
NOT FOR QUOTATIO?i
WITHOUT PERMISSID?:
OF THE AUTHOR

A TERMINAL CONCENTRATOR
BASED ON THE SM4-20 COMPUTER.

Walter Kunft
Yuri Plotnikov
Peter Pronay

February 1983

WP-83-44

Working Papers are interim reports on work of the lnternational
lnstitute for Applied Systems Analysis and have received only
Limited review. Views or opinions expressed herein do not
necessarily represent those of the lnstitute or of its National
Member Organizations.

IhTTERNATJONAL INSTITUTE FOR APPLIED SYSTEMS ANALYSIS
2361 Laxenburg, Austria

CONTENTS

1 The place of the SM4-20 in the IlASA node.
2 The Packet switchmg software package for the SH4-20.

2.1 Implementation remarks.
2.2 Ru.nnmg environment.

3 Package structure and functions.
3.1 Basic tasks in the package.
3.2 The FRAME task.
3.3 The PACKET task.
3.4 The PADTSK task.
3.5 The ACCESS task.
3.6 The OPER task.

4 Development support tools.
5 Operation.
6 User commands.
7 Acknowledgements.
8 References.

A TEXMINAL CONCENTRATOR
BASED ON THE SM4-20 COMPUTER.

Walter Kunft, Yuri Plotnikov an6 Peter Pronay

1. The place of the SM 4-20 in the IIASA node.

The SM4-20, a minicomputer made in Czechoslovakia, has been

installed in IIASA to serve as a communication machine. The aim was to

enhance the capabihties of the IIASA node, which is still based on TPA-70,

a Hungarian minicomputer, by upgrading the number of input ports of

the node and by sharing part of its communication load. At present, TPA

is well equipped with fast D M . synchronous bit-stuffing adaptors maklng it

well suitable for hw-dhg more packet-switching lines, but it isn't so well

furnished with asynchronous interfaces. In contrary to that, SM4-20 has

enough asynchronous ports (4 single line interfaces and 2 x €3 channels on

multiplexors). Thus, it is logical to attach the asynchronous connections

to SM4 and to relleve in this way more capacity of the TPA for external

packet- and circuit- (DATM-300) switching lines. This goal can be

achieved by equipping the SM4 a t IIASA with communication software

capable of handling

- the asynchronous terminal lines (1st step)

- the asynchronous host lines (2nd step).

The first step has already been made during the last year, when a new

software package has been developed and installed on SM 4. I t allows the

SM 4 to serve as a network terminal concentrator, concentrating asyn-

chronous terminals to an X.25 DTE-DCE interface. The procedures per-

formed a t the interface between SM-4 and the supported terminals con-

form to the CCITT recommendation X.20 . The parameters characterizing

the behaviour of the concentrator .towards the terminals have been

designed with respect to the recommendation X.3 . So, via a fast packet

switched Line more (0-16) local and remote terminals, including for exam-

ple those, which are currently hooked directly to TPA-70 can access the

network, represented in IIASA case by the TPA gateway system (f~g . 1).

Among these can be the terminal lines coming from the VAX and the PDP,

to enable IIASA users to call external facilities. At the present time there

is one such line established from each of the IMSA hosts. T h s number of

lines could easily become not satisfactory as the demand for external

computation and communication would grow. In the presently finished

implementation the SM-4 based concentrator is not capable of handling

incoming calls. That is why only terminal lines can be supported.

However,implementation of Incoming Call packets' support is envisaged

(2nd step) to be finished soon, together with the necessary routing

modules. Simultaneously, support of so called "Host-PAD" functions will

Outer world

TPA- X .25
70

h

10 k Baud

P D P
1 1 I70

l I ASA
hosts

VAX
1 1 1780

Local
terminals

Remote
terminals

Fig. 1

be incorporated. The latter will enable to connect asynchronous lines

from hosts to some of the concentrator ports. In this way are VAX, PDP

and the Moscow NORD presently connected to the TPA-70. Summarizing,

we can expect fig. 2 to reflect the capabilities of the SM-4 after finishng

the present development.

The above mentioned software permits a few alternatives on the

top of it. One is the linking of TPA-70 and SM-4 in symmetrical tandem

arrangement in which each machine would act as a "hot backup" for the

another one. I t would, however, require that SM-4 be equipped with func-

tionally equivalent software to that of the TPA-70. In addition some (prob-

ably HW+SW) mechanism would have to monitor the state of both

machines to assure rerouting of the respective part of the traffic in case

Fig. 2

of malfunction of one of the computers.

Local terminals
Packet
switched {& external
lines

The other alternative may appear if the evolution of the IIASA computing

facilities will lead towards development of a local area computer network.

In this case one of the machines would have to serve as a local-to-external

network gateway. The availability of an interface to the local transport

X.25 SM4-

10 k Baud 20
DATE X.300

medium could become the determining factor.

Both of the mentioned alternatives can be achieved by buildmg on

Other lines

TPA-

top of the presently installed software.

70

- 5 -

2. The packet e t c h i n g software pzzkage for the SL54-20.

2.1. Implementation remarks (*).

The package described here consists of several tasks and can run on

SM or PDP-11 series computers under DOSRV or RSX-11M operating sys-

tems (DS in further text). The particular tasks communicate together,

using the standard means of intertask communication of OS. The tasks

are in hierarchical interrelationship, corresponding to the herarchy of

performed functions of layered protocol levels. Events generated or

detected by a lower level task are reported - if necessary-to the higher

level task by the means of a software interrupt called an AST (Asynchro-

nous System rap). T h s includes also passing data to the upper task. The

flow of control information as well as passing data in a downward direction

is accomplished via sending so called orders, containing a description of

action t o be taken and possibly of the passed data to the lower level task.

Here is also a standard OS facility used - the SEND DATA directive. These

mechanisms use FIFO queues for passed objects, ensuring sequential data

flow. Hardware interrupts are handled in a mixed manner. The interrupts

coming from the interface(s) driving the packet line(s) are handled by

self written interrupt service routines included in the FRAME task (see

later),while driving the terminal lines is done using standard I/O macros

of the OS terminal driver. These macros interact with the driver using

FIFO queues, too. This approach was forced by the lack of standard

('1
The text of this WP, starting from here assumes some knowledge of involved X. series of CCITT
recommendations and of the hosting operating system.

drivers for communication interfaces, whch could fulfill the require-

ments of the line protocol.

2.2. Running environment.

The described package can be used on computers with or without a

memory management unit. It supports different combinations of com-

munication interfaces. Any terminal device supported by the OS terminal

driver can be attached to as a terminal. One to sixteen packet-switched

hnes can be supported, using either of DL-11 / ASAD single-line asynchro-

nous interface, or DUP-11 / SAD synchronous interface. The latter can be

operated with bit-stuffing, thus acheving the requirements of the X.25, or

with BSC framing with DLE-s stuffed for data transparency. In the former

case, CRC is generated and checked by hardware, in the latter this is

done by software. Th~s variety of possibilities on the packet-switched

interface side is provided in order to be as flexible as possible and was ini-

tiated by changing possibilities of the TPA-70. Regardmg terminal-

driving: OS supports two kinds of terminal drivers. This package can run

both using the 'half-duplex' and the 'full-duplex' driver. However, usage of

the latter is strongly encouraged, as it allows smoother operation and will

only be supported in further development of the package.

- 7 -

3. Package structure and functions.

3.1. Basic tasks of the package.

The following are condensed functions of the five main tasks whlch

build up the kernel of the package. Somewhere, we also point to their

place in the OST reference model [I.] .

TASK FRAME:

Referring to ISO's seven layer Open System Interconnection (OST)

reference model, the FRAME task with the interface used houses the

functions of the two lowest layers. It controls the functioning of the

communication interface(-s) driving the packet switched line(-s).

This makes up the lowest- physical layer of OST. Besides that, the

major part of FRAME performs the functions of the line access pro-

cedure LAPB according to the X.25 recommendation. If some situa-

tion in the future would require usage of the older LAP procedure,

t h s could easily be implemented.

TASK PACKET:

Stays for the 3rd (network) layer of OSI. It performs the functions of

the packet level of X.25. In the presently implemented form of the

package there is no support for incoming calls, because normally the

user of a terminal served by the concentrator initiates the establish-

ment of virtual calls, rather than the remote DTE. This will change

soon with the im.plementation of the necessary routing task and

- 8 -

addition of some code in PACKET itself

TASK PADTSK:

PADTSK is in fact an implementation of X.3 ,X.28 and X.29 recommen-

dations of CCITT, but can hardly found its place in the IS0 reference

architecture. I t contains the functions of a PAD (Packet

Assembler/Disassembler). In the close future the same task will

become capable of handling host- asynchronous ports besides the

terminal ones.

TASK ACCESS:

Checks the access rights of the users approaching the PAD and main-

tains accounting files (one for each user).

TASK OPER:

Is the command interpreter for operator intervention. I t also is the

only means for attracting the attention of the whole package at the

very beginning of a terminal session.

3.2. The FTAXE task.

FRAME performs all the procedures and operations necessary to

exchange data according to LAPB of CCITT X.25 standard. The task can be

used to drive up to 16 communication lines. The task accepts orders

from a higher layer using the interprocess-communication mechanism of

the OS. Responses are sent to the hgher layer by means of Asynchronous

System Traps. Interrupt service routines are included to handle com-

munication via synchronous (DUP-11 or SAD) or asynchronous (DL-11 or

ASAD) interfaces. In the latter case a BSC-framing protocol compatible

with the one used by the IlASA Gateway has been implemented with char-

acter stuffing/destuffmg mechanisms and the format:

DLE,SOH,FRME- HEADER,INFORMATION(if any),DLE,ETB, CRC1, CRC2,PAD

If a synchronous interface is used, the standard LAPB procedures can be

performed, or it can be operated with DLE - stuffing as in the asynchro-

nous case. The task is structured into the following modules

a) The main module, which performs the whole initialization, contains

the interrupt service routines and decodes orders received from

PACKET (iugher layer). Further a fork process is contained in the

main module which initiates the state modules using different entry-

points associated with special groups of occuring events.

b) All possible events which may occur during link setup, transmission

and reception of 1-frames and disconnection of the link according to

the LAPB are divided into several event classes (as 'frame

receivedl,'frame transmittedl,etc.). New orders from the higher layer

task (PACKET) are handled as special events by the state modules of

the FRAME task. The state modules have different entry-points, each

of them associated with a separate event-class.

They perform the following steps:

- event recognition

- necessary operations accor&ng to LAPB

- start-reset or restart of a timer

- generation and transmission of protocol data units, i.e. 2-,S-

or U-frames

- queue management operations

- queueing of Asynchronous System Traps to the higher layer task

PACKET if there is a situation to be reported to the hgher layer

- performing state transitions to change the current state of the

link and to make a different state module responsible for the

event processing.

GENERATION OF F'RAME TASK.

To make the task FRAME fit the current requirements, to choose

several facilities and include the desired options a prefix file called

RSXMC.MAC must be set up. W s file contains the information of the file

[200,2OO]RSXMC.~C or [200,200]DOSRV.MAC or [200,200]DOSRV3.MAC ,

which respectively is a product of operating system generation plus sym-

bols added to specify con&tions for assembly of FRAME. By defimng dif-

ferent prefix files various versions of FRAME can be easily generated.

The gene ration of the FRAME task must commence with preparation

of the RSXk<C.MAC prefix file (its editing) to tailor it to the actual environ-

ment. To do this a file named RSXGEK.MAC is provided which contains all

symbols whch are necessary to define the features of FRAME. Then, the

generation command file FRAMEGEN.CMD can be used. Before starting

this command file observe the following:

1) Generate the file RSXMC.MAC in the target directory (i.e. directory

whch should contain the resulting task-image).

2) Include the task-builder command file FFL4METKB.CMD in the target

directory. It can be edited eventually to ex/include the online

debugger.

3) To generate FRAME for an RSX-11s system, include the system image

and the symbol-table file of RSX-1 IS in the target &rectory.

According to the questions asked by the command file, the following

can be specified:

1) Input-UIC (Directory containing the source files of FRAME)

2) Output-UIC (Target directory)

3) Listfile-UIC (Directory to contain the listing files)

4) Asynchronous interface used or not

5) System equipped with memory management or not

3.3. The PACmT task.

PACKET performs the functions of the packet level of CCITT X.25.

That means in this package the establishment, operation and release of

virtual circuits between DTEs. The new mechanisms specified in the 1980

release of the X.25 are not built in yet. The D-bit mechanism allowing

end-to-end acknowledgement is not supported, as it decreases the perfor-

mance of the network. The datagram service mechanisms are not pro-

vided, either.

The present implementation of the PACKET task assumes only one

task - PADTSK - representing the transport layer, i.e. using the network

layer services. In the future enhancements, the principle of single task

interfacing PACKET will probably be maintained, just PADTSK will be

replaced by a 'routing' task. Similarly to FRAME and PADTSK, PACKET has

been programmed as a finite state machine, consisting of a main and

several state modules. The main module does the necessary initializa-

t i o n ~ , etc. In the following, the main functions of particular state modules

are spelled.

- RST - is responsible for handling RESTARTS. If the FRAME task is up

and the data link is operational, a RESTART is performed by RST -

this happens after starting the PACKET task anew. Further actions -
e.g. call establishment - are abandoned until any of sent RESTART

REQUESTS is confirmed. A RESTART is also performed by

PACKET/RST if the task should be terminated. RST handles RESTARTS

initiated by network and solves RESTART collisions.

XP1 - is the module corresponding to the Ready s ta te of the logical

channel. The most important events handled by t h s module are ord-

ers from PADTSK to set up a new virtual circuit (VC) and receipt of

INCOMING CALLS. In the case of a TrC-setup order, XP1 generates a

CALL REQUEST packet, sends it using the services of FRAME and does

a state transition to XP2. If an INCOMING CALL is received, XP1 indi-

cates it to the network layer user in the transport layer. The normal

case would be that the task representing the transport layer would

accept the call and would order the PACKET task to complete the call

setup. This order causes XP1 to send a CALL ACCEPT'ED packet to the

network node (- TPA). Additionally XP1 does a state transition to the

Row control r e a d y s ta te (XD1). But as mentioned above PADTSK

does not support incoming calls yet and therefore these are not

accepted by the higher layer task in this version of the package.

XP2 - materializes the DTE Waiiing s ta te of the logical channel. The

expected event (we omit abnormal cases is this short description) is

reception of a CALL CONNECTED packet from the network node. In

this case XP2 sets the logical channel to state P5 (Call collision -

module XP5).

XP5 - solves events occurlng in the Call collision s t a t e . The DTE's

CALL REQUEST packet will be processed by the network and the

INCOMING CALL will be cancelled. Therefore XP5 expect a CALL CON-

NECT'ED packet to come. In that case the requested VC is established

and XP5 transits to XD1.

- XD1 - stays for the FZou; control r e a d y s ta te . It transfers DATA and

INTERRUPT packets via the logical channel bearing an established

VC. Network Service Data Units (NSDUs) to be transmitted through

the VC are segmented by);Dl and packed into DATA packets. The

DATA packets are queued in a transmit queue dedicated to the VC. A

straight flow control mechanism has been imposed on the interface

between PACKET and PADTSK. The higher layer task (P.4DTSK in our

case) is not allowed to request transmission of another NSDU until

the transmission of the previous NSDU has been completed. There-

fore, the transmit queue of a particular logical channel mentioned

above, contains only DATA packets of the same NSDU. XD1 sends one

packet after the other from the transmit queues of eachVC, depend-

ing on the state of the windows opened by the network node for each

VC, according to the flow control rules of the X.25. The boundaries of

a NSDU during its transport through the network are indicated by

using the M-bit in the DATA packet headers. The FRAME task needs a

receive buffer for each VC. Ths must be specified by the PADTSK in a

Receive order. Received DATA packets are queued-up in the receive

queue of the concerned VC. The window opened for the network node

on a particular logical channel is rotated only after one DATA packet

has been transferred from the receive queue into the receive buffer

of the PADTSK. Therefore the number of DATA packets in the receive

queue of a VC cannot exceed the window size W agreed with the net-

work administration (Albert Labadi). If no receive orders come from

the PADTSK, up to W DATA packets can be received but the window

will not be rotated by PACKET and the netwqrk node will stop

transmission of DATA packets XD: sends updated lower window edge

values as soon as possible - not to slow down the data flow from the

node. That is why it uses RECEnT READY packets to carry the ack-

nowledgements if there are no DATA packets to be sent. XD1 also

sends INTERRUPT packets onVC-user's request (order). A new INTER-

RUPT packet can only be sent if the previous one has been ack-

nowledged by the network node (that means that the peer network

entity has confirmed the interrupt). INTERRUPT packets are sent

and received independently from the flow control applying to DATA

packets. They have their own flow control as mentioned above.

If a RESET INDICATION is received, XD1 confirms it and carries out

a reset operation of the particular logical channel accordmg to X.25.

Additionally it indicates this condition to the PADTSK to enable it to

start error recovery procedures in that layer. If any protocol errors

are detected, or if requested by the PADTSK , XD1 initiates a Reset

operation on the associated logical channel by sendlng a RESET

REQUEST packet to the network node. A state transition occurs then

to state D2 - module XD2.

- XD2 - thrs module handles all events which can occur in the DTE

Reset request state. A RESET CONFIRMATION packet is expected to be

received from the network node. If this happens, the reset is corn-

pleted by XD2 and the condition is reported to the &her layer by

appropriate AST. A state transition occurs back to the Dl state and

the normal data exchange continues.

If there comes to a serious protocol violation in the Pl,PS,Dl or

D2 states or if the hgher layer tasks request so, the VC is cleared by

PACKET. The actual state module sends a CLEAR REQUEST packet

and transits the logical channel state to P6 to wait for a CLEAR CON-

FIRMATION packet.

- XP6 - corresponds to the DTE n e a r request state (P6). If the

expected CLEm CONFIRMATION or a CLEAR INDICATION is received,

the associated virtual call is cleared, the data structures allocated

for it are returned to the task's dynamic pool and the hghe r layer is

informed that the VC has been cleared. All the state modules men-

tioned above except XP1 must be able to process the event 'CLEAR

INDICATION packet received'. This event leads to the termination of

given VC by the current state module in the same manner as XP6

does it.

- XR1 - finally t h s module handles all the events whch can occur in

the DTE Restart request s tate (Rl) of X.25 . If a Restart is performed

(see RST module), all active logical channels are set to the R1 state.

This is a frozen state--it means that further events are ignored, until

the Restart operation has been completed and all VCs have been ter-

minated (=cleared).

Any parameter settings must be done in code. Newly assembled

module should replace the old ones in the PACKET.OLB object library. The

main module is kept separately. There is a command file PACKETBLD.CMD

for linking the task PACKET.

3.4. The PADTSK task.

The PADTSK is a realization of a Packet Assernbl~~/Disassembl~ facil-

ity (PAD). It is a converter between packet streams on different logical

channels of the packet interface(s) and their respective character

streams through the terminal ports. It allows the terminal user to

- select a network address to establish a connection to the addressed

DTE;

- send & receive data over the established path;

- issue PAD commands to modify the behaviour of it or to enquire

about it 's parameters.

The full description of the PAD (wbch is supposed to be a facility of a pub-

lic data network) is in X . 3 recommendation of CCITT. The relevant formats

and procedures are described in X.20 . In the SM-4 package only an essen-

tial subset of all the combinations of PAD parameters is supported.

PADTSK uses the same intertask communication means of the OS

as do the other tasks in the package. It is also implemented in a form of a

finite state machine and has the usual structure of one main and more

(=3) status modules.

a) The main module receives and analyses orders from the OPER and

ACCESS tasks. The orders can require the following actions:

I Ordered ac t ion 1 S e n d i n g t a s k I
1

PAD initialization ACCESS

of a terminal to the PAD I ACCESS !
Kill PADTSK 1 OPER

1 List connected terminals 1 OPER

Mount DATEX 300 ports I OPER

Disconnect defined terminals

Connection of a teminal to the PAD consists mainly of:

OPER ~

- allocation and initialization of a data structure describing the

terminal status;

- attaching the PADTSK to the terminal - so that all terminal input

is passed to it. Here, a feature of the 'full duplex' terminal

driver called the 'typeahead buffer' is used with advantage. This

is one of the main reasons for preferring RSX-11M v.3.2 or

DOSRV3 as the host OS, as only these support the 'full duplex' TT

driver.

- putting the PAD into the PAD Waiting state in which is is ready

to accept commands from the terminal (ST1 is made the

current module).

b) The state modules ST1 - 3 handle events connected with terminal

input/ output and with the traffic through the interface

PADTSKIPACKET. Separate entry points in the state modules are

used for these two groups of events (ASTs).

- ST1 corresponds to the PAD Waiting s ta te , when any terminal

input is interpreted as a PAD command. So it is actually the

command interpreter of the PAD. If the user entered a valid

selection command, the necessary data from the command is

passed to the PACKET task to be used for buildlng the CALL

REQUEST packet. A state transition to ST2 is made.

- ST2 remains the current state module while the Connec twn in

R o g r e s s is the current state of the PAD. At this time, any

further input from the terminal is ignored, just the bell rings on

the terminal to indicate this. Receipt of a CALL CONNECTED

packet by PACKET is reported to PADTSK and it transits to ST3.

If the call was unsuccesful, a transition back to ST1 takes place.

- ST3 handles the data transfer phase. It is left a t clearing of the

call by either of the parties (user entered the CLR command or

PACKET indicated the receipt of CLEAR INDICATlON packet from

the network) .

The functioning of PADTSK depends very much on the momentary

setting of the PAD parameters. The actual values of these are kept in

each terminal's data structure. The main module contains also

tables called profiles. These are sets of predefined values of PAD

parameters. The user can change the parameters individually uslng

the SET command of the PAD, or he can issue the PROF command to

change them all a t once. The incompleteness of the implementation

of X.3, X.28 consists of the fact, that merely those values of PAD

parameters contained in the predefined profiles are supported.

Enhancement of this support will depend on operational experience

and requirements imposed in routine operation.

The value of some parameters is of major significance for the PAD

behaviour and some of them are checked even before the data is

passed to state modules - in the AST service routines: e.g. the user

can recall the attention of the PAD'S command interpreter being in

the data transfer phase entering a special character (CTRL-P) - if

the PAD recall parameter (par.no.1) is set. The PAD echoes terminal

input only if the par.2 is set, etc.

The PADTSK task supports another recommendation of CCITT - the

X.29. This allows the far end DTE (can be e.g, a host) to communicate

with the PAD in SM-4 in order to set or read the PAD parameters,etc.

One typical usage of t h s could be to abandon echoing when the host

password is being entered. DATA packets carrylng this 'remote DTE-

PAD' conversation are distinguished from those carrying user data

by the Q-bit set in the general format identifier field of the DATA

packet header.

A few words about the interface between PADTSK and PACKET

tasks. The following are the valid event codes carried to PADTSK in

the AST parameter block:

connected

reset request sent

send complete

a call has been established

on PAD request

see 3.3

xrnission of another NSDU has been

finished, PACKET can accept

another NSDU

data packet (Q=O) recvd. it 's reception by PADTSK v~ill

be confirmed to PACKET by

an order, packet is typed

on the terminal

interrupt packet recvd. ignored by PADTSK (the interrpt.

mechanism of PACKET isn't used

by PADTSK)

clear confirmation recvd. virtual call has been cleared,

this is reported to the terminal

clear indication recvd. call has been cleared by

the other party, clearing

cause is typed on the term.

reset confirmation recvd. this is indicated to the term.

as reset by PAD unless requested

by user

reset indication recvd. indicated t o the user together

with the initiator of the reset

incoming call recvd. not supported yet - ignored

interrupt conf.recvd. ignored

data packet (Q= 1) recvd. processed according to X.29

And here we just summarize the order codes sent t o PACKET:

- initialization order

- set up X.25 virtual call

- clear logical channel

- reset logical channel

- receive DATA packet

- perform exit

- send DATA packet with Q=l

- set up X.29 virtual call

To facilitate necessary communication with ACCESS there are

appropriate codes defined a t that interface, too. The communication

there mainly insures proper updating of accounting files for each user.

The specifics of PADTSK generation concern mainly proper choice

of profiles for different terminal ports, or perhaps defining some new,

more suitable ones to fit some particular needs. This must be done in the

source code of the main module.

3.5. The ACCESS task.

The ACCESS task has two main functions:

-to check access rights of the users;

-to record accounting information during each session.

The access control is done on a local account number and associated

password basis. It has nothing to do with access to particular DTEs. Once

the user passes through t h s checkpoint, ACCESS instructs PADTSK to

take further care of the user's terminal. Two files exist for each account

on the accounting device :

- The first file contains identifying information about the account

number holder - like name,password,address, etc.

- The second file is the accounting file written in fixed record length

format. It contains information about datektime of each VC's and

session's establishment, about the number of xmitted and received

data segments,etc. When a new session is begun or a new VC is esta-

blished, a new record is appended to the accounting file. The seg-

ment counters and date-ttime items are periodically updated based

on information carried to ACCESS in ASTs initiated by PADTSK.

3.6. The OPER task.

Allows operator intervention. At the same time OPER passes the ini-

tial user request for connection to the ACCESS task. I t has a defined set

of commands for each controlled task. Based on the entered command

OPER builds an order and sends i t to the addressed task. OPER is installed

as a utility (like a command in UNTX terminology). A command line for

OPER has the foll~wing syntax:

>opr taskname /function[:paraml][:param2]. . . ;where taskname is one

of PADTSK,PACKET,FRAME, ACCESS

or others (see later); function is one

of a particular set of functions

defined for the given task.

We do not list here the total overview of OPER commands, instead, we

show some frequently used ones:

>opr access /connect: 1234567 ;is the initial user command to

establish a session via the concen-

trator. 1234567 is a user account

number (7 digits). Pseudoname

IIASA can be used instead of ACCESS

in this command.

;lists all terminals connected (i.e.

having a session) to the concentra-

tor.

;to shut down PADTSK if things go

wrong or if it should not be used

anymore.

OPER plays a key role in usage of different debugging tools in the pack-

age.

4. Development support tools.

There are two classes of development support tools in the package:

- tasks simulating particular layers;

- the tracing facility.

The principle of the former is based on the layered structure of the pack-

age. The point is to enable insulation of a particular layer (represented

by a task) from the real running environment and to place it instead

between two simulated layers - represented by these debugging tasks. In

such a test environment the designer can "manually" trrgger the appear-

ance of various events and control the flow of data units (frames, packets,

NSDUs) to and from the observed layer. In this manner he can force the

system into non-common states and observe its behaviour in them. The

package contains the following simulation tasks:

- TFRAME - simulates the interrupt service routines of the FRAME task

and so allows to run it without real line. Driven by orders from OPER,

FRAME displays "outgow" frames and injects "incoming" ones. It

indicates on the terminal different occuring events and according to

th.ern triggers the state modules of Level2. (They are identical with

FRAME).

- TPACK - simulates the PACKET task. Simultaneous use of

FRAME,TPACK and OPER represents a complete testbed for the 2nd

layer task.

- L4SIM - is a simple simulation task capable to receive, transmit and

display data segments to be carried in 3rd level packets. Orders

from OPER can instruct L4SIM to require from PACKET all the

functions p ro~lded by the network layer. Thus, proper functioning of

PACKET can be tested in off-line (with TFR-AME) or on-line (with

FRAME) regime.

The second main development support tool is the tracing facility. For

debugging of dynamic, especially time-critical, sections of programs it is

sometimes invaluable. If desired and defined so at generation time (by

editing RSXMC.MAC), FRWE can collect tracing information (level 2 and 3

headers) on all transmitted and received frames/packets. The tracing

data are perio&cally passed to the WTRACE task (if installed), which in

turn writes them onto two disk files - one for transmission, one for recep-

tion. Additionally, relative time in 20ms ticks accompanies the stored

header data. After stopping the system, RTRACE task can be run to con-

vert the collected binary data into human-readable format. One can

print-out the tracing protocol using the PIP utility of the OS. Appendix

shows a fragment of a trace.

5. Operation.

In this chapter we describe actions performed by the SM-4 operator

wishing to start , stop or control the runnlng package. We do not speak

here about using different development support tools, just about normal

operation.

The following is the sequence of commands to be entered by the

operator to start the system (suppose OS is running and a disk volume

containing the package is mounted and assigned to syO:; each command

is terminated by pressing RETURN).

>run access

;initiates a command (script) file,

which installs the tasks of the pack-

age and makes the necessary

assignments,

;starts ACCESS, wbch initiates a

chain reaction of starting subse-

quently PADTSK. PACKET and

FRAME.

After t h s , FRAME automatically begins attempts to establish connection

on its level, sending SABM frames or answering with UA the incoming

SABMs. If a given number of attempts, separated by timeout fail, or if it

even recognizes any abnormal state of the physical line, it prints a mes-

sage on the console terminal. Here "LINE ii NOT READY" means that the

modem did not set the CLEAR TO SEND bit, or there is no CARRIER. "SERI-

OUS ERROR 4 ON LINE ii" (e.g.) means that FRAME couldn't establish con-

nection, though the line doesn't show any apparent malfunction.

The PACKET task, after belng started immediately sends a RES-

TART REQUEST packet. It cannot be triggered to any further state until

the restart procedure is completed. Then, the system is ready to accept

users. If any malfunction occurs, and it is not clear from the printed

diagnostic messages, the extensive comments in the source programs

come to their value. If it becomes necessary to stop the blundering sys-

tem it is good to know, which tasks are still active. The MCR (REX shell)

>act /all ;command can serve well here.

Then

>opr padtsk/kill

Sometimes, the MCR

>abo taskname

;should normally stop PADTSK and

ACCESS;

;should stop PACKET;

;should stop FRAME (and WTRACE-if

used).

;command can be also used for

aborting tasks.

Each task's exit is reported on the console terminal.

6. User commands.

A user, logged into the Sh!-4 OS can establish a session with the con-

centrator package entering

>tic iiasa/ connectiiiiiii ;where iiiiiii is h s network access

account number.

He is than asked to

ENTER CONNECTION PASSWORD:

His reply must be the password recorded in his user data file (see first

file mentioned in 3.5). If it doesn't, or if there is no such file at all, hs

access is barred.

After passing the access check, PADTSK attaches to his terminal:

i.e. the session has begun and all the user input is directed to PADTSK.

The. terminal will remain in 'cornand state' until the user instructs the

PADTSK to build up a virtual call. In the command state every line of

input is treated as a PAD command. (For extensive description of PAD

commands see the X.2B recommendation of CCT'IT).

Entering a 'selection command' tells the PAD to establish a virtual

call to the addressed network entity (remote DTE) and sets the terminal

into 'connection in progress state'. The format of selection command

should be (according to X.2B) :

[facility field]-address field<P>(<D>[call user data]

where fields in [I are optional and -I<> are alternatives. The present

version or PADTSK does not support user entered facility field, so that the

actual f orrnat is

-address field<P>]<D>[call user data]

The address field may contain max. 15 digits. The data from this com-

mand are used further by PACKET to build up a CALL REQUEST packet.

After entermg the connection in progress state, the PAD rejects any

further user input by ringing a bell instad of echoing it. This applies until

- either the VC is established and a COM indicates t h s on the terminal

screen,

- or the VC couldn't be built up and an appropriate PAD service slgnal

informs the user about this and about the reason (see X.28).

Being in the data transfer state, the user can (if the PAD parameter No. 1

is set) escape from it by entering CTRLnP . Ths recalls the attention of

PAD'S command interpreter for the subsequently entered single com-

mand line.

An established VC can be cleared entering

CTRL-P CLR

or by instructing the remote DTE to clear the call. The user should then

wait for indication of successful completion of the clearing (CLR CONF or

CLR DTE). Then he can either enter another selection command or finish

the session by issuing the EXIT command.

The PADTSK supports user input editing (character delete by DEL in

command state and by CTRLnH=backspace in data xfer state, line delete

by CTRLnU, h e display by CTRL-R). The default profile is a UNTX oriented

one, which provides PAD echo. The data forwarding characters are

RETURN, LINE F E E D , CTRL-C, CTRLAS, CTRL-Q, CTRL-U, CTRL-R and DEL.

In this profile, however, data xfer state input editing is disabled by default

(can be enabled using the SET: command of PAD). T h r , and the choice of

data forwarding characters allows the user to use U N E terminal driver

editing possibilities (after setting the editing characters to fit to the data

forwarding ones by the S T command). In t h s way a straightforward

way of input editing when working with UNIX via concentrator is achieved.

The output from UNIX, stopped previously via CTRL-S can, however, be

unblocked only by CTRL-Q.

[I] IS0 DIS 7498, @en S y s t e m s In terconnect ion - Basic Re ference
Model.

[2] CCITT X.3, Packet as sembly /d i sassembLy fac i l i t y (PAD) in a
publ ic d a t a n e t w o r k , 1980.

[3] CCITT X.28, DTE / DCE i n t e r f a c e for a s tar t - s top m o d e DTE
access ing t h e PAD in a publ ic d a t a n e t w o r k s i tua ted in t h e s a m e
c o u n t r y , 1980.

[4] CCITT X.29, Procedures fo r e zchange of control i n f o r m a t i o n a n d
user d a t a b e t w e e n a PAD a n d a packet - mode DTE or ano ther
PAD, 2 980.

[5] CCITT X.25, In t e r face be tween DTE a n d DCE for t e r m i n a l s
operat ing in packet m o d e on publ ic d a t a ne tworks , 2980.

