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PREFACE

Much recent work in optimization theory has been con-
cerned with the problems caused by nondifferentiability.
Some of these problems have now been at least partially
overcome by the definition of a new class of nondifferen-
tiable functions called quasidifferentiable functions, and
the extension of classical differential calculus to deal
with this class of functions. This has led to increased
theoretical research in the properties of quasidifferen-
tiable functions and their behavior under different con-
ditions.

In this paper, the problem of the directional differen-
tiability of a maximum function over a continual set of
quasidifferentiable functions is discussed. It is shown
that, in general, the operation of taking the "continual"
maximum (or minimum) leads to a function which is itself
not necessarily gquasidifferentiable.

Andrzej Wierzbicki
Chairman
System & Decision Sciences
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DIRECTIONAL DIFFERENTIABILITY
OF A CONTINUAL MAXIMUM FUNCTION
OF QUASIDIFFERENTIABLE FUNCTIONS

V.F. Demyanov
I.S. Zabrodin

1. INTRODUCTION

Optimization problems involving nondifferentiable functions
are recognized to be of great theoretical and practical sig-
nificance. There are many ways of approaching the problems
caused by nondifferentiability, some of which are now gquite well
developed while others still require much further work. A
comprehensive bibliography of publications concerned with non-
differentiable optimization has recently been compiled [1]-~--
major contributors in this field include J.P. Aubin, F.H. Clarke,
Yu.M. Ermoliev, J.B. Hiriart-Urruty, A.Ya. Kruger, S.S. Kutateladze,
C. Lemarechal, B.S. Morduchovich, E.A. Nurminski, B.N. Pshenichnivy,
R.T. Rockafellar, and J. Warga.

The notion of subgradient has been generalized to nonconvex
functions in a number of different ways. One of these involves
the definition of a new class of nondifferentiable functions
(quasidifferentiable functions) which has been shown to represent
a linear space closed with respect to all algebraic operations
as well as to the taking of pointwise maximum and minimum [ 2,3].
This has led to the development of gquasidifferential calculus--

a generalization of classical differential calculus--which may
be used to solve many new optimization problems involving non-
differentiability (4].



This paper deals with the problem of the directiocnal dif-
ferentiability of a maximum function over a continual set of
quasidifferentiable functions. It will be shown that in general
the operation of taking the "continual" maximum (minimum) leads
to a function which is itself not necessarily quasidifferentiable.

2. AUXILIARY RESULTS

E E
n , Wwhere 2 m

Let us consider a mapping G : En —_—2
denotes the set of all subsets of Em . Pix x° & En and
g € E o+ lgl=1. Choose y € G(xcl and introduce the set
J

Y(y)= Y(xo,g,y) = (v € Em IH a >0 : y + av € G(x°+ag) Va € [0,a°]g.

We shall denote the closure of y(y) by T(y) , i.e.,

['(y) F(xo,g,y) = cl v(y)

The set T (y) 1is called the set of first-order feasible
directions at the point y € G(xo) in the direction g
Remark 1. In the case where G does not depend on x , the
set T (y)
a cone called the cone ¢f feasible directions at vy

F(xo,g,y) does not depend on X, and g , and is

A mapping G is said to allow first-order approximation
at a point X in the direction g € E_, lgl=1 , if, for an
arbitrary convergent segquence {yk} such that

Yk—.ylykeG(x°+akg)1ak—’+o as k = =,
the following representation holds:
Y =¥ F vy +oolay)
where Ve € F(xo,g,y) ;oA = 0 , yv € G(x)

In what follows it is assumed that the mapping G 1is
continuous (in the Hausdorff metric) at a point X, and



allows first-order approximation at x

in any direction
g € E, gl = 1

It is also assumed that for every
x € Ss(x ) ={x€E_I| Ilx-x01<48}, 8§ >0,
o n ]

the set G(x) is closed and sets G(x) are jointly bounded

on Ss(xo) , i.e., there exists an open bounded set B C Em
such that
G(x) € B VxESG(xO)

Let us consider the function

f(x) = max ¢(x,y)
vEG (x)
where function ¢(z) = ¢(x,y) is continuous in z = [x,y]
on Ss(xo) x B and differentiable on 2 in any direction
n=1[g,q] € En+m ; i.e., there exists a finite limit
3¢(x°,y) 8¢(x°,yo) . 1
= = lim ——{¢(x +ag,y +aq) = ¢(x_,y )]
an 3l g,q] Q~=+0Q ° ° ° 0
Vvz =[x ,v] €12
Q Q Q Q
Here
z2 = {x } < {R(x )}
[=] [+ Q

R(x) = {y € G(x)Id(x,y) = £(x)}

Suppose that the following conditions hold:

Condition 1. If 9 — g then

Id(x ,¥) _ e (x ,y)
—_— 2 " < 1lim o

S — Vy € R(x )
3l g, q] k=+=  3[g,q,] °



Condition 2. Let vy, € R(x_+ ay9) , vy = Y . Since

G allows first-order approximation at x- , then
Q

Yy =Y +oa, gt o(ak) , ¥ € R(xo) .

It is assumed that the qk's are bounded.

Condition 3. Tunction ¢ 1is Lipschitzian in some neigh-
g

borhood of the set Z° .

Then the following result holds.

- Theorem 1. The function £ <8 differentiable at the point

X tn the direction g and
Q

3f(x ) N 8¢(x IY)
—2— = sup sup =——m—— (1)
3g yER(x ) gq€T (y) 3dlg,ql
Proof. Let us denote by A the right-hand side of (1). Fix
y € R(xo) and q € y(y) . Then y + ag € G(x° + ag) for

sufficiently small o« > 0 and

3d (x ,y)
f(x + ag) 2 ¢(x +ag,y+tag) = £(x ) + a (—-—-3——-) + ofa)
° ° ° 3lg.,ql
Hence
1 3¢ (x ,y)
lim h(a) = 1lim —=— [f(x + ag) - £(x )] 2 2
a=—+0 a=—0 ° ° 3l g,q]

Since y € R(xo) and gq € y(y) are arbitrary then

. 0¢ (x ly)
iiﬁb h(a) # sup sup —_— (2)
yER(xo) g€y (y) slg,ql
Let q — q, q € y(y) . Then g € I'(y) . It follows

from Condition 1 that



3¢ (x ,¥) - 3¢ (x ,y)
2 < lim 4 (3)
3lg,ql koo 3lg,q.l
But
¢ (x ,y) ¢ (x ,v)
—. sup —e
alg,q,] g€y (y) 3lg,q 1
Since T (y) = cl y(y) , then from (3)
sup — < sup —2vw— < sup 2
<y (y) 3lg,4q] q€T (y) 3lg.,q] Ey (y) 3lg,ql
Hence
I (x ,y) 39 (x ,v¥)
sup —2 = sup 2 (4)
g€t (v) 3l g,ql g€y (y) 3l g,4ql
From (2) and (4) it follows that
lim h(a) 2 A . (5)
a=+q
Now let us choose sequences {yk} and {ak} such that
[f(x + a,g) = £(x )] =—— Iim hia) (6)
%% ° K ° a0
Yy S R(xo + akg) r Yy _— 4 —— +0

The conditions imposed on the mapping G
tinuity of the functicn ¢

continuous at X, -

one can conclude that £(x ) = o(x ,y) , i.e.,

dence, from the equality £ (x 2, 9) = 2(x +u. 9,7, ),
o] : Q 7' ° K

Q Q

and the con-

ensure that the function £ 1is



Since the mapping G allows first-order approximation
at x , then Y = vy + @ gy * o(ak) , Where Iy € r(y) ,

Q

% 9y —+Q . From Conditions 2 and 3 the qk's are bounded and t.i:
function ¢ 1is Lipschitzian around Z° . Without loss of
generality one can assume that 9 — 9 - It is clear that

q € I'(y) . Hence

f(x° + akg) - f(xo) = ¢(x°+akg,yk) - ¢(x°,y)

= ¢(x°+akg,y+aqu+o(ak)) - ¢(xo,y) = Ql + Q2 (7)
where
_ _ 3o (x ,y)
= - ( =
Qq ¢(x°+akg,y+akq) ¢\x°,y) Gy —_—] o+ o (ay)
3[g.,q]
Q, = ¢(x _+ag,yrayqprola,)) - o (x +a,g,y+a,q)
Since ¢ 1s a Lipschitzian function, then
|Q2| <L %y llqk - g + o(ak)u . (8)
It follows from (6)-(8) that
—_— 1 Ip(x tl—’)
lim h(a) = lim — [f(x + @, g) = £i(x )] = 2
g-=+Q K=o ak 0 ° 3[g,q]
.from which it is clear that
_ i (x ,y)
Iim h(a) S sup sup 2 =27 . (9)
a-=+0 yER(x ) Q€I (y) 3lg,ql

Comparison of (5) and (9) now shows that lim h(a) existr
-t
ana is equal to A , thus completing the proof.

Remark 2. Equation (1) has been proved under some different

-

assumptions elsewhere [5] (see also [6], § 10). The case where

¢ 1is differentiable was studied by Hogan [7].




3. QUASIDIFFERENTIABLE CASE

Let us consider once again the function

f(x ) = max P (x,y) (10)
° vEG (x)

where mapping G satisfies the conditions specified earlier and

function ¢(2) = ¢(x,y) 1s continuous in =z on Sg(xo) x B

and quasidifferentiable on zo ,i.e., for any peoint zo = [xo,y ] € Zo
Q

. c 3 c
there exist convex compacts §¢(z°) En+m- and a¢(z°) E

n+m
such that
3d(x ,y ) 1
QO = 1im — [0(x Jregsy +aq) - o (x .y )]
3lg.,q] a=—+0 a @ 9
= max [ (virg) + (vy,q)] (11)
[v,, v, ]€3¢(z )
177°2" 7= o
+ min - [ (WlIQ') + (WZICI)] .
[wl,w2]63¢(z )
Q
It is also assumed that Conditions 2 and 3 are satisfied.
(Condition 1 follows immediately from (ll).) Thus, all the
conditions of Theorem 1 are fulfilled and we arrive at
Theorem 2. The Function £ defined by (10) is directionally
differentiable and, moreover,
3f (x )
—_—2—- =  sup sup | max [ (vi,9) + (v5,q)]
3g yER(x ) q€T(y) |[vy,v ]Eo¢(x ' y)
+ min [ (wy,g) + (wzrq)]% .o (12)
[w l,w2]=a¢(xo,y)
Remark 3. Since vy € R(xo,y) + the following relation holds:
sup 5 max (vy,q) + _min (wz,q);==0

q€li(y) | v ,E30 (xo,y) w253¢y(xo,y)

vVy € R(x)

Q



Here gwy(xo,y) and §¢Y(x°,y) are the projections of sets

39(x_,y) and §¢(x°,y),respectively, onto E_ .

Remark 4. Pshenichniy [8] considered the case where G(x)
does not depend on x and Fy(x) = ¢(x,y) is a directionally

differentiable function for every fixed y , i.e., there exists

3¢ (x,Y)

lim == [o(x+ag,y) - ¢ (x,v)]

3g a~+0
Then
3p (x,y)
¢ (x+0g,y) = ¢(x,y) + ¢ —————— + o(a,y) . (13)
9g

Under an additional assumption about the behavior of ofa,y)
in (13), it has been proved that

3f (x) 30 (x,y)
— MAX ———— (14)
3g VER (x) 3g

It is clear that equation (1l4) differs from equation (12).

Ezample 1. Let XEEl , yGEl , G(x) =6 =[-2,2] ,
¢(x,y) = x - 2ly - x| , and

f(x) = max (x = 2ly - xl) . (15)

ye[-zlz]

It is clear that

f(x) = x, R(x) = {x} ¥Yx € (-2,2) . (16)
Choose x € (-2,2) and verify equation (14). We shall now
compute the right-hand side of (1l4). Since
¢(x,y) = x - 2max {y - x , -y + x} , then for y € R(x) = {x!

it follows [9] that

3¢ (x,¥)
— =g - 2 max {-g,g}
3g
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Hence for g, = +1

3¢ (x,y)
max =1 -2= -1,
vER (X) 39,
and for g, = -1
3¢ (x,y)
max —_— = =] - 2 = =3 ,

YER (X) agz

But from (l6) it is clear that

of (x)
=g Vx € (-2,2) . (17)

g
Thus equation (l4) does not nold for any direction g (in EI
there are only two directions g such that Igl =1 : g = +1
and g = -1).

Now let us verify eguation (l12). Denote by D the right-

hand side of (12). The function ¢(x,y) is guasidifferentiable.

From quasidifferential calculus [2-4] it follows that if y = x
(

then one can choose 3¢ (x,y) = {(1,0)} , 36 (x,y) = co {(=2,2)

For the function £f described by (1l5) we have

T(y) =T(x,y) =E, Vx € (-2,2)

1
Computing D
D= sup ((l.g) + (0.9) + min
qul [wllwz]eco[(-zlz)l(zlz)]
= g + sup min [[(wy.q) +

qSE, [wy,w,]€l (-2,2),(2,-D)]

(w, g}l

14

(18)

It is clear from Figure 1 that for any g the second term on

the right-hand side of (18) is equal to zero, i.e.,
(The supremum in (1l8) is attained at g = g .)

D=g

21-2) .

/
{
]

le.q)ﬁ-(wz.qﬂ‘
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Thus, from (17), equation (l12) is correct in this case.

Remark 5. When solving practical proklems in which it is
required to minimize a max function over a continual set of
points, this maximum function is often discretized (the con-
tinual set replaced by a grid of points). In many cases this
operation is a legitimate one [10], but we shall show that in
the case where ¢ 1is a quasidifferentiable function this

replacement may be dangerous.

Let f again be described by (15). Define fN as
£y (x) = max (x - 2ly - xl) ,
y<oy

where g = {xl,...,xN} r Xy e [-2,2]
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This function has N local minima (see Figure 2), although
the original £f = x has no local minimum which is not also
global on [-2,2] . This demonstrates that the discretization
of the max-type function must be carried out very cautiously.

v

Figure 2

Example 2. This example illustrates that Condition 2 is

essential to our argument.

p(x,y) = x = 2 mnin L[(x - t3)2 + (y - t)2
tel -2, 2]
(19)
f(x) = max P (xX,y) .

yé{ -2 ’ 2]
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It is clear that for x € (-2,2) ,
3—
R(x) = {yly=¥x1}, f(x) =x. (20)

If vy =\3/;—, then the minimum in (l19) is achieved at t = x
Take x = 0 . Then R(0) = {0} , T(y) = E, . Construct a
quasidifferential of the function ¢ at the point (0,0)
By the rules of gquasidifferential calculus one can choose

36(0,0) = {(1,0)0} , 3¢(0,0) = co {(-2,0),(2,0)}

Let us denote by D the right-hand side of equation

(12) and evaluate it.

(
|

D = D(g) = sup l.g + 0 + min (wl.g + wz.q)
qul [Wl,WZ]GCO»[("Z,O) ’ (210)]
= g - Z‘gl
If g; =1 then D(gy) =-1; if g, = -1 then D(g,) = -3

But it is clear from (20) that 3£(0)/3g = g. Thus equation
(1l2) does not hold, and the reason is that Condition 2 is not

satisfied. Indeed, taking an arbitrary sequence X = X + g

where Gy = +0 , putting, for example, g =1 , x° =0 , we

obtain vy, = v o+ @ vy o ¥, € R(xy)
33—
= {V a, }

For y = 0 this leads to R(x,) But
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