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PREFACE

The System and Decision Sciences group at IIASA has a long
tradition of research in the theory and practice of mathematical
optimization. Necessary conditions play a very important role
in optimization theory: they provide a means of checking the
optimality of a given point and in many cases enable a direction

of descent to be found.

In this paper the author studies the necessary conditions
for an extremum when either the function to be optimized or the
function describing the set on which optimization must be carried
out is nondifferentiable. The author's main concern is with
quasidifferentiable functions but smooth and convex cases are

also discussed.

Andrzej Wierzbicki
Chairman

System and Decision Sciences

~iii-



QUASIDIFFERENTIABLE FUNCTIONS:
NECESSARY CONDITIONS AND DESCENT DIRECTIONS

V.F. Demyanov

1. INTRODUCTION

To solve optimization problems in practice it is necessary
to be able to check whether a given point is an extreme point or
not, and if it is not, to find a point which is in some sense
"better". This is generally achieved through the specification
of conditions necessary for optimality. This paper 1is concerned
with extremal problems involving a new class of nondifferentiable
functions - the so-called quasidifferentiable functions. Only

minimization problems are discussed, without loss of generality.

Different forms of necessary conditions yield different
descent directions which can be used to develop a variety of
numerical algorithms. Subsections 1.1 and 1.2 provide a brief
summary of related problems in mathematical programming and convex

analysis.

1.1 Mathematical programming problems

Let Qc:En, X € clQ where clfi denotes the closure of Q. Set

X.-X
i
[(x) = {VEEnIHX>0,{xi}:xi+x,xi#x,xieQ,n——ﬂ-xi_x ->g,v=>\g}

(1.1)
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It is clear that T'(x) is a closed cone. I (x) is called the
set of feasible (in a broad sense) directions of the set 2 at the

point x,.

Now consider the problem of minimizing a continuously differ-

*
entiable function f on the set Q. Let £ = inf f(x).
xXEN
*
Theorem 1. For a point x €clQ to be an infimum of £ on Q

1t 18 necessary that

(£' (x"),v) >0  wvel(x') (1.2)

where (a,b) denotes the scalar product of a and b, and f'(x) re-

presents the gradient of f at x.
Unfortunately it is difficult to use this trivial condition
in practice.

Let ACT(x) be a convex cone and let A(x) be a family of

convex cones such that
ACT(x) YA EA(x) , UA = T'(x) . (1.3)
A€A (x)

In [1] cones of this type are called "tents". It is always
possible to find a family A(x) defined as above (take, for example,

A(x) = {2I2=={v==AvO|A>O}, VOGEF(x)}). We denote by A" the cone

conjugate to A: at = {weEnI (v,w) >0 Y EAL,

Theorem 2. Condition (1.2) is equivalent to
*
f'(x ) ea VA€ A(x ) . (1.4)

. * . . . .
A point X €clQ which satisfies (1.4) (or, equivalently, (1.2))

18 called a stationary point of £ on Q.

In what follows we shall suppose that Q is a closed set.

Assume that x€Q is not a stationary point of £ on 2. Then
there exists A € A(x) such that

f'(x) € A



Let us find

min l£f'(x) =wil = I £'(x) -w(a)ll . (1.5)
+
wEA

It is not difficult to see that

v(a) = w(p) - £'(x) €A

and that v(a) 1is a descent direction of £f on @ at x, i.e.,

(£'(x),v(Aa)) <O .
v
I Voll

max |[v(A)|, is a direction of steepest descent of the function f
AcA (x)

on the set © at x, i.e.,

It is also clear that the direction 9q = , where ”VO“ =

ag(x) = inf Bg(x) .
99 - g€s T (x) g
Here
_ _ 9f(x) _ .. f(x+ag) - £(x)
s, = {gee_ [Igl = 1}, —g = lim S

a>+0

A steepest descent direction may not be unique. Note that

= min (1.6)
39 (a) ges NA 99
where
- _v(a)
Remark 1. Condition (1.4) 1is equivalent to
* *
f'(x)eL(x) (1.7)
where
+
L(x) = NA



*
If L(x ) = {0} then we obtain the well-known condition

Example 1. Let
X = (x(1),x(2))€EE2 , Xg = (0,0) '

Q= £1lJ22lJ23 ’
where
8y = {x=(a,0)]a>0} ,

Ly = {x==(0,a)|ai0} '
Ly = {x=(-a,-a)|a>0} .
It is clear that F(xo) = Q and A(xo) = {11,22,23}, i.e., A(xo) =
{A1,A2,A3}, where A; = 2,, A, = i , Ay = 2. Now we have
+ — o e —
A7 = {x€E,|(x, %) >0} , £, = (1,0) ,
+ — —
At = (xeE,|(x,T4) >0} T, = (-1,-1)
3 2 re3’ - ’ 3 " ' .
It can be seen from Figure 1 that L(xo) = n at - {0} and
iel:3
therefore f'(xo) = 0 is a necessary condition at Xq-
£'2
AN
N At

Figure 1



Remark 2. If xe€Q is not a stationary point then

min  lv-£ () = llv(x) ~£ (I >0 .
veL(xO)

However, note that the direction

(x)
(x) Il

vi(x) -

f 1
hv(x) - £
has nothing to do with descent directions (it may not even be
feasible). Thus, the necessary condition (1.7) provides no in-
formation about descent directions if Xq is not a stationary
point. In contrast, condition (1.4) is more workable because
it allows us to construct descent and even steepest descent

directions.

For a continuously differentiable function £

Thus the problem of finding steepest descent directions of f on @
at x is reduced to that of solving (1.6) (a quadratic programming
problem which however becomes linear if the m-norm is used instead
of the Euclidean norm) for all A€A(x). For this reason we are
interested in constructing a family A(x) containing as few cones
as possible. If Q is a convex set the cone I'(x) is convex and

therefore A(x) consists of only one set.

Let Q be described by inequalities

@ = {x€E_|h;(x) <0 ¥i€TI} (1.8)

where the hi's are from C1, I = 1:N.

If xeQ and

0 & co{h;(x)|i6§Q(x)} , (1.9)
where

Q(x) = {1€I|h;(x) =0} ,



then (see, e.g., [2])
I (x) = cone {—h;(x)|i<EQ(x)} .

Here cone B is the conic hull of B.

It is an easy exercise to show that if a convex cone A con-

tains an interior point then the condition (see (1.4))

is equivalent to the condition

1 %
0e€co {f (x )UTn(A)} ¥n >0
where

T (A) = {VGEn|v€[-A+],||V|| = n}

Assume that x €0 is not a stationary point of £ on Q and
suppose that int A # @g. Then there exists A€ A(x) such that

Then, from the above condition,

0 ¢ co (£ (x) Ut (8))

]
=
z

(1.10)

Let us find

min vl = llv_a)l .
vELn(A) i

From (1.10) we deduce that
v > .
I n (a) |l 0
It is easy to see that the direction

v_(A)

A —n
n v (Al



is such that

(£' (x),q, (2) <0 g, (8) €int 2

Hence, gn(A) is a descent direction leading strictly inside the
cone A. The fact that gn(A) is an interior direction is important
-- the direction g(A) (see (1.6)) may be tangential even though
it is the steepest descent direction of £ on A (see (1.6)). This
feature may be crucial if @ is described by (1.8) and condition
(1.9) holds, since in this case T'(x) is a convex cone and there-
fore A(x) consists of only one set (namely I'(x)). Thus, on the
one hand it is possible to find the steepest descent direction
g(A) (see (1.7)) but this direction may not be feasible if the
hi's are not linear; on the other hand the descent direction
gn(F(x)) is feasible for any n >0, where

v
n

| v
| n”

gn(T(x)) = =

and

lvl = minllvl, L =co {£ (x)inh;(x)|i€Q(x))

n
veL
n

The foregoing analysis reveals the importance of having
several (possibly equivalent) necessary conditions, in that this

enables us to develop different numerical methods.

Remark 3. It is not difficult to show that, in (1.11),

g_(A) ~g(A), where g(A) is the steepest descent direction of £
r]—)-+oo

on A at x.

1.2 Convex programming problems

Similar considerations can be applied to constrained non-

differentiable convex programming problems of the form

min{f(x)|x eq}

where



@ = {xekE_|h(x) <0}

and functions £ and h are finite and convex (but not necessarily

differentiable) on En'

Suppose that there exists a point x such that
h(x) <0 . (1.12)

(This is called the Slater condition.) It follows from convex

analysis (see [3]) that

{0}, if h(x) < 0 .,
I (x) =
cone {3h(x)}, if h(x) = 0
where %h(x) is the subdifferential of h at x, i.e.,

oh(x) = {VEEnIf(z) - £(x) 2 (v,z2=-x) ¥z EEn} . (1.13)

*
Theorem 3 (see [4]1). For x €Q to be a minimum point of f

on Q 1t is necessary and sufficient that
* *
BE(x ) NT (x) #8 . (1.18)

Theorem 4  (see [51). Let hix') = 0. Condition (1.14) is

equivalent to the condition

* * *
0Oeco {3f(x )lJTn(X )} Ln(x ) ¥n > 0 (1.15)

where

T (x) = {ve -TT )1 ]lIvil =n} .

If x€Q is not a minimum point of f on @ then the direction

g(x) = _( v(X) = w(x) )

v (x) - w(x)Il



where

Ilv(x) ~w(x)l = min || v-wl ,
vesf (x)

wert (x)

is the steepest descent direction of £ on & at x.

Let us find

VT'I(X)
= - - (1.16)
I %) v ()|
n
where
v (x)I = min | vl .
n VEL_ (x)

The direction gn(x) given by (1.16) is a descent direction

and it can be shown that
gn(x) € int T (x) .

Thus condition (1.15) enables us to find a "feasible" direction
(i.e., a direction leading strictly inside ), and this can be
useful in constructing numerical methods. Some of the methods

based on (1.15) are described in Chapter IV of [5].

Note that if x is not a stationary point then

(X) ———g(x)
n->+o©

In

where g(x) is the steepest descent direction of f on @ at x.

Theorem 4' (see [8]). Let h(x*) = 0. Condition (1.14) is

equivalent to the condition

0ecco {3£(x") Ulnah(x )1} x)  wn >0 . (1.151)

i
£

n

Proof. Consider a function

6, (x) = max {£(x) =€ ,nh(x)}



=10~

where
E 3
f = min £(x) .
XeQ
* * .. .
Since ¢n(x) >0 VxGEEn, and ¢n(x ) = 0, x 1is a minimum point
of ¢n on E . However, ¢n is a convex function and so
* * *
8¢n(x) = co {3f(x )Y [nh(x )]} .

Applying a necessary and sufficient condition for an unconstrained

minimum of a convex function, we immediately obtain (1.15').

Assume that x €0 is not a minimum point of f on Q, and find

the direction

(x)

1
Iyn(x) = = ————— (1.16")
HV1n(X)H
where
Hv1n(x)H = min IR/ I
v€L1n(x)

It can be shown that the direction g1n(x) defined by (1.16') is

a descent direction and

g1n(x) € int T (x) .

Note also that g1n(x)————+-g(x), where g(x) is the steepest
<400

descent direction of f on Q.

Remark 4. Condition (1.15') is applicable even if Q is an
arbitrary convex compact set (not necessarily described explicitly

by a convex function).



-11-

2. QUASIDIFFERENTIABLE FUNCTIONS

2.1 Definitions and some properties

A function f is called quasidifferentiable (g.d.) at a point
erEn if it is directionally differentiable at x and if there

exist convex compact sets _@_f(x)cEn and _a'f(x)CEn such that

8§(x) = lim f(x+ag&-—f(x) = max (v,qg) + min (w,g) .
g a++0 ves f (x) we3 £ (x)
The pair of sets Df(x) = [gf(x),gf(x)] is called the quasi-

differential of f at x.

Quasidifferentiable functions were introduced in [6] and
have been studied in more detail in [7,8]. A survey of results
concerning this class of functions is presented in [9]. It turns
out that g.d. functions form a linear space closed with respect
to all algebraic operations and, more importantly, to the opera-
tions of taking pointwise maximum and minimum. A new form of
calculus (quasidifferential calculus) has been developed to handle
these functions, and both a chain rule for composite functions
and an inverse function theorem have been established [5,9]. In
what follows we shall use only two results from quasidifferential

calculus (see below).

If D1 = [A1IB1]I D2 =

Ai(:En, BiCEn are convex sets) we put

[A2,B2] are pairs of convex sets (i.e.,

D1 + D2 = [A1 + A2 ,B1 + B2]

and if D = [A,B] then
(xa, AB], if A >0 ,
AD =

(AB , AA], if X <0 .

The following is then true:
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1. If functions fi (ieI = 1:N) are g.d. at x and Dfi(x) =

[afi(x),gfi(x)] is a quasidifferential of £; at x then a function
- 1
£ = ] £, (where the X;s are real numbers) is g.d. at x and
ier
DE(x) = ) A.,Df. (x) .
ier *

2. If functions fi (ieI = 1:N) are g.d. at x then

f = max £f.
i€eT

is a g.d. function and

Df(x) = [3f(x) , 3E(x)] (2.1)
where
3f(x) = co | 3f, (x) - 1 FE (x)|keR(x)}
- i€R (%)
i#k
Sf(x) = 3f, (x) , R(x) = {ieIlf (x)=£(x)} .
kER (x)

L.N. Polyakova [7] has discovered necessary conditions for

an unconstrained optimum of £ on En:

*
Theorem 5., For x €E, to be a minimum point of a q.d. func-

tion £ on En i1t 1s necessary that
- * *
- 0f(x ) Caf(x ) . (2.2)
** - . .
For x CE_  to be a maximum point of a q.d. function on El

1t 18 necessary that

* % — % %k
- Jf(x ) CTEX ). (2.3)

Conditions (2.2) and (2.3) represent generalizations of the
classical necessary conditions for an extreme point of a smooth

— ]
function f on E, (in this case 3f(x) = {0}, 3f(x) = {f (x)} and
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LI
from (2.2) it follows that £ (x ) = 0. From (2.3) it also follows
LI
that £ (x ) = 0, i.e., the necessary conditions for a maximum

and for a minimum coincide.)

If £ is convex on E_ then 3f(x) = {0}, 3f(x) = 3f(x), where
3f (x) is the subdifferential of f at x (see (1.13)), and (2.2)
becomes the well-known condition [3,4]

*
0eosf(x ) .

2.2 Quastidifferentiable sets. Necessary conditions for con-

strained optimality

A set Q is called quasidifferentiable if it can be repre-

sented in the form
Q= thEHIh(x)iO}

where h is quasidifferentiable on E_ .

The properties of g.d. sets and the necessary conditions
for optimality of a g.d. function on a g.d. set are discussed
in [8] (see also [5, Chap. II]).

Take xe€ § and introduce cones

Y(x) = lgeE_ ’agéX) <o ,
Yi(x) = {g€E_ ’ 82;") <0
Let h(x) = 0. We say that the nondegeneracy condition is
satisfied at x if
cl [y(x)1 = vq(x) (2.4)

where cl A denotes the closure of A.
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Lemma 1 (see [5,81). If h(x) < 0 then T(x) = E,- If h(x) =0
and the nondegeneracy condition (2.4) is satisfied at x and h(x)

1s Lipschitzian in some neighborhood of x then
Nx) = Y1(x) (2.5)

where T (x) 2s the set of feasible (in a broad sense) directions
of @ at x (see (1.1)).

The following two theorems and lemma are proved in [8].

Theorem 6. Let a function £ be Lipschitzian and quasidiffer-
_— * *
enttable in some neighborhood of a point x €Q. If h(x ) = 0 then
*
let h be Lipschitzian and q.d. in some neighborhood of X and the

%k
nondegeneracy condition (2.4) be satisfied at x . For the func-

. . . * ,
tion £ to attain T1ts smallest value on Q at X <t 18 necessary
that

- TE(x) Caf(x) if h(x) < 0 (2.6)

and

(3£ (x*) +w) N [-cl(cone (3h(x*) +w ))] # § if h(x) =0  (2.7)

_ * ' — *
for every wedf(x ), w € 3h(x ).

Theorem 7, Condition (2.7) is equivalent to the condition

- 3E(x) CL(x™) (2.8)

where

L(x) = n [3f(x) +cl(cone (3h(x) +w))] . (2.9)
3

* *
A point x € Q which satisfies (2.7) when h(x ) = 0 and (2.6)

%k
when h(x ) < 0 is called a stationary point of f on Q.

Note that L(x) is a convex set (and nonempty, since 3f(x) CL(x)).
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Corollary. If £ and h are convex functions it follows from
(2.8) that
*
0edf(x) - rt(x) (2.10)

where 3f(x) is the subdifferential of £ at x (see (1,13)) and

I'(x) Zs the cone of feasible directions of Q at X.

‘ %
This condition 1is both necessary and sufficient for x €8 to

*
be a minimum point of £ on @ (in the case where h(x ) = 0 it is
also assumed that the Slater condition (1.12) holds).

Necessary conditions for a maximum of a g.d. function on a

g.d. set can be derived in an analogous fashion [8,5].

2.3 Descent and steepest descent directions

Take x€ i and suppose that x is not a stationary point of
f on Q. We shall now consider in more detail the case where
h(x) = 0 and condition (2.7) is not satisfied. For every we& 3f (x)

l —
and w €3h(x) we calculate

min lz4¢z I = lz(w,w ) +z (w,w)l = dow,w ) .
zeif(x)+w
z'€cl(cone(3h(x)+w')) (2.11)

Then we find

o(x) = max d(w,w) = dlwywy) . (2.12)
wedf (x)

w'E5h (x)

Since (2.7) does not hold, p(x) > 0.

Let

go = - . (2.13)
Hvo + w(vO)H
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Lemma 2. If h(x) 0 and the nondegeneracy condition (2.4)
18 satisfied then the direction 9, (see (2.13)) 1s a steepest
descent direction of £ on Q at x and d(x) = IIV0 + w(vO)H 15 the

rate of steepest descent, 1.e.,

5 = min Bg(x)
90 geT (x) NS g

= - 4d(x) . (2.14)

]
Remark 5. Since there may exist several Wor o satisfying

(2.12), there may exist several (or infinitely many) directions
of steepest descent. (This is impossible for convex sets and

convex or continuously differentiable functions.)

] * '
Remark 6. Let K(w ) = cl (cone(gh(x ) +w )).

If int K+(w ) # @, then condition (2.7) is equivalent to

* '
0Oeco {[3f(x )-Fw]LJTn(w Y} = Ln(w,w )
where
]
T, (W) = {(vekw )|lIvll =n} , n >0 .
— ' —
If for some Xx€Q and w&3f(x), w € 3h(x) we have h(x) = 0 and

1]
0 ¢Ln (w,w ), then

. zn(w,w')
gn (W,W ) = =
lz_ (w,w")l
n
where
]
Hzn(w,w 2w = min Izl
zELn(w,w')

is a descent direction of f on @ at x and, above all, is feasible,

i.e.,

oh (x)

< 0 and
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Remark 7. If xe€(Q is not a stationary point of £ on ( con-
ditions (2.6) and (2.7) allow us to find steepest descent direc-
tions (see Lemma 2), but in the case where h(x) = 0 the directions

thus obtained may not necessarily be feasible.

Condition (2.8) is similar to (2.2) and if x is not a sta-

tionary point we have
- 3f(x) ¢ L(x) . (2.15)

Let us find

max p(v) = p(v(x))
vea f (x)
where
p(x) = min |lv+wll = [lv+w(v)I .
weL (x)

It follows from (2.15) that p(v(x)) > 0 but it is not clear

whether

is a descent direction.

Let h(x) = 0. The problem of finding a steepest descent

direction is equivalent to the following problem:

min © (2.16)
subject to

of

aé}{) < 8, (2.17)

oh(x

aé) < 0, (2.18)

gl <1 . (2.19)
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Since f and h are quasidifferentiable functions, problem (2.16) -~

(2.19) can be rewritten as

mh1{MeeEVgeEnJngeQﬁ (2.16")
where Q1CEn+1 is described by inequalities
max (v,9) + @min (w,9) < 0 , (2.17")
veld f (X) wedf (x)
1 ]
max (v ,g) + min (w ,g) < 0 ’ (2.18")
v'edh (x) w'edh (x)
lgll < 1 . (2.19")
| 1 1 ]
Let 8(w,w ) = 6(w,w ,x), g(w,w ) = g(w,w ,x) be a solution
to the problem
]
min {8\66E1,g€En,[6,g]€Q1 (w,w )} (2.20)

—_ 1 —_ 1
where wesf(x), w € 3h(x), and 91(w,w )(:En+1 is described by

inequalities
max (v,g) + (w,g) < 6 , (2.21)
vedf (x)
1) 1
max (v ,9) + (w ,g9) < O ' (2.22)
v'esh(x)

gl < 1 . (2.23)

* *
Let [8 (x),g (x)] denote a solution to problem (2.16')-(2.19').
It is clear that

where

[w*,w ] arg min {e(w,w')|we§f(x),w'G?h(x)} . (2.24)
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where

[wn,w;] = arg min {en(w,w')|w€E§f(x),w'€E§h(x)} . (2.33)

Direction gn(x) is feasible for any n > 0.

Remark 8. When solving problem (2.24) (as well as (2.33))
it is sufficient to consider only boundary points of the sets
3f(x) and 3h(x). Furthermore, if each of these sets is a convex
hull of a finite number of points, it is sufficient to solve only
a finite number of problems of the form (2.20)-(2.23) (or, for
problem (2.33), of the form (2.29)-(2.32)). These become linear
programming problems if the Euclidean norm in (2.23) (or (2.32))

is replaced by the m-norm:

tgll, = max {|g;||i€1:n}
where

g: (g.],...,gn) .

Remark 9. Let Ny ——. Without loss of generality we

k>
*
can assume that 9, (x) —>g . It is possible to show that g
k
*
is a steepest descent direction of £ on Q at x and that en(x)-+8 (x),

k
*®
where 6 (x) is the rate of steepest descent.

Remark 10. Let x&€{ and h(x) not necessarily egqual zero.
Consider the problem

min {6|66E1,gEEn,[8,g]EQ } (2.34)

2n

where n > 0, and Q,_ CE is described by

2n n+1
max (v,g) + min (w,g) < 6 ,
veadf (x) weod £ (x)
1 1
h(x) + max (v ,9) + min (w ,9) < nb , (2.35)
v'edh(x) w'edh(x)

g < 1 .
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The replacement of (2.31) by (2.35) enables us to deal with
points in Q@ close to the boundary. It is hoped that, as in
mathematical programming (see, e.g., [10]), it will eventually
be possible to develop superlinearly (or even gquadratically)
convergent algorithms.

A geometric interpretation of problem (2.16)- (2.19) is
given by (2.12). For a similar interpretation of problem (2.29)-

(2.32) we use the following result (obtained by A. Shapiro [11]):

* * .
Theorem 8. Let x €Q and h(x ) = 0. Functions £ and h are
ilneorem ¢ X .

assumed to be quasidifferentiable on En' For x to be a minimum

point of £ on Q <t is mecessary that

L1(x*) CL2(X*) (2.36)
where
L1(x) = -[3f(x) + dh(x)] ' (2.37)
L,(x) = co {3f (x) -3h(x) , 3h(x) -3E(x)} . (2.38)
Proof. Let x* be a minimum point of f on Q@ and let h(x*) = 0.

Consider a function

F(x) = max {£(x)-f ,h(x)}

where

£% = £(x™) = min f(x) .

XER

It is clear that*F(x) >0 ¥Xx €E . Since F(x*) = 0 it can be
concluded that x 1is a minimum point of F on E . ButF is a
g.d. function (because it is the pointwise maximum of g.d. func-
tions f(x)-—f* and h(x)).

Applying (2.1) we have

DF(x") = [3F(x),3F(x)]
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. = x ¥ —_
co {3f(x ) -%h(x ), 3h(x ) -3f(x )} ,

5%
|
x

*
il

— —_ * _ *
dF(x ) = 23f(x ) + dh(x ) .

*
Since x is a minimum point of F on En’ (2.2) leads immedi-

ately to (2.36). Q.E.D.

Remark 11. Condition (2.36) is equivalent to (2.7) and is
applicable even in the case where the nondegeneracy condition (2.4)
does not hold. However, it seems that condition (2.6) is always

satisfied at a degenerate point.

Now let us consider the case where x€, h(x) = 0 and con-
dition (2.36) does not hold. We first find

d(x) = max p(v) = p(v(x)) (2.39)
VEL1(X)
where
p(v) = min Jlv-wll = |[[v=-w(v)Il . (2.40)

w€L2(x)

It is clear that p(v(x)) > 0.

Since sets L1(x) and L2(x) are convex there exists for every
\felw(x) a unique w(v) which satisfies (2.40), but there is not

necessarily a unique v(w) which satisfies (2.39).

Consider a direction

v(x) - w(v(x)) (2.41)
lv(x) = w(v(x))Il

Lemma 3., The direction = defined by (2.41) is a descent

direction of £ on Q at X.
Proof. By definition (see (2.39)-(2.41))

max (v,go) > max (w,go) . (2.42)
VEL, (x) VELZ(X)



In particular, it follows from (2.42) that
max (v,go) > max _ (w,go) ; (2.43)
V€L1(X) weaf (x)-9h(x)
max (v,gq) > max (W,gq) (2.44)
VEL1(X) wedh (x)-3f (x)
From (2.43)
max (v,go) + max (v,go) > max (w,go) + max (w,go) ,
vel[-3f (x)] vedh (x) wed f (x) wel[-3h(x)]
i.e.,
- min (V,go) > max (w,go) . (2.45)
veEZ £ (X) we £ (x)
But (2.45) implies that
AEX) max (v,go) + min (w,go) < 0 (2.46)
399 ved f (x) wed £ (x)
Analogously, it follows from (2.44) that
Bg(x) = max (v,g,) + min (w,gy) < 0 . (2.47)
90 vedh (x) wETh (x)
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Inequality (2.47) implies that 99 is feasible; inequality

(2.46) shows that 1t is a descent direction.

Remark 12.

not be unique.

Q.E.D.

The direction 99 defined by (2.39)-(2.41) may

Observe that since Q can be described by

-]
I

where hn(x) nh(x),

condition

{x EEn|hn(x) <0} ,

n > 0, we can obtain the following necessary



=204~

]
L1n(x )CLG(x ) (2.36")
where
L1n(x) = ~=[3f(x) + noh(x)] ' (2.37")
L,,(x) = co {3f(x) -ndh(x);in3h(x) -3f(x)} . (2.38")
For a nonstationary point x (when h(x) = 0) it is possible

to obtain a descent direction gOn different from 99°

It is also useful to note that if A is a quasidifferentiable
function strictly positive on @ then Q can be given in the

form

Q = {x[Ax(x)h(x) <0} .

This representation provides a variety of necessary condi-
tions and, consequently, a variety of descent directions at a non-

stationary point.

2.4 Sufficient conditions for a local minimum

Necessary conditions (2.7), (2.8), (2.36) can be modified
in such a way that they become sufficient conditions for a local

minimum of f on Q.

Recall that

Bf(xo)

f(x0-+ag) = f(xo) +<x——3§—— + o(a,g) , (2.48)
Bh(xo)

h(Xo*'O‘g) = h(xo) +a_3g— + 01 (alg) . (2.49)

Functions f and h are assumed to be continuous and quasi-

differentiable at xOGEQ; it is also assumed that

O(alg) —0

6]

uniformly with respect to g€sy in (2.48) and that if h(xo) =0
then
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01(a,g)

a

-0

uniformly with respect to gES1 in (2.49). Recall also that

S, = {g€E_|llgl =1} .
Theorem 9 (see [5,81). If h(xo) < 0 and
- 3f (xy) cint 3f(xq) (2.50)

then X is a local minimum point of £ on Q.
If h(xo) = 0 and
1
r = min riw,w) >0 ' (2.51)
wegf(xo)

w'e§h(x0)

1 .
where r(w,w ) is the radius of the maximal sphere centered at the

origin that can be inscribed in the set
1 '
Lwyw ) = 3f(x4) + w+ cl (cone (3h(x4) +w )}) '

then X is a strict local minimum point of £ on Q and

df(x,)
r = min o .
geI‘(xO)ﬂS1 %9
Theorem 10. If h(xo) = 0 and
- gf(xo)ijint L(XO) ’ (2.52)

where L(x) Zs defined by (2.9), then X 18 a strict local minimum

point of £ on Q.

The proof of this theorem is analogous to that of Theorem 9
(see, e.g., [5,§7, Chap. II]).
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Theorem 11. If h(xo) = 0 and

L1(x0)(:int L2(x0) ' (2.53)

where L1(x0) and L2(x0) are defined by (2.37) and (2.38), then

Xq is a strict local minimum point of £ on Q.

Proof. From (2.53) it follows that there exists an r >0 such
that
max (v,g) < max (w,g) - ¢ VgEES1 ’
veL1(x0) wELz(xO)
i.e.,
max (v,g) < M-« VgGES1 (2.54)
ve[-af(xo)-ah(xo)]
where
M = max (w,q) .
weco{3f (x4) = 3h(x,),3h(x,) -3f(xqy) }
Since
max (v,g) = max | max (v,g) , max (v,g)
veco{A U B} veEA v EB

then from (2.43)

- min (w,g) - min (w,g) < max max (v,g) - min (w,qg);
wEBf(xo) weah(xo) veif(xo) weah(xo)
max (v,g) - nin (w,g)} - r Vg€581 . (2.55)
vedh (x) wegf(xo)

Two cases are possible:

1. M = max (w,9) = max (v,g) - min (w,g)
wed f (x)-3h(x4) ves £ (x;) wedh (%)
2. M = max (w,g) = max (v,g) - min (w,qg)

wedh (x) -3 f (x4) vedh (xq) wedf (%)
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In case 1.it follows from (2.55) that

af(xo)
max (v,g) + min (w,g) = 59 > r . (2.56)
vegf(xo) weaf(xo)
In case 2 it follows from (2.55) that
max (v,g) + min (w,g) > r . (2.57)
Vegh(xo) weah(xo)
Since o(g,g) 0 wuniformly with respect to ges, in
0, (a,9)
(2.48) and 3 »(0 uniformly with respect to gES1 in

(2.49), then (2.56) and (2.57) suggest that there exists an a >0

such that for any x€S,(xy) = {x€E_[lIx-x4ll <o} and x # x, either
f(x) > f(xo) (2.58)
(in case 1), or
h(x) > h(XO) =0 (2.59)

(in case 2).

If (2.59) holds, then x&Q.

Thus, it follows from (2.58) and (2.59) that

f(x) > £f(x VXEQﬂSa(XO) y X # X, ’

0)
i.e., Xq is a strict local minimum point of £ on Q. Q.E.D.

Remark 13. Theorem 11 is stated by A. Shapiro in [11].

(1)|

Example 2. Let x (x(1),x(2g€EE2, Xg = (0,0); f(x) = |x

IXQ)|+XQ);1HM ="%|ﬁ1” - x; 2= {x€E)[h(x) <0} .
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From quasidifferential calculus we have

gf(xo)

co {(1,1),(=1,1)} , §f(x0) = co {(0,1),(0,-1)} ,

((0,-1} , Bhlxy) = co {(3:0), (5,0}

gh(xo)

It is shown in [5, §5, Chap. II] that the nondegeneracy condition
(2.4) is satisfied at Xq (see Fig. 2).

«(2)

?

il
1 // >, (1
/ /1/ /]//ﬁ

L1

/ /oL // -

Figure 2

We shall now verify the necessary conditions for a minimum.,
Construct sets L(xo), L1(x0), LZ(XO) (see (2.9), (2.37), (2.38)):

L(xy) = N [gf(xo) + cl(cone(gh(xo)-+W))] =
wegh(xo)
= coO {(_111)1(111)1(01_1)} r
L, (x.) = —[3E(x,) +Th(x)] = col (5, 1), (2, -1), (=%, -1y, (-1 ,1)}
1 0 0 0 2' 4 2' 1 2' 1 2' 4

_8_f(x0) -'B-h(x co {("32'11)1(—%11)} ’

o)

coO {(010)1(01_2)} ’

3h(xy) - FE(x,)
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Figure 3

From Figs. 3 and 4 it is clear

a minimum (2.8) and (2.36) are

Example 3. Let x(EEz, Xy =
Example 2 and '

£ =[x - x
Now we have
3f(xy) = co {(1,1),(=1,1)},

L(xo) remains the same:

(2)

Figure 4

that the necessary conditions for

satisfied.

(0,0); © and h be the same as in

- 1 1
af(x ) = CO {(Olj)l(ol-i)} .
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L(X =co{(—1l1)l(1l1)l(ol_1)}

0

Let us find L1(x0) and L2(x0):

Ly(xg) = =[TE(xy) +Th(x)] = co {(gig) (Fi=3) s (= 3= 5), (=330},

3f(xy) - Fh(xy) = co {(3,1),(-3,D}

— _ 1 3
_a_h(xo) - af(xo) = COo {(Ol ?)l(ol 2)} ’
L2(x0) = co {gf(xo)-ah(xo),gh(xo) -af(xo)}
- 3 -3 3
—CO{(§I1)I( 211)1(01 2)}
x(2)
<2 a
1 1
L L2
| (T
of L
t t o ' + : ' } o x!1)
-1 { 1 -1 1 2
| !
| LH_J-._J
—1 41
T -2
Figure 5 Figure 6

It is clear from Figure 5 that

- gf(xo)(:int L(xo)
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i.e., the sufficient condition for a strict local minimum (2.52)
is satisfied. Figure 6 shows that the sufficient condition (2.53)

is also satisfied.

Remark 14. In Example 2 X, was in fact a minimum point but

we cannot deduce this from the necessary conditions alone.
_ (1) (2)y ¢ - . -
Example 4. Let x = (x ' X ) E2, Xq = (0,0); £(x) =

M - k@ e k@ hm = -k - x5 0= (xR < 0).

Figure 7

Thus the function f is the same as in Example 2 - only Q has
been changed (see Figure 7). Note that the nondegeneracy condi-

tion (2.4) is satisfied and that
af(xo) = COo {(111)1(_111)} ’ -é—f(xo) = CO {(011)1(01—1)} ’

3h(xy) = {(0,-1)} , 3h(xy) =co {(1,0),(-1,0} .

Construct sets L(xo), L1(x0), L2(x0):
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L(xo) = n [gf(xo)-+cl(cone(3h(xo)-+w))]
weah(xo)
=CO{(—1I1)I(1I1)I(OIO)} ’
§_f(x0) --B—h(xo) = CO {(211)1(_211)} ’
Qh(xo) - §f(x0) = co {(0,0),(0,-2)} ,
L1(X0) = -[Bf(xo) + 5h(x0)] =co {(1,1),(1,=-1),(=1,-1),(=1,1) 1},
L,(x4) = co {-3f(xy) - Bh(xy),3h(xy) - §f(x0)}

= co {(2,1),(-2,1),(0,-2)}

(M

Figure 8

We observe that the necessary condition (2.8) is not satisfied
(see Figure 8). We then calculate the steepest descent directions
(see [5,§7,Chap.I1]), obtaining gq = (1%, —1%) and gé = (.f%,_f%).

It can be seen from Figure 8 that the necessary condition
(2.36) is also not satisfied (this is hardly surprising since
conditions (2.8) and (2.36) are equivalent). We shall now find

directions satisfying (2.39)-(2.41). It is clear from Figure 9
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Figure 9

that there exist two directions of this kind:

_ (3 1), ' __3__1_)
g1‘(/ﬁ’ /ﬁ) 91 /0 /70

Figure 6 shows that the directions of steepest descent 99
]

and g, are tangent directions but that the descent directions
]

I4 and g, are interior.
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