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Abstract. There are many possible approaches to the analysis of
conflict situationa and ways of developing mediation or negotiation
procedures. In general, we can distinguish between goctio-political
approaches, procedures for mediation and negotiatiom which have
developed historically through political experience, and systems-
analytical, mathematical approaches, which rely on various branches
of decision and game theory or on computerized simulation or gaming
models. While the socio-political approaches must remain the basis
of any analysis of conflict situations, they can usefully be sup-
plemented by more-formalized approaches; both approaches, when used
separately, have their limitations.

This paper, after a short review of existing systems-analytical and
mathematical approaches, proposes new concepts and methods for the
mathematical analysis of conflict processes. The proposed approach
attempts to bridge the gap between simulation gaming models and ex-
periments and more formal game-theoretical analysis by taking certain
ideas from interactive decision supported gaming, assuming that the
players have multiple objectives that they wish to satisfice (not
optimize), and introducing special mediation procedures as an element
of decision support during the game. The mathematical concepts used
are the selection of satisficing game equilibria, the definition of
constructive and destructive behavior (on the part of the players),
and a formalization of conflict escalation and de-escalation processes.

Keywords. Game theory; gaming; conflict analysis; negotiation theory;
mediation; interactive decision support; satisficing.

INTRODUCTION

The study of conflicts and the possible
role of negotiation and mediation has a
long tradition in the political and social
sciences (see, e.g., Machiavelli, 1515).
The need for a better understanding of the
processes involved has become even more
urgent since the developmeut of nuclear
weapons. As a result, the study of nego~
tiations has recently become the subject
of very intensive research via a number of
disciplines. For example, a project at
Harvard University brings together lawyers,
political scientists, economists, mathe-
matical game theorists and decision the-
orists as well as representatives of other
disciplines (see, e.g., Fisher and Ury,
1981; Raiffa, 1982). We can divide these
disciplinary approaches into two broad
categories: socto-political approaches and

systems—-analytical, mathematiecal approaches.

Traditionally, the study of negotiation
and mediation during conflicts has been
the domain of political and historical
scientists, diplomats, psychologists and
sociologists. These socio-political ap-
proaches will probably remain the basis of
all future analyses of conflict, nego-
tiation and mediation; without a deep
understanding of the underlying socio-
political processes, no formalized char-
acterization of any decision process can
ever be relevant (see, e.g., Wierzbicki,
1983). This does not mean, however, that
systems-analytical or even mathematical
formalization cannot increase our under-
standing of conflict processes. As in
many other areas of scientific endeavor,
mathematical formalization can help, first,
in checking the consistency of basic con-
cepts and images. When the underlying con-
cepts are clear, relevant and focused on es-
sentials, mathematical formalization can
also help us to deal with complexity by
producing frameworks for possible mathe-
matical models. Finally, given these



concepts and frameworks, computerized
models can be built and used for various
purposes: for overcoming complexity, for
educating and assisting decision makers in
particular aspects of a problem, as a tool
for stimulating interaction between the
parties involved in a dispute, and so on
(see, e.g., Sebenius, 1981).

The systems-analytical and mathematical
approaches have produced a large variety
of concepts and tools which could be use~-
ful in studying conflict, negotiations and
mediation. One of the earliest mathe-
matical descriptions of armed conflict (a
"battle model") was produced by Lanchester
(1916); such battle models, developed fur-
ther by Richardson (1960Q), Rappaport
. (1957), and recently by Avenhaus and
Fichtner (1983), can also suggest initial
conditions that would reduce the likelihood
of war and could thus be helpful in nego-
tiations.

Since the early days of game theory (see
von Neumann and Morgenstern, 1944) it has
been hoped that game=-theoretical analysis
might help to increase our understanding
of conflicts. However, while game theory
has formalized many essential concepts in
this field, its underlying assumptions=--
namely, that players behave in such a way
as to maximize their own utility function--
may still limit its potential usefulness.
In particular, formal models of bargaining
(see, e.g., Roth, 1979) are not necessarily
supported by experimental studies of bar-
gaining behavior (Roth, 1983); the paradox
of short-sighted rational behavior exemp-
lified by the so-called 'prisoner's
dilemma', which was solved long ago by
anthropologists studying primitive forms of
‘barter, has only recently found more formal
resolution in evolutionary game theory
(Maynard-Smith, 1977; Axelrod, 1983;
Hofstadter, 1983).

The more application-oriented mathematical
approaches often rely on less sophisticated
but more reliable tools. In particular,
decision-tree analysis is frequently used
to examine crisis situations. Dynamic
simulation and gaming models also have a
wide range of applications (see, e.g.,
Stahl, 1983). However, despite their many
excellent features, gaming simulation
models and experiments do not give suf-
ficient insight into the possible conflict
escalation or de-escalation processes
arising from the properties of the game.
Although escalation and de-escalation have
been observed in many gaming experiments,
there are as yet no analytical tools to
help us understand these empirical obser-
vations. The need for further research on
such tools is therefore vital.

This paper suggests a number of new con-
cepts and methods for the mathematical
analysis of conflict processes. The basic
assumptions of this approach are as follows:

1. While it is recognized that gaming
simulation models and experiments are al-
ready very successful in conflict analysis,
we attempt to extend these gaming simula-
tion techniques by providing decision sup-
port based on concepts and methods from game
theory and multiobjective optimization.

This leads to a new class of gaming tech-
niques which we call interactive decision—
supported gaming.

2. Many gaming experiments show that the
players do not think in terms of one utility
function, but try to balance several goals
or objectives. Also, players do not neces-
sarily behave as maximizers, often exhib-
iting satisficing behavior instead (see,
e.g., Simon, 1969). Thus, the game-
theoretical concepts and methods used in
decision support are modified to take this
multiobjective and satisficing behavior
into account.

3. Interactive decision-supported gaming
as described above can be used either as a
means of teaching players about the process
of conflict esecalation, or in conjunction
with formalized medtiation procedures to il-
lustrate how conflict de-escalation can be
achieved.

A COASTAL WATERS AND OPEN SEA
FISHING GAME

As an illustration, let us consider a
fishing game developed by M. Staley and

C. Walters at IIASA.l For simplicity, we
shall limit the problem to only two coun-
tries (1 and 2); they can fish either in
their own coastal waters or in the open sea.
The fish being caught is assumed to spawn
in the rivers of a given country (like sal-
mon); thus, the fish return from the open
sea to these rivers each year and it is
reasonable to refer to the stock of fish
originating from each country. Suppose the
stocks in a given year are Xy i1 =1,2; the

size of the native fleet fishing in its own
coastal waters is ¢y (fishing in the other

country's coastal waters is prohibited);
the size of each fleet fishing in the open

sea 1is 8, Then the catch of each country

can be approximated by

5y
2 = (s_i-l-q) {1 - expl-a(s +s )] Hxytmg) +

+exp[—a(si+sf)][l-exp(-aci)]x1 1)

where the first term describes the catch in
the open sea, the second the catch in coas-
tal waters, i denotes the variables of the

1 Private communication; although many ex-
periments have been performed with this game,
a full description has not yet been pub-
lished.



"other" country, and o is a parameter.
Like the stock, the catch can be measured
directly in monetary units, and should be
compared with the cost of maintaining the
fleet, p(ci+si). However, this analysis

considers only short-term benefits and
costs. The long-term benefits can be char-
acterized by the stocks expected in the
following year:

Xy by " xi’t{exp[-a(si+s£+ci)]} x

x r(xi,texp[-d(si+si+ci)]) (2)

where r(.) is a reproduction rate coef-
ficient. Typically, the expression (2) 1is
highly nonlinear and random; if the stocks
are already strongly depleted, however, we
can approximate (2) by assuming

r(.) = r = constant. Taking into account
both short- and long-term benefits and
costs, the payoff functions for players re-
presenting both countries are

9y = zg —pleytsy) vxy (3

with zy evaluated at xi - xi,t . The ac-

tual gaming model used in practice may be
considerably more complicated than the
basic framework outlined above, including
dynamic simulation over several years, the
possibility of increasing the size of the
fleet through investment, the use of hatch-
eries, etc. A model of this type has been
used in intensive experimental gaming, with
some interesting results. Three clusters
of outcomes seem to emerge from the gaming
experiments. One type of result (called
cooperative) arises when the players agree
tacitly not to fish too extensively; this
results in high payoffs 9 and stocks

X5 el at the end of the game. The second
type of result can be called dominated--
this occurs when one player makes much
higher catches zy and receives much higher

payoffs ay than the other. The third type

can be called destructive; in this case
both players use very large fleets, dras-
tically reducing both payoffs and future
stocks of fish. Moreover, the players
typically reduce the size of the fleet
fishing in their coastal waters ey and
i
of these three types have also been ob-
served in actual fishing disputes between
neighboring countries.

increase their sea-going fleet s Results

The question that we address here is
whether game-theoretical analysis can help
us to understand gaming results such as these,
and to explain the behavior of players as
the conflict develops. The present answer
is a qualified yes, where the qualification
arises from the limitations of classical
tools. Figure 1 represents the tmage of

the game? (the set of attainable payoffs),
calculated making the simple assumptions

x =x,=5 , a=p=l, r(.)=r=3 , s +c,€[0;5] .

By a classical game analysis, we can easily

show that ci=0 i3 optimal for both players

and that the game has several noncooperative
(Nash) equilibria (Nash, 1950, 1953) denoted

in Fig. 1 by NO’ Nl’ Nz; obviously, No is

the dominant Nash equilibrium and the single
Pareto point for the game.

Thus, how could it happen that players leave
the point NO to produce results clustered

in regions (I), (III’ IIZ)’ and (III) in

Fig. 1?7 How can we explain the process of
conflict escalation that typically occurs
in experimental gaming, and may be 11-
lustrated by the sequence of points
(Ao)-'(A1 or Az)*Aj‘(AA or AS)--A6 in Fig. 1?

To explain this, we must assume that the
players are motivated by something more
complicated than simple payoff maximiza-
tion. First, we observe that the point N0
corresponds to zero catches, zl=22=0 .
However, a positive catch is necessary to
keep up the fish supply (and the cash
flow); hence, both players must have more
than one objective, keeping an eye on
final payoffs but concentrating on fish
catches.

We could now follow the classical approach
and assume that the players have utility
or value functions ul(ql,zl) and uz(qz,zz)

that result in an equilibrium, say, at the
point Ao . However, the utility function

approach has several drawbacks in conflict
analysis. First, any information on
utility functions has crucial strategic
value and is usually carefully protected;
therefore, we cannot hope that full and
precise information on utility functions
will be available for incorporation into

a gaming model. Second, a process of
conflict escalation or de-escalation
usually involves modifications to the
utilicy functions, since experimentally ob-
served utility functions are typically not
context-free (see, e.g., Tversky, 1972).
Third, real players usually do not think in
terms of utility maximization, and even if
assured that such information would be
treated as confidential, would find it
difficult to communicate their utility
functions to a third party (computer or
mediator).

2 A detailed mathematical analysis is
given in the second part of this paper:
"Satisficing Selections of Game
Equilibria".
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Therefore, we adopt in this paper another
approach that is both flexible and prag-
matic and, at the same time, opens new
opportunities for conflict analysis and
for communication between players and
model. We assume that players either ac-
tually think in terms of aspiration levels
(Wierzbicki, 1982) for their various ob-
jectives, or can be taught to do so.
Moreover, we assume that these aspiration
levels can be adaptively modified during a
gaming exercise. We suppose that the pro-
cess of aspiration level formation occurs
in players' minds, but that players might
be induced (by assurances of confiden-
tiality) to communicate their current as-
piration levels to the computer in order
to receive, in returm, some decision or
mediation support.

To put these concepts into practice, we
calculate sets of equilibria such that the
outcomes are Pareto for the objectives
zi,qi'ofeach player but noncooperative bet-

ween players. These sets are rather large

(seesetsNPl, NPZ in Fig. 2), but exclude

some outcomes (sets Ul’ U2) that are un-
stable to the interests and decisions of
either of the players (observe that the

sets of typical outcomes shown in Fig. 1
lie almost completely within NPI’ NPZ)' If

we add to the image of the game the lines
of constant outcomes 2y for each player,

as in Fig. 2, we can explain the process
of conflict escalation through the phe-
nomenon of inflated aspirations. By in—
flated agpirations we mean aspirations
that exceed the limits imposed (for
example) by physical, biological, and en-
virommental factors: the role of the
model is to represent these natural limits
and to help the players to learn about
then.

Let us now suppose that the game is played
repetitively (representing fishing ac-
tivity over many years) and that both
players initially make decisions that lead
to outcome AO’ corresponding to catches

zl=z2*ﬂ and payoffs q1=q2=d3 . If the

players behave cooperatively, they can
stay close to NosP and gain high future

payoffs. However, suppose player 1l wants
to expand and decides to increase his
catch to zl=6 (point Al) in order to in-

crease his short-term returns and to fi-
nance new investment in his fishing fleet.
If the other player does not reciprocate,
then player 1 succeeds in his goals and
obtains a dominant position in future
rounds. If player 2 reciprocates, however,
the catch of the first player decreases to
z1=22*% (point A3). However, player 1 may

have already made large investment commit-
ments and must increase his catch; thus,

he might increase his fleet and hence his
catch still further (point AA)' If the

other player reciprocates, the outcome
would be the worst Nash equilibrium (NZ)’

with catches 21-2226 and almost no fish

remaining for the following year. This
Nash equilibrium 18 not very robust to
multiobjective behavior with inflated as-
pirations; further escalation can easily
lead to the attrition point A6 .

Although one could learn much from the
above simple example, and draw many anal-
ogies (for example, to the arms race), we
shall conclude the analysis with the ob-
servation that the behavior of players in
such a game can be explained, first, by
their multiple objectives, and second, by
their inflated aspirations. If they learn
quickly to revise their aspiration levels
downwards, they can survive; however, 1if
they maintain their inflated aspirations
only slightly too long, conflict can es-
calate very speedily.

This lesson can be taught when playing
simulation games; however, we then need

to concentrate the attention of the players
on thelr aspirations. Ideally, the
decision support system should produce a
full image of the game, such as that shown
in Fig. 2. However, this might require
excessive computer time for more compli-
cated games. TFailing this, the decision
support system could compute the strategies
that each player should adopt to come
close to some explicitly stated aspira-
tion levels of their own, making certain
assumptions concerning the aspiration
levels of the other players. In order to
achieve this, we must introduce some prin-
ciples for selecting game equilibria that
relate to the concept of aspiration levels
and thus to some form of satisficing be-
havior. Although these concepts apply to
multiobjective games, it is simpler to
interpret them graphically for a single-
objective game, provided its set of non-
cooperative equilibria is large. (Sets

of multiobjective noncooperative equilibria.
are generally large, giving the players a
wider choice of possible outcomes in which
they are guided by their aspiration levels,)

A "FISHING IN NEIGHBORS'
COASTAL WATERS" GAME

We consider here a simplified example of a
game that has only historical significance,
because most countries now refrain from
fishing in each other's coastal waters.

Two countries, i=1,2, fish in each other's,
1=2,1, coastal waters. Each country can
decide how much to take from foreignwaters

(we denote this decision by xt) and what

restrictions to impose on foreign boats
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Fig., 1. Image of an open sea fishing game. NO’NI’NZ are noncooperative Nash equilibria,
with N0>N1>N2 . I, III’ IIZ, IIT are approximations of typical sets of experimental
ocoutcomes. The series of moves Ao*(Al, AZ)*A3*(A4, A5)~ either NZ or A6 represents

a conflict escalation process.
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Fig. 2. Full image of an open sea fishing game. NO’NI’NZ are economic Nash equilibriaj;
NPI’ NP2
unstable outcomes. The series of moves (AI, Az)*Aa*(A4, As)--A6 represents a

are sets of multiobjective Nash-Pareto equilibria; Ul’ U2 are sgets of

process of conflict escalation in which both players insist on fish catches

z1=6, z2=6 .



fishing in their waters (xé); if the re-

strictions are disobeyed, both the offending
country and the enforcing country incur ad-
ditional costs. The payoff functions have
the form:
1 i 1
9y = £y (%) = 2 gma X e 0% T
i, 1t -1 T 11
-314(x1+x2_x VA -ais(x1+x2 X)), (4)

where (.)+ denotes taking the positive

part, a represents the net gain from

107241%1
the country's own waters (diminishing with
1t

increased fishing by outsiders), aizxi-aisxz
represents the net gain from fishing in foreign
waters (diminishing with increased restric-~
tions), the last but one term represents the
penalties for disobeying the restrictions of
other countries and the last term the cost of
enforcing its ownrestrictions. All deci-

sion variables, x-'(x} ,x; ,x% ,xg)e ]Rl‘ are
constrained by OQ‘}G; .

This example serves to illustrate the mathe-
matical and computational difficulties in-
volved in determining sets of noncooperative
equilibria;3 however, these difficulties can
be overcome and the image of the game, together
with the set of Nash equilibria Nq » 1s shown

in Fig. 3 for aio-Z.h, ail-G, aiz-l,
~1
313 2, aib aiS 4, xj 0.8, j,i=1,2 . The

Nash equilibria in this case have a rather
simple interpretation: they correspond to the
situation in which each country strictly obeys
the restrictions of others. The Nash outcomes
of this game are not Pareto outcomes; Pareto
outcomes correspond to dropping restrictions
entirely, or, at the point PO’ to the complete

cessationof fishing in foreignwaters. It is

interesting to note that the point Po has

finally been reached through the historical
development of fishing practices.%

This is equivalent to a min-max problem in-
volving nondifferentiable functions that
do not remain convex af ter the first maxim-
ization; see Part II of this paper.

The point P, is not a Nash equilibrium for

0
the one-period game, but can be shown to be an
evolutionary stable equilibrium for a repe-
titive game. Thus we might hope that all
'prisoner's dilemmas', characterized by
the difference of Nash and Pareto points,
will finally be resolved in an evolutionary
way (see also Hofstadter, 1983). In the case
of the arms race, however, it is but small
consolation for us to hope that other races
in the universemight learn fromour own
evolutionary mistakes.

However, in the course of this historical
process there have also been cases in which
the worst point SD has been reached. This
point is attained when both countries decide
to fish as much as possible in each other's
waters and, at the same time, to impose and
try to enforce extreme restrictions on any-
body fishing in their own waters--a case of
open fishing war. There are concepts in
game theory that explain the development of
this situation, albeit in a rather simplified
fashion.

An old concept in game theory is that of a
Stackelberg equilibrium (see, e.g., Aubin,
1979). Suppose one of the players has
enough information to compute the re-
sponses of the other players (who wish to
maximize their own payoffs) to any of his
own decisions. If the responses are non-
unique, he can assume, to be on the safe
side, that only those that contribute least
to his own payoff will be chosen. These
response functions uniquely determine the
dependence of his own payoff on his owm
decisions, taking into account the responses
of others, and his own payoff can then be
maximized. A player who makes his deci-
sions in such a way 18 called the (Stackelberg)
leader; if other players respond as pre-
dicted, they are called (Stackelberg) fol-
lowers; the resulting outcome is called the
Stackelberg equilibrium (this is one of the
Nash equilibria, chosen through the (safe)
maximization of the payoff of the leader).
In the example considered here, 1if the
first player wants to be the leader, he
concludes that by sending the largest pos-
sible fleet to fish in his opponent's
waters and by imposing the severest possible
restrictions on intruders into his own:
waters, he might force the other player to
“follow" him. Indeed, since both enforcing
restrictions and violating them are very
costly in this game, the second player might
maximize his own short-term interests by
imposing only the minimal restrictions com-
patible with the fleet of the leader (or
even dropping restrictions altogether--but
the leader cannot count on this) and
sending only the smallest possible fleet

to the leader's waters.

This interpretation shows, however, that
the reasoning of the Stackelberg leader is
completely unrealistic if no additional
legal or institutional circumstances force
the other player to become a follower. A
sovereign country would not accept the fol-
lower's role and would denounce as hypo-
critical the explanations of the aspiring
leader that the follower's roleis logical
from the point of view of economic payoffs. In
the example considered here, the second player
might well respond by repeating the actions of
the first-—-this would result in a so-called
Stackelberg disequilibrium (a situation in
which both players try to become the leader)
and corresponds to an open fishing war in
our example.
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Fig. 4. Satisficing game equilibria that could be selected by player 2: 802 represents a

constructive satisficing move; SD2 represents a hidden destructive satisficing

move; OD2 represents an openly destructive move. s(q-q) represents a maximized

function that helps to select a constructive satisficing strategy.



Thus, the concepts of Stackelberg leader-
ship and Stackelberg disequilibrium explain
how open conflicts can occur--however, the
explanation is not completely satisfactory
since conflicts do not usually develop to
this scale immediately. Historical evidence
shows that if one country were to send its
fishing fleet to another's waters, the
other country would not necessarily recip-
rocate; in order to secure international
support, the injured country would prefer
to limit the fishing war to its own waters.
We therefore need some additional concepts
that could explain the processes of con-
flict escalation and de-escalation.

SATISFICING BEHAVIOR AND
SELECTION OF GAME EQUI-
LIBRIA

We have already seen that conflict es-
calation might be caused by some players
having inflated aspirations, i.e., wishing
to exceed the limits imposed by the natural
(physical, biological, etc.) characteristics
of the game. We should therefore consider
a type of decision-making behavior related
to the concept of aspiration levels—-
satisficing behavior. As originally in-
troduced (Simon, 1959), this type of be-
havior is based on the idea that a decision-
maker does not optimize due to uncertainty
about various aspects of the problem, in-
cluding the reactions of other decision-
makers, and is thus satisfied if he reaches
certain adaptively formed aspiration levels
for specific objectives. This does not ex-
plain, however, what a decision-maker would
do if certain outcomes were below his as-
piration levels; we might safely assume
that he would first try to reach his as-
piration levels (which is equivalent to
maximizing the outcomes if they are below
these levels--see Kortanek and Pfouts,
1982) and would then either rest after
achieving his targets, or change his as-
pirations. This type of behavior will be
called strict satisficing; although of con-
siderable interest, it is still not suf-
ficiently flexible to explain the process
of conflict escalation.

A more flexible concept is that of quasi-
satisfieing behavior: players maximize -
their objectives, but with a greater in-
tensity below their aspiration levels than
above them. Mathematically, such a dis-
tinction seems to have no sense: payoff
maximization behavior is not changed by the
intensity of maximization, and the set of
Nash equilibria is not changed by assuming
quasi-satisficing behavior. However, quasi-
satisficing behavior might influence the
way a player selects a Nash equilibrium:
having attained his aspiration level, he
might devote his remaining freedomof action
to some other purpose, such as constructively

3 See Part II of this paper.

preventing conflict escalation by letting
other players maximize their objectives,

or destructively hurting other players by
trying to negatively affect their objectives.

In the example from the previous section,
the satisficing Nash equilibria for player
2, who has some aspiration level ﬁz, are

all of the Nash equilibria above and in-
cluding the line qz-ﬁz (see Fig. 4).

2 that satisfies

qzﬂﬁz and is also good for the other player

Selection of the point SC

is a constructive satisficing strategy;
selection of the point OD2, which 13 the

worst possible for the other player, is an
openly destructive strategy;® selection of
the point SD2 that satisfies qz-qz but is

the worst choice for the other player on
this line is a hidden destructive satig—
fieing strategy. The interpretation of the
difference between constructive and hidden
destructive satiasficing strategies in the
example considered is quite interesting.

The parameters of the example are such that
fish stocks are already heavily depleted

and fishing in coastal waters hurts the
host country more than it benefits the
fishing country. A comstructive satis-
ficing strategy is then to decrease as much
as possible your catch in the coastal
waters of others (bearing in mind your
economic aspirations), while imposing the
strictest possible restrictions on outsiders
fishing in your own waters. A hidden
destructive strategy is to achieve the same
economic agspiration level by fishing as much
as possible in the coastal waters of others
and imposing only such restrictions on
foreigners fishing in your own waters as

are necessary to attain your aspiration
level. Each hidden destructive strategy
can be 'rationalized' by invoking some
seemingly plausible argument, for example,
'we believe in the freedom of fishing and
restrict it only out of economic necessity';
nevertheless, it still remains destructive
in the eyes of the other player.

A satisficing game equilibrium can be
selected unilaterally when the aspiration
levels of a particular player and the type
of action to be taken (constructive, hidden
destructive, etc.) are known; if themultiple
objectives of the other side are to be taken
into account, it is also necessary to have
at least estimated aspiration levels for
the other side. In fact, no matter whether
you want to be constructive or destructive,
you must have some idea of the aspirations
of the other player--say, what economic and
what ecological results would satisfy him;
only when you assume (simplistically) that

6 In this case (although not necessarily in

general), the openly destructive strategy

OD2 coincides with the Stackelberg

maximizing strategy.



the other player has only a single ob-
jective can you disregard his aspirations.
A satisficing game equilibrium for a given
mathematical model of the game can also be
computed by maximizing an appropriate func-
tion over the set of Nash (or Pareto-Nash
in the multiobjective case) game equi-
libria.’ 1In the simple example considered
here, the constructive satisficing option
for player 2 with aspiration level 62 can

be computed by solving the following pro-
lem:

1 -
magize - (fz(x)-q2)+ -

- pa,fy(x)), + £ (%) (5
where ’

N={x€X: min ¢(x,y)=0} ;
yeX-

t 1

Lah-g, el ®

2
$(x,y)= L (fi(x
i=]

and p>>1 is a coefficient. If we denote
- 1 - -

s(q-a)= —= (2,79, - P(a-q5) + q; >

then the equivalent problem max s(q-g)

EN
1 q

can be interpreted in outcome space as
shown in Fig. 4. We see that it 1s neces-
sary to maximize a nondifferentiable func-
tion over a non-convex set: although this
is a difficult problem, it 1s not beyond
the capabilities of modern optimization
techniques (see Nurminski, 1982; Demyanov,
1983).

CONFLICT ESCALATION AND
DE-ESCALATION

Figure 5 illustrates a process of conflict
escalation, structured using the concept
of selecting satisficing equilibria. We
assume that both players have chosen
satisficing constructive strategles

SC,, SC, at some al,az , but these as-

piration levels are mutually incompatible
and thus the overall result of these two
decisions, 00 » 18 not an equilibrium

point. Suppose that player 1 decides, in
the next round, to influence the aspira-
tions of player 2 downwards by choosing

hidden destructive SDl s player 2 does not

change his strategy, and the joint outcome
is 01 . However, since player 2 will pro-

bably recognize the destructive character
of the move of player 1, he will not
necessarily respond by revising his as-
plrations downwards; he might rather choose
an openly destructive policy OD2 , which

7
See Part II of this paper.

leads to the outcome O2 in the next round.

If player 1 reciprocates, the next round
results in an open fishing war, 03 . By

playing a game of this type structured
using aspiration levels and the distinction
between constructive and destructive be-
havior, participants can learn much about
the dynamics of conflict escalation.

Similar techniques can be used to illust-~
rate conflict de-escalation; however, im-
plicit or explicit negotiations or medi-
ation are needed for conflict de-escalation,
even if this only involves unilateral deci-
sions. We use the term "implicit nego-
tiations" to describe a unilateral state—~
ment from one of the players that he wants
to de-escalate conflict; he then modifies
his actions in anticipation of similar be-
havior from the other side. In explicit
negotiations, however, he would discuss
such actions with the other side before
actually implementing them. Mediation in-
volves a third party who assists in the
negotiations. These well-known situations
can be illustrated by a gaming model used
in a decision-support mode. Even if the
actual aspiration levels of each player
should be treated as confidential by the
decision-support system (precise knowledge
of the aspirations of the other side gives

. a player a strategic advantage), decision-

supported gaming helps the players both to
adjust their own aspirations and to learn
about the aspirations of the others.

A simple process of this type is illus-
trated in Fig. 6. Suppose both players
have chosen constructive satisficing moves
SCI,1 and SCZ,I , but their aspiration

levels are far from being compatible and
the result of their decisions is 00. Sup-—~

pose, through implicit negotiations or
under the influence of the mediator, player
1 decides to revise his aspirations down—
ward and chooses a constructive satis-
ficing strategy SCI,Z ; this leads to O2

in the next round, which is slightly better
for player 1 and much better for player 2.
The crucial point is whether player 2 will
reciprocate; if he does, choosing SC2,2

which leads to outcome 02 , then player 1

might be motivated to go further, selecting
S(Zl,3 and outcome 03 ; player 2 may then
2,3 and outcome 04 . At this
point, the differences between aspiration
levels and actual outcomes are so low that
the players can agree to accept the out-
come O4 as a negotiated status quo.

select SC

An active mediator can be helpful even when
players will not consider multilateral ac-
tions and proceed unilaterally; in fact, a
mediator might even be necessary to stim-
ulate conflict de-escalation through uni-
lateral action. TIf the mediator enjoys the
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Pareto cooperative
outcomes

Alt possible
outcomes

Nash noncooperative
outcomes

[-/4 0 //” /

e =t
A

Fig. 5. A case of conflict escalation. SCl, SC2 represent satisficing constructive moves

for players 1 and 2; SDl’ SD2 represent satisficing (hidden) destructive moves

for players 1 and 2; ODI’ OD2 represent openly destructive moves for players 1 and

2. The conflict escalation process 1is represented by (SCl, SCZ)=='00 H
(SDI’ SCZ)"O1 : (SDl, ODZ)"'O2 H (ODl, OD2)=‘03 .
9%
4
- All possible
outcomes
. Py
Nash noncooperative
outcomes
i =/ P
// O%z;bdﬂ :
vk B
0, A 2
Fig. 6. A case of conflict de-escalation: (SC1 1 SC2 1)='00; (SC1 2 SC2 1)="01 H
(SCI,Z' SC2,2)=’02 H (SC1,3, SCZ"2)=’03 H (SC1'3, SC2’3)=‘04 .
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confidence of both sides and knows their
aspiration levels, he can mediate in the
choice of game equilibria (Fig. 7). To do
this, he could use the information con-
tained in two points: the current outcome
of the game, point 0D , with outcome levels

51,52 , and the current aspiration levels

51’52 . A game equilibrium selected via

mediation can be defined, for example, as
a solution of the problem:

o = max min (f, (x)-q,)/(q,-4,) 7)
XN i=1,2 1 S

where N is defined as in (6). The value
of o (measured as the distance between the
current aspiration levels and the current
outcome) gives some idea of how much both
sides should decrease their aspiration
levels in order for the players to uni-
laterally select mutually consistent game
equilibria.

Clearly, the players might do much better
by agreeing on multilateral action,
leading to outcomes in the neighborhood of
the point PO . However, explicit nego-

tiations or mediation are required to ob-
tain agreement on multilateral action (such
as the historic agreement on sovereignty
over coastal waters).

MEDIATION TO OBTAIN AGREEMENT
ON MULTILATERAL ACTION

Attempts to reach agreement on multi-
lateral action always start with an assess-
ment of the noncooperative status quo. The
status quo is not necessarily a result of
conflict de-escalation, such as the point
04 in Fig. 6; it could just as well be the

result of conflicting strategies, such as
the point 00 . However, a status quo can

always be established in a gaming model, .
if only by repeated gaming simulations.

Actual negotiations often proceed without

a mediator, and are structured by the pro-
posals or positions of the parties in-
volved; these positions are successively
modified in the course of negotiations.
While the dynamics of such negotiations
are, in general, a very interesting topic
(see Raiffa, 1982), we shall limit our at-
tention here to negotiations involving a
mediator. By agreeing to the use of a
gaming model that represents some sub-
stantive (physical, biological, etc.) as-
pects of the system, the parties involved
also implicitly agree to the model as
mediator. As a starting point for possible
further investigations, we shall also assume
that the parties involved also agree on
some rules of fairness for dividing the
benefits gained from multilateral action,

and on the use and assessment of the pro-
posals generated by the decision and
mediation support system according to
these accepted rules of fairness (see
Fisher and Ury, 1981).

There are many principles by which common
gains or costs measured in comparable units
can be divided fairly among the partici-
pants: there is the classical principle
'one divides, the other choosgses'; the
Steinhaus generalization of this principle
to many participants; and many other pro-
cedures of various types (see Young et al.,
1982). There are also many ways of
defining cooperative solutions to single-
payoff games (the concepts of core,
nucleolus, Shapley value, etc.--see Shapley,
1965; Aubin, 1979); however, these concepts
are not easily extended to multiobjective
games. A type of cooperative solution that
can be relatively easy extended to multi-
objective games was proposed first by
Raiffa and then by Kalai and Smorodinsky
(1975); we present a modification of this
idea as a possible principle for fair
division of joint gains made in a multi~-
objective game.

Assume that a noncooperative status quo
has been reached in the game (for example,
through simulation gaming, or noncoopera-
tive gaming with decision support). Let

5; denote the status quo value of the j-th

objective or outcome for the i-th player,
and assume that all outcomes should. be
maximized. Then the decision support sys-
tem can compute the maximum possible in-
crease in the value of each objective for each
player, assuming cooperation between
players:

1 1.0 5. R
qu :é§ fj(x) ; X = {x€X : fj(x)>q5 ,

for all 1,7 # 1,1} (8)

These maximum cooperativeincreasesAq;

are taken as units in the rule used to
allocate joint gains. According to this

i

h|
resulting from some multilateral decision -
x are allocated fairly if

rule, the cooperative gains q;(x) - q

i, 1 ~1 i
A - Aq, = o=l
j(qj(x) qj)/ a4
' for all 1,j (9)
where P
i 1 1
0SS\, <1 I Ay =1 (10)
3 =1 J
j=1
and P1 denotes the number of objectives

considered by each player. The k; are

corrective scaling coefficients specified
by each player after reviewing proposed
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cooperative outcomes, and indicate how he
would prefer to allocate gains among his
own objectives. (The decision support sys-
tem can start with the assumption that
Ai=1/Pi .) However, since the coefficients

3

sum to 1 for each player, and @ is a joint
coefficient for all players, the allocation
of gains between players is determined
(using the rule of fair division) by the
proportion of actual gains to the maximum
cooperative gains.

Clearly, such a rule must have some ad hoc
character, although it must also possess
certain normative properties. it should
be stressed that there i3 no ultimate
principle of fairness in any complicated
game (say, a sporting game) and that ideas
of fairness develop historically: a set of
rules is fair 1if it does not fundamentally
favor any of the players and if it is ac-
cepted by all players.

Following the rules of fairnmess (8-10),
the decision and mediation support system
could compute a decision x that would
maximize the coefficient a in (9) for given

Ai . However, since the players should

b

have time to assess the proposed coopera-
tive outcomes and to adjust the allocation
of gains among their own objectives by

modifying A;

tem should not propose maximum gains
(maximum 0) in the first iteration. If the
largest attainable value of a is, say, am ,

, the mediation support sys-

the first iteration should produce a co-
operative decision that would satisfy (9)
with a = Sam , where BE(0;1) 1s a chosen

coefficient. This proposal can then be
presented, together with its outcomes, for
assessment by the players. There are two
main questions here: whether the proposed
decision is acceptable to all players, and
whether they would like to modify previous
Ai
]
posed decision is acceptable, then the
process 1s repeated using this decision as
a starting point; if not, the previous ac-
ceptable decision (the starting point) is
adopted (the status quo is by definition
acceptable). Under additional procedural
restrictions, this process can be shown to
converge to a Pareto cooperative decision
and outcome (see Part II of this paper).
In a single payoff game, such as that 1il1-
lustrated in Fig. 8, this process is very
simple, since the players cannot influence
the direction of increasing gains in out-
come space; in a multiobjective game, how-
ever, they can influence this direction,
but only in the subspace containing their
own outcomes of interest.

. If all players agree that the pro-

8 See Part II of this paper.

Finally, we should stress the obvious fact
that the decision and mediation support
system described here addresses only asmall
subset of the problems that might be en-
countered in mediation. For example, to
obtain specific agreements that stabilize
cooperative Pareto solutions would require
an independent analysis. Although a Pareto
cooperative solution might be stabilized
over a number of sessions through the simple
threat of a return to a noncooperative
equilibrium worse for all players, the way
in which a repetitive prisoner's dilemma
problem is handled depends on the cultural
background of the parties involved: some
players might be tempted to defect from a
Pareto solution for one-sided gains. Thus,
most specific agreements require special
provisions to enforce them--such as
specifying penalties for "cheating" that
actually change the original game into a
new one in which the agreed solution becomes
a unique Nash equilibrium.

A FRAMEWORK FOR A DECISION
AND MEDIATION SUPPORT SYSTEM
FOR INTERACTIVE GAMING

All of the above analysis shows that it is
possible to construct a decision and
mediation support system for interactive
gaming experiments. The purpose of such
systems is, firat, educational: to provide
players with a vehicle for learning about
conflict and cooperation in structured way,
using games based on their own field of
interest, However, these systems could
also be used for research purposes (e.g.,
to analyze specific examples of conflict
and cooperation); in the future, they may
even be used in real negotiations.

Since many gaming experiments begin with
interactive model building (see, e.g.,
Holling, 1978), which also involves
simulation gaming, we could say that the
initial mode of such a decision and media-
tion support system is 3imulation gaming
(this includes interactive model building
and joint validation with model users).
Even in this phase, the supporting team of
analysts might include a facilitator or
chief analyst who will help in mediation in
later phases. It should be stressed that
the model and decision support system al- .
ways play a service role in such experi-
ments; human interaction is the most im-
portant element. Therefore, whenever we
speak about mediation support here, it
should not necessarily be assumed that this
support is extended by the computer system
directly to players; the facilitator may
Just use the suggestions made by the com-
puter system in discussions with the players.

The second mode of the system is game
analysis. The behavior of players when
they approach a gaming experiment for the
first time is quite different from their
behavior when they have already played the
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Fig. 7. Mediated selection of game equilibria: S5C, represents a unilateral constructive

1

move for player 1; SC2 represents a unilateral constructive move for player 2;

0 1=1,2

0. represents the joint disequilibrium outcome; s(q-q)= min (qi-ﬁi)/(ai—ﬁi) ;

0m represents the outcome corresponding to the mediated game equilibrium.
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— /%@w/ /
7
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2

Fig. 8. Multilateral cooperative improvements: ¢ represents the status quo outcome;

Aql,qu represent the maximum cooperative increases; ql,qz,q3,q4

the outcomes of successive decisions proposed by the mediator.
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game a few times and analyzed it. In
order to stimulate game analysis, the
decision support system can provide the
player with various pileces of informa-
tion about the game, such as the game
images that illustrate this paper. After
a discussion of the basic properties of
the game, the simulation gaming experiment
can be repeated, and the behavior of the
player monitored.

The third mode of the system is unilateral
dectsion-gupported gaming. If the system
is equipped with programs for computing
unilateral satisficing equilibria, aplayer
can request several computer-assisted
analyses before making his move. After
specifying his own aspiration levels and
estimating those of the others, he can
request the support system to compute his
own satisficing (constructive or destruc~
tive) options, to predict the moves of the
other players, the estimated joint out-
comes, etc., and only then decide upon his
move.,

The fourth mode of the system is unilateral
dectston and mediation supported gaming.
This mode assumes an active mediator, who
could be the facilitator and organizer of
the game although at this stage he cannot
propose joint actions but only suggest
modifications of unilateral actions. He
can do this because the aspiration levels
of all players, although not known to each
other, are known to the decision support
system and the mediator. The mediator can
thus use the system to compute mediated
game equilibria and suggest reasonable ad-
justments of their agpirations to the
players.

The fifth and final mode of the system is
mediation support for multilateral agree-~
ments. In this mode the mediator suggests
cooperative actions to the players, these
suggestions are assessed by the players,
and their responses are then used by the
mediator and the support system to generate
new proposals.

Clearly, not all of these modes will be
necessary in every application: for
example, players might decide to go
directly to the fifth mode after completing
the first and second phases.

CONCLUSIONS

We conclude that it is in principle pos-
sible to build decision and mediation
support systems for use in interactive
gaming; we believe that such systems could
contribute considerably to our under-
standing of conflict processes. Such sup-
port systems are currently being developed
at the International Institute for Applied
Systems Analysis to analyze (among other
things) fishery conflicts, North-South

economic relations and national policies
for long-term energy planning.

There is also an important methodological
conclusion: explicit analysis of the
changes that take place in aspiration
levels as conflicts develop might take us
a long way toward understanding conflict
processes. The examples given in this
paper indicate that inflated aspirations
lead to conflict escalation, while a down-
ward revision of aspiration levels leads
to conflict de-escalation; this property
seems to be quite general, but requires
further study.

The second part of this paper will address
in more detail the mathematical aspects of
the concepts discussed here.
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