’

K’

(b) =1 < h(xy) <0

In case (a) we perform one step in the minimization of the

function f, using the same algorithm as in Section 2 except that

min f(xk-kagk(w))
a>0

must be replaced by

min f(xk-+agk(w))
a>0

xk+agk(w)€Q

in (8).

In case (b) we have to find

min{Hw1+w2+vHﬂvezco{gef(xk)-§€h(xk),§€h(xk)-'§€f(xk)}

= Hw1+w +Vk(w1+w

) Sl

1]
for every W, EBU(Xk) and Wo EBp(xk) .
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Compute
min f(xk(a)) = f(xk(w1,w2)) (18)
a>0
h(xk(a))io
where
xk(a) = X, - a(w1+w2+vk(w1+w2))

We then find

min{f(xk(w1,w2))|w1<EBu(xk),w265Bu(xk)} = £(x, (W q,Wp5))

Setting Xpeypq = xk(wk1,wk2), it is clear that

xk+1ESE ' f(xk+1) < f(xk)

Repeating this procedure, we construct a sequence of points {xk}.
If it is a finite sequence then the final element is an (g,1)-
inf-stationary point of £ on ; otherwise it can be shown that

the following theorem holds.

Theorem 2. 1If the set D(x,) = {x€Q[f(x) <£f(x4)} is bounded
then any limit point of the sequence {xk} is an (e,7)-inf-station-

ary point of £ on Q.
Proof. Theorem 2 can be proved in the same way as Theorem 1.

Remark 1. If the initial point x, does not belong to @ it is

0
necessary to take a few preliminary steps in the minimization

of function h until a point belonging to Q is obtained.

Remark 2. To find an inf-stationary point (i.e., an (g,T1)-
inf-stationary point where ¢ = T = 0) it is necessary for e to
tend to zero (this can be achieved using the standard mathematical

programming techniques).

Remark 3. It is possible to extend the proposed approach to

the case where
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th
z
Il

max F,(X,V:4(X),eee,Y. (x))
ieT i i1 im,
h(x) = max H.(X,2:.(X),...,2:_ (X)) , y.,.(X) = max ¢. (x)
5eg J1 jmj ik Ler. ik®
ik
and the functions Fi(x’yi1""'yim.)’ Hj(x’zj1""’zjmj)'

¢ik2(x) are continuously differentiable.

Remark 4. Instead of the one-dimensional minimization proposed
in (18) it is possible to take

Xy (WeoWy) = Xy = Ap (Wytwytvy (wetw,))
where
A —°'°—> + 0 ' Z A = +® .
k v k=0 k
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