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PREFACE 

Much of IIASA's work is concerned with modeling large and  complex sys- 
tems.  However, the resulting mathematical models tend to become very com- 
plicated and unwieldy, making it very difficult to  identify the key relat ionshps 
between the  variables. To overcome this problem, i t  is  often necessary to  
approximate these "primary models" by more t ransparent  "secondary 
models". 

In this paper ,  Valeri Fedorov discusses these problems and presents a s ta-  
tistical procedure for secondary model construction. The use of t he  method is 
illustrated by application to one of the IIASA energy models. 

Andrzej Wierzbicki 
C h a i r m a n  

S y s t e m  and Decision Sciences 



ANALYSIS AND DESIGN OF SIMULATION EXPERIEdlENTS 
FOR THE APPROXIMATION OF MODELS 

V. Fedorov 

1. INTRODUCTION 

Modern computers make it possible to construct and run complicated 

mathematical models of complex systems (e.g., economic systems, ecological 

systems) which involve hundreds of inputs and equations. The links be tween 

the different variables (inputs and outputs) and equations in these models are 

usually very difficult to follow, and this is complicated by the fact that the 

models are continuously being updated and improved by the incorporation of 

new mathematical features. Sometimes models consist of modules (elements) 

prepared by different scholars, and this is one reason why mathematical 

models (or, more accurately, their computerized counterparts) occasionally 

become "mysterious" even to their authors. Analytical techniques prove to be 

useless in analyzing the properties of these models. Since it is not possible to 

obtain the required results in t h s  way, it is natural to try another approach: 

one possibility is to carry out experiments on the mathematical models them- 

selves. We shall call these s i m u l a t i o n  exper imen t s .  



The question of the effectiveness of the experiments and whether the 

chosen model adequately describes the empirical data arises a t  the very begin- 

ning of such investigations. To study t h s ,  "models" of the models are often 

constructed. In what follows the terms s e c o n d a r y  model  and p r i m a r y  model  

will be used in an attempt to avoid confusion. 

The construction of secondary models can also be stimulated by the fact 

that the primary models are frequently too detailed for the specific investiga- 

tions that the researcher wishes to perform. For instance, to  describe the 

behavior of a primary model over a relatively small range of input values it 

might be sufficient to  use a polynomial approximation of the model. One 

attractive feature of t h s  approximation is that it then becomes possible to 

develop fast real-time interactive software. T h ~ s  type of software can be 

extremely useful to decision makers because it allows them to scan a lot of 

variants in a relatively short time. 

The secondary model should reflect the structure of both the primary 

model and the experiment. As in other experimental situations, it is possible 

to construct a number of primary models of one system which are all based on 

different principles and suited to a different type of experiment. Everybody 

can recall cases in which the same system has been described by either a sto- 

chastic model or a deterministic model, depending on the experiment planned. 

For the sake of simplicity we shall restrict ourselves to deterministic pri- 

mary models. Assume that the primary model connects three sets of variables 

z, w ,  andy:  

w = + ( ~ I Y )  (1) 

where z E R ~ ,  w ER' and y€Rq. Usually vector z is composed of control vari- 

ables and ill-defined variables, while y comprises variables whose values are 

known with relatively h g h  precision. The way in which these groups are defined 



will, of course, depend on the researcher 

We shall now explain some of the terms and notation used in the following 

sections. The result obtained by evaluating function (1) for given xi and yi , 

N .  will be called the (simulation) measurement. The set C N  = tzi j wlll be taken 

to represent the design of an experiment, while the set Z N  = tyi ,yi ,xi will be 

defined as a (simdation) ezperiment. (We shall generally omit the word "simu- 

lation" in what follows.) 

In most cases, the dimension of the output or response vector w is small 

wlxle the dimensions of vectors z and y can be as large as several hundreds. 

But (and this is one of the main assumptions) it is assumed that the responses 

y depend "strongly" upon only a few "significant" components of vector 3:. 

The goal of simulation experiments is to identify these significant com- 

ponents (variables) and to construct some approximation r](z) of the response 

function $(z ,y). It should be emphasized that the function r](z) does not 

depend on variables y because the latter are assumed to be known relatively 

precisely. 

2. STATISTICAL BACKGROUND 

2.1. Screening Experiments 

The aim of screening experiments is to detect the truly significant factors 

in a large collection of possibly significant factors (see, for instance, Li, 1962; 

Meshalkin, 1970; Satterthwhaite, 1959). To get an  idea of the methods used, we 

shall consider one of the simplest approaches. 

Suppose that  we have 



where the yi are measurements, the are unknown parameters, 

- 
b ,  I z ,  l c , ,  a= l , m ,  and the E~ are independent random errors with zero 

mean and variance u2. It is assumed that s parameters ( s l m )  are nonzero, 

where the value of s is known. 

Consider a random design tN constructed in the following way. Each 

measurement is carried out under random conditions z such that xai = b ,  or 

zai = C ,  with probability 0 .5 .  Assume that . . . ,a,, is the solution of the 

following extremal problem: 

where p a  can be zero or one. Let pN(u2)=1-bN be the probability that the 

nonzero parameters have been identified correctly. Then 

For N 1 m there are regular deterministic designs with the property 

lim 6(a2) = 1 
.e-0 

In other words, the use of such random designs makes it possible to reduce the 

number of measurements (which is usually essential) although the researcher 

pays for it with the resulting value of PN = 1-BN < 1 (compare (3) and (4)). 

Most of the efforts in the theory of screening experiments have been d rec ted  

towards minimizing the number of observations N necessary under given b N .  

2.2. Design of Regression Experiments 

Consider the regression model 

where ?P is the vector of unknown parameters, f ( x )  is the vector of basis 



- 
functions, the E ~ ,  i = l , N  are random errors with zero means and variances of 

E [ E ~ ]  = h-l(z i ) ,  and xi€X where X  is the operability region. The precision of 

the best linear unbiased estimator 2 of the parameters 19 is determined by the 

information matrix: 

where pi = .ri / N and ri is the number of measurements necessary under con- 

N 
dition x i ,  such that  Cr i  = N .  Recall that the covariance matrix ~ ( 2 )  of the 

i =l 

estimator 3 equals M - ' ( ( ~ ) .  Then 

is the optimal design for regression model (5) under criterion + ( M ) .  + ( M )  is 

usually a monotonic convex function of a positive semidefinite matrix M ,  for 

example, + ( M )  = In det M-' or * ( M )  = t r  M - ' .  

2.3. Regression Analysis 

This branch of statistics is composed of two main areas. The first is con- 

cerned with pure numerical problems, for instance, the extremal problem (2) 

or the following extremal problem: 

where 1/, is usually motonically increasing. The second area deals with the sta- 

tistical properties of the estimators obtained using methods similar to (2) or 

In conclusion we should note that  the areas of statistics described above 

are well developed in terms of both theory and available software. 



3. STATISTICAL METHOD FOR SECONDARY MODEX CONSTAUCTION 

It has already been pointed out that, although the values of variables y are 

known more precisely than those of variables x ,  we still never know the exact 

values of the y. If the problem is approached deterministically, then our 

knowledge of y takes the form of a set  of ranges b ,  I y, l c, , a = F. Under 

the probabilistic approach, on the other hand, t h s  information is given in the 

form of a distribution function F(y),  whch assigns a confidence level to each 

possible value of y. 

Because the exact values of y, are not available the researcher should 

really calculate the  function $(z,y) using different sets of values yl j ,  . . . , yqj 

to see how it  fluctuates. Obviously for high-dimensional y much effort can be 

wasted in trying to consider every possible $(z,yi); in practice it is generally 

sufficient to take the averaged behavior together with some confidence inter- 

val. 

If the researcher is only interested in specific aspects of t h s  averaged 

behavior (for instance, extreme points), stochastic optimization techniques 

can be used (see, for instance, Ermoliev, 1976). In cases where more detailed 

description is necessary, an approach based on the methods described briefly 

in Section 2 would be more appropriate. 

The main steps in building a secondary model are summarized below. 

( I )  The variables included in the primary model are divided into two vectors, 

y and z .  The permissible sets for y and z are ascertained ( y U ,  z EX), and 

the  possibility of calculating $(z,y) for points from Xxr  is considered. 

(2) For each calculation (measurement), the values of yi are assigned using a 

random numberm generator with density function F(y),  y ~ r .  The structure 

of F(y) is usually chosen in accordance with the Bayesian approach. In 



the simplest case a variable y, can take values b ,  or c, with equal proba- 

bility. It should now be obvious that any measurement yij can be 

described by the following regression model: 

where 

(3) It is, of course, unrealistic to hope to find ~ ( z )  analytically in practice, but 

i t  may be possible to obtain a suitable approximation of ~ ( z ) .  Very simple 

approximations are usually employed a t  t h s  stage, e.g., 

where m can be several hundred. I t  is obvious that this approximation will 

be very rough. But then the goal is very modest: we only wish to identify 

the significant variables. In the simplest case the necessary calculations 

can be performed by two standard statistical programs: a procedure for 

generating random designs and another for stepwise regression (the latter 

should be present in any modern package of statistical programs). This 

yields the numbers al, . . . ,a, and the estimates $, of significant parame- 

ters. Here "significance" has its usual statistical meaning (broadly speak- 

ing, a parameter is significant if its estimated value is larger than its stan- 

dard deviation). As pointed out elsewhere (see, for instance, Devyatkina 

and Tereokhin, 1981), the classical statistical methods for testing the sig- 

nificance of parameters (for instance, the F-test) are not appropriate to 

stepwise procedures; simple permutation tests should be used instead. 



(4) I t  is now assumed that a comparatively small number (10-20) of significant 

variables are known from previous steps. Let zT = (x ,~ .  . . . , X,~)ERCR". 

In region j? we can use the more sophisticated approximation (compare 

with (8)): 

q ( z , * ) ~ - * ~ f  (z) . 

The basis functions f (z)  are selected using some a priori information on 

the behavior of q(z,$);  a multidimensional second-degree polynomial 

f T (z )  = ( l ,Z1,  . . . .ES, FIE2, . . . ,ZN,") often gives satisfactory results. If 

all variables are of equal interest then the simulation experiments should 

be carried out in accordance with D-optimal design, + = In d e t ~ - '  (see, 

for instance, Fedorov, 1972). If there is some need for interpolation or 

extrapolation, then the design should minimize 

+ = max w (z)d  [q(ZN,s)] 
z E X  

where d [q(z",Z)] = f T ( E ) ~ - l  f (ZN) is the variance of the estimator ZTf (Z), 

and w (z) is a weight function reflecting the researcher's interests. If the 

systematic discrepancy between q(E,d)  and gTf (E) is negligible then the 

function (h-l(z) + f T ( E ) ~ - l f  ( F ) ) " ~  represents the standard deviation 

of the forecast. 

The problem of optimal design has received much attention and there are 

now catalogues of optimal designs for certain standard situations (see, for 

instance, Brodsky et  al., 1 982) as well as some rather advanced software. 

( 5 )  The final step involves the use of secondary models to analyze the system. 

The type of problems that  can be solved are indicated in Figures 1-3. Fig- 

ure 1 illustrates the possibility of testing or refining the primary model by 



applying the secondary model to initial data. Figure 2 explains the possi- 

bility of combined analysis of two systems. Figure 3 illustrates how pri- 

mary models can be compared through approximation by the  same secon- 

dary model. 

Initial 
data 

Figure 1. Testing a primary model by applying a secondary model to initial 
data. 

Figure 2. The combined analysis of two systems. 
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Figure 3. Comparison of primary models through approximation by the same 
secondary model. 

+ Secondary model + 
rl (x la) 

+ 

System Comparison 

To illustrate steps 1-4 in the  procedure described above we shall consider 

a simple numerical example. The simplified version of the lIASA energy supply 

model MESSAGE-]] was chosen as  a primary model. Ths  is a linear program- 

ming model: 

Primary model 
I 

min cT U 
A u C b  .u%O 

+d2 Primary model 

Twenty elements of matrix A were chosen as components of vector x. These 

are the first twenty entries in Table 1. Analysis of a priori information showed 

that  all of these elements could vary in a 20% range. Ten other elements of 

matrix A were selected as  components of vector y and assumed to have a vari- 

ation of 1%. The response function was +(x ,y)=min cTu. 

I1 r] (x lfl) T 

The experiment was conducted using a two-level random design for both z 

and y (see step 3 from the previous section). To improve the statistical proper- 

ties of this design the randomization was carried out under the constraint that  

+ 
Secondary model 



Table 1. Components of z and y .  

the correlation between vectors zj and zk should be less than 0.1 for all j and 

k .  

The number of measurements was determined from (3) with m =20, s =6, 

and 6=0.03, and turned out to be 15. Of course, this number is only a rough 

estimate because the assumptions under which (3) holds are not completely 

fulfilled. 

ue hh... a te ... .l a 
ue hh... a te ... .2a 
ue hh... a te .... 3a 
uehh ... a te .... 4a 
uehh ... a te ... .5a 
ue hh... b te .... lb  
ue hh... b te ... .2b 
ue hh... b te .... 3b I Direct electric heating The matrix elements represent 
ue hh... b te .... 4b the amount of electricity used 
ue hh... b te .... 5b x 
ue hh... c te .... l c  
ue hh... c te .... 2c 
ue hh... c te .... 3c 
ue hh... c te .... 4c 
ue hh... c te ... .5c 

u0ii ... a to .... l a  
u0ii.. .a t0 ... .2a 1 Production of process The matrix elements represent 
u0ii ... a t0 .... 3a heat in industry by an the amount of electricity used 
u0ii ... a t0 .... 4a electric furnace 
u0ii ... a t0 .... 5a 

uo hh... a uh ..... a 

t 
Oil heating system The matrix elements represent 

ug hh... a uh .... .a Gas heating system the amount of heat produced 
ue nh... a uh.. . .a Electric night storage per unit of input 

u2ii.. .a ui.. .. .a 
u2ii ... b ui ..... b Y Oil furnaces for industrial 
u;?ii...c ui ..... c I process heat 

u8ii.. .a ui.. .. .a 
u8ii ... b ui ..... b Gas furnaces for 
u8ii ... c ui.. ... c industrial process heat 

yu.si..a mu.si..b Market penetration constraint 
on industrial solar heat 
production systems 

7 

The results of the stepwise regression analysis are represented by the 

solid points in Figure 4, where 
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Figure 4. Results of the stepwise regression analysis 

is the simplest measure of the discrepancy between a response function q (x )  

and its approximation. The value 002 can be considered as an  estimate of the 

variability of the response function q (x )  (see (7)) withn the operability region 

The smooth decrease in a: indicates that the contribution of every com- 

ponent of the vector z is comparable to the "noise" arising from the variation 

of 7. To avoid this, the stepwise regression analysis was repeated for both x 

and y simultaneously. Th.e open circles in Figure 4 illustrate the results of this 

analysis. The final estimates of the regression coefficients were ordered by 



their absolute value: the largest are given in Table 2. These coefficients 

correspond to the scale -1 I var z ,  1, -1 I var yp I 1. 

Table 2. Estimates of regression coefficients, ordered by their absolute value. 

It is clear that the most significant variables are y l ,  y2,  and y3, despite the 

fact that they have a variation of only 1%. In other words, comparatively small 

changes in these variables provide the greatest contribution to the variability 

of the function +(x , y ) .  This indicates that the main priority should be to evalu- 

ate these variables. 

Variable 

Coefficient 

I am very grateful to E. Nurminski, S. Scherbor and M. Strubegger for 

their help in obtaining the numerical results, and also to H. Gasking for editing 

the paper. 

y2 

-10.95 

Y1 

-4.11 

Y3 

-1.43 

z l l  

0.025 

z13  

-0.022 

2 7  

0.020 
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