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LOCAL STRUCTURE OF FEASIBLE SETS
IN NONLINEAR PROGRAMMING. PART II: NONDEGENERACY

Stephen M. Robinson

University of Wisconsin - Madison
ABSTRACT

In this paper we examine the local structure of the feasible set of a
nonlinear programming problem under the condition of nondegeneracy.
We introduce this condition, examine its relationships to known
properties of optimization problems, and show that when it holds at

a given point the portion of the feasible set near that point is
diffeomorphic to a simple convex set (often polyhedral). Moreover,
this diffeomorphic relation is stable under small changes in the

problem functions.
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0. Introduction.

In this paper we study the system of nonlinear constraints

h(x) =0
(0.1)
xelngq,

where h is a C" function from an open subset Q of R" to R" (r>1),

and C is a nonempty closed convex set in R". We shall be concerned with
properties of the set F of points satisfying (0.1) under a certain
regularity condition that we term nondegeneracy. This condition is
defined in Section 1, where its relatienships to standard constraint

qualifications used in nonlinear programming are also explored.

In Section 2 we introduce perturbations into the function h, and

we show that under nondegeneracy the portions of the feasible sets
of (0.1), and of all problems "“close" to (0.1), that are near Xq
are mutually ¢’ diffeomorphic. Geometrically, this means that if we
do not perturb h very much then we are essentially working with

the same problem, up to a C" transformation of the coordinates.
Moreover, this common feasible set has, with the correct choice

of coordinates, a very simple structure: it is just the intersection
of the part of C near X, with the tangent space to h'l(O) through
Xy The coordinates through which this simplification is made

are easy to compute, and this means that nonlinear optimization
problems whose feasible sets look 1ike (0.1) can actually be

regarded, locally, as problems of optimization on a fixed convex




set which will be polyhedral if C is polyhedral.

The main point of Section 3 is to apply this point of view to establish
some properties of local minimizers of such problems. We show that all
such local minimizers must lie on a certain face of C, so that the
optimization problem in question may be further simplified by
restricting one's attention to that face of C. Finally, we show that
when the problem is thus restricted the local minimizer in question
inherits from the original problem the property of nondegeneracy,

so that all of the results established under the nondegeneracy

hypothesis will remain valid for the restricted problem.

1. Nondegeneracy.

In [4] we introduced a fundamental decomposition of R" around a

feasible point for (0.1), and we used it to prove various results

about the feasible set F = C n h'l(O). Since we shall use the

same decomposition here, we first summarize its properties.

Given a point Xq € F, denote h’(xo) by D. Let M be the subspace
of R" parallel to the affine hull A of the set C, and assume
D(M) = R"™. Denote M n kerD by K, and Tet L and J be subspaces
complementary to K in M and in ker D respectively. Then one has

R"=J6Ke L, and one can define the projectors P ,and P

3 Pk L
onto the spaces indicated along, in each case, the other two spaces.

One has P, + Py + PL = I, and the product of any two of these

J
three projectors is zero. We shall denote by P0 the projector

PJ + PK onto ker D along L.




With these definitions the restriction of D to L is a bijection
onto Rm, and this bijection has an inverse D : a linear operator
from R" to R" whose image is L and for which DD” = I and DD = P
One way to compute D~ is to let E be any bijection from R™ to L,

then set D™ = E(DE)'l; the inverse of DE exists because we assumed

The condition of nondegeneracy that we introduce here deals with
the relationship of the spaces just described to the convex set C
appearing in (0.1). Geometrically, it says that the space L can be
chosen so that it is complementary to the tangent space (ker D) to

-1

h ~(0) at Xy while at the same time for any x in C near Xo movement

along L near x does not cause one to leave C.

DEFINITION 1.1:

Let X4 satisfy (0.1). We say Xs is a nondegenerate feasible point

for (0.1) if D(M) = R™ and there exist an open neighborhood N of

the origin in R" and a subspace L, complementary to K in M, such that
cn (x0 +N)+LnNeC, (1.1)

It might appear that instead of (1.1) one could impose the simpler
condition that Xy * L n Nce C. However, this condition is not equivalent
to (1.1), and in fact we shall need (1.1). To see that the two
conditions are not equivalent, consider the closed convex cone C in R3

defined by

iz 2
Ci= ((X12X05X3) X 2 0, x5 2 0, X5 < 2Xyx5}




Evidently aff C = R°. If we let x

o i= (0,0,1) and K := R%x {0}, then
we can let L := {0}2 xR, and for an appropriate neighborhood N of
the origin in.R3 we have Xg t L n N < C. However, for any positive

€ we have (ez,e,l) € C, but for all small positive &, (62,8,1-5) ¢ C.

Hence the condition (1.1) is not satisfied.

It is not difficult to show that if L is complementary in M to
M N ker h'(xo), then for x near Xys L is also complementary to
M n ker h'(x). It follows easily that if X, is a nondegenerate feasible

point for (0.1) then so is each feasible point sufficiently close to x.

If Xo is a nondegenerate feasible point for (0.1) then it is

necessarily also a regular point in the sense of [4]. To see this,

note that L @ K = M, so that D(L) = D(M) = R™, Therefore, for the
neighborhood N of (1.1) it must be true that D(L n N) is a neighborhood

of the origin in R". We can rewrite (1.1) as
(c-xo)nN+LnNcc-xo,

and by applying D to both sides we see that D(C - xo) is a neighborhood
of 0 in R". But this is one of the equivalent ways of expressing

regularity (4, Prop. 1.1].

There are several ways in which (1.1) might be satisfied. One obvious
way is for C to be a cylinder of the form Q+C', where Q is a subspace
and C' is convex. If Q+K = M, then the requirement is satisfied. Of
course, nondegeneracy may hold also under much less stringent conditions,

since (1.1) deals only with local behavior.




In case C is polyhedral, as it is in many practical applications,

then the tangent cone to C at Xq9 Tc(xo), coincides with C-xo near

the origin. In that case we can obtain a simple characterization of

nondegeneracy in terms of TC(xo) and its polar NC(Xo)’ the normal

cone to C at xo. The statement of this characterization uses the

idea of the lineality space of a cone Z: this space, written linZ,

is the largest subspace in Z (i.e., Z N (-Z)).

PROPOSITION 1.2:

Suppose C is polyhedral and Xs is feasible for (0.1). Then each of the

following is necessary and sufficient for X5 to be nondegenerate:

a. DI1inTe(x ) =R"

b. {ulD*u € aff NC(XO)} = {0}.

PROOF:
The two conditions are equivalent since
. L L
D[1111Tc(xo)] = D[ {aff Nc(xo)} 1 = {ulD*u € aff NC(XO)} .
To show that (a) implies nondegeneracy, we first observe that
Tin TC(xo) < M, so under (a) we have D(M) = R™. Next, we note that

to establish (1.1) it is enough to show that
1in TC(XO) +K=M. (1.2)

Indeed, if (1.2) holds we can take L to be any subspace of lin TC(xo)

that is complementary to K in M. Then since C is polyhedral, T.(x

C( o)
coincides with»C-—xo near the origin, so that (1.1) will hold for an

appropriate N.




To establish (1.2) we need only show that Tin TC(xO) + K = M, since
the reverse inclusion is trivial. Let m € M; since D[1in Tc(xo)] =R"
there is some £ € 1in TC(xO) with D¢ = Dm. But then m-¢ € K, so

m=4L+(m-£) € 1in TC(xo)-+K, which proves (1.2).

We next show that nondegeneracy implies (a). We are given that
D(M) = R™ and that a subspace L exists, complementary to K in M,
for which (1.1) holds for some neighborhood N. In particular, it
follows from (1.1) that LN N < C-xo. If we write cone A for the

cone generated by a set A, we then have
L =cone L NnNccone (C-xo) < ¢l cone (C-xo) = TC(Xo)’

so L < 1in TC(xo). But we observed earlier that if nondegeneracy

holds then D(L) = R", so
R" = D(L) = D[1in Te(x)1 s

and this completes the proof.

At this point, it may be helpful to review some special cases in
order to put the idea of nondegeneracy into perspective. First, let
us consider the linear programming problem in which C = R2 and

h(x) = Ax -b. If X, is a basic feasible point corresponding to a

partition of A into [BN], where B is abasis:for}fh then we have

where




- 0’1
! L R otherwise .

However, since x, is a basic feasible pbint the only possible indices
i for which (xo)i could be positive are 1,...,m, and therefore

Tin Tc(xo) is contained in the subspace of the first m coordinates.
But for nondegeneracy as expressed in part (a) of Proposition 1.2

to hold, we must have dim 1inTC(xo) =m: that is, 1in T (xo) must

C
be exactly the subspace of the first m coordinates. However, this
in turn implies that (xo)l,...,(xo)m must all be positive, so we
see that in this case nondegeneracy in the sense used here reduces

to the standard concept of nondegeneracy in linear programming.

For another example, consider a system of nonlinear constraints

of the type often seen in the literature:

0
(1.3)
0

where 9 and g, are differentiable functions from an open set W c:]Rk

into RP and RA respectively. To rewrite (1.3) in the form (0.1),

let n =k+pandm=p+q; write x = (z,s) with

h(x) = h(z,s) = [gl(z) ' S]

9,(2)

and take C = kaRE. If z

o is feasible for (1.3), then with Sy = -gl(z)

the point Xy = (z_,s.) satisfies h(x

o 0) =0, Xo € C. We have

o)




g.(z ) I
D= h'(XO) = { 1" ] ’
95(z,) 0
and
Tin Talx,) =R (xf_0,)
with
f {0} if i €A
Q; = 1 o ’
R if 1 €A

where A is the set {i € {1,...,p}|gl(zo)1 = 0} of indices corresponding
to active inequality constraints. Therefore D will carry 1lin Tc(xo)
onto RP*9 if and only if the set (9}(z,);11 € A} U fg5(z;) 11 < § s @
has rank equal to the sum of q and the cardinality of A: that is, if

and only if the gradients of the constraints active at z_ are linearly

0
independent. Thus, here again nondegeneracy corresponds to a well

known property for the special case under consideration.

One might reasonably ask whether, in the case of a polyhedral set C,
a representation like (1.3) could be used instead of (0.1). That is,
could we simply represent the set C by a system of linear inequality
and/or equality constraints, adjoin those constraints to the equation
h(x) = 0, and thereby obtain an equivalent system of the form (1.3)?
Of course, the answer is yes insofar as this procedure maintains the
same feasible set, but it is no in the sense that in the new system
a given point may be degenerate whereas it was nondegenerate in the

representation (0.1).
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For an exampi# 'y illustrate this difficulty, consider the system
<a,x> =0
(1.4)
xecC,

where a is a vector in RA with a # 0 and C is the polyhedral convex

set defined by

C = {(xl,xz,x3,x4)|x3_; maxilxll,lle}} .
The origin is feasible for (1.4), and we have

1in Te(0) = ©° xR <R .

Evidently the image of 1in TC(O) under the linear operator <a,-> is R,
so by Theorem 1.2 the origin is a nondegenerate feasible point for
(1.4). However, if we try to represent C by a system of linear

inequalities we obtain the system

1 0 -1 0
1 0 -1 0
o 1 -1 o |*=0
0 -1 -1 0 (1.5)

<a,x = 0.

It is not hard to show that (1.5) is a minimal representation of the
feasible set in the sense of Telgen [6] . Thus, any representation
must have at least five linear constraints, and all five must pass
through the origin since the solution set of (1.5) is a cone. But
then their gradients (in RA) cannot be linearly independent, so that

the origin is a degenerate feasible point.
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It follows that the representation (0.1) is indeed more general,
at least for purposes of representing nondegeneracy, than is
(1.3): that is, there exist feasible sets which can be

represented in the form (0.1), whose nondegenerate points become
degenerate under any equivalent representation of the form (1.3).
This may indicate that (0.1) is a better choice than (1.3) for use
as a "canonical" representation for the feasible set of a

nonlinear programming problem.

2. Local structure of the feasible set.

Having the idea of nondegeneracy as introduced in Section 1, we can
now proceed to study the structure of the feasible set near a non-
degenerate point Xo* In fact, we are interested not only in the
feasible set of the given problem but also in the feasible sets of
all problems close to it in an appropriate sense. To make this

idea precise we introduce a parameter p lying in some open subset
IT of a real Banach space, and a function h: Q@ xII +R". The set we

shall study is the set of x € Q satisfying
h(x,p) =0, xe€C, (2.1)(p)

and we denote the set of all such x by F(p). To link this notation
to the analysis of Section 1 we specify a point Po € I and identify
the "unperturbed” function h(x,po) with the h(x) of Section 1. In all

of what follows we assume that h(-,-) is C' (r > 1).
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By applying the implicit - function theorem to the function
F(x,¥,p) = D'h(x,p) + (I-D7D)[x - (x; +¥)]

using the hypothesis that D(M) = Rm, one can prove the following

theorem.

THEOREM 2.1:

If D(M) =R", there exist neighborhoods U of the origin inR",

vV of p, in I, and W of Xo ig'Rn, and a unique function x:

UxV - W, such that:
1_) X(O’po) = Xo’

and for each y € Uand p €V,

i17) Po[x(y,p)-xo] = Pcy .

Further, x is ¢’ on UxV,

We omit the proof since it is almost identical to the proof given in
(4] ; the only difference is in the presence of the parameter p, which
causes no essential change in the argument; of course, one has to
appeal to a version of the implicit - function theorem for Banach
spaces (e.g., [1, Th. 1(4.XVII)]). In many applications the space

of perturbations may be finite - dimensional, but we have made it a
Banach space here in order to cover situations in which it may be,

e.g., a function space.
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The main use we shall make of Theorem 2.1 will be a proof that if
Xo is a nondegenerate feasible point of (2.1)(p0), then for each
p near p, the portion of F(p) near X5 is ¢’ diffeomorphic to the
portion of the fixed convex set A := K n (C-xo) that is near

the origin. Thus, under nondegeneracy the local structure of the

sets F(p) near X, does not change. The next theorem formulates

this result.

THEOREM 2.2:

Assume Xo is a nondegenerate feasible point of (2.1)(p.). Then

there exist open neighborhoods U, < U, V, <V, and W, = W, such that

if for each p € V, one defines

= x(-,p)IU, N A

<
I

and

[ar]
1]

Po[(-) = X)Wy N F(p) »

then wp is a C" diffeomorphism of U, N A onto W, nF(p), and 8 is

its inverse.

PROOF:
Recall that since Xo is a nondegenerate feasible point there is a

neighborhood N of the origin in R" such that
(C-xd nN-+LﬂT4CC-xo. (2.2)

Shrink the neighborhoods U, V,and W of Theoyrem 2.1 to open neighbor-
hoods U,, V., and W' such that if y e Kn U, p €V, and z € W then

y € N, and such that U, is open and convex with
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a) x(y,p) € W' and PL[x(y,p) -x0] €N,
and

b) z - Xq €N and -PL(z -x)eN.

o)

1

Finally, let W, = W' n [x) + P "(U) .

Choose any p € V,; we first show that LlJp: Ue N A=W, NnF(p) and that
epo‘bp is the identity of U, N A. Suppose y € U, N A. Then as
Po[x(y,p)-xo] = y, we have x(y,p) - Xy = (Po'+PL)[X(y,p)"XJ =
=y + PL[X(y,p) - xo] € (C-xo) AN+ LAONc C-xo. However, we
already know h[x(y,p)] = 0, and we know x(y,p) € W' and
Po[x(y,p‘)-xo] =y € U,, so x(y,p) € W,. Thus x(y,p) € W, n F(p),
S0 wp: Ue N A= W, n-F(p). If we apply ep we find that

= 3 = ’ - =Y, 0 i
(ep owp)(y) ep[x(y p)l Po[x(y p) xo] Yy, SO 0 ° Up is the
identity of U, N A.

Now suppose that z € W, n F(p). Then ep(z) = Po[z-xO] =

= (I - PL)(z - xo) € (C-xo) NN+LANc C -, However, since
z € C we have Z=X, € M, so Po(z- xo) € K, and since z € W, we
know P (z-x ) € U,. Thus ep: W, N F(p) » U, N A. Now if we set
y = ep(z) we have z € M+x = A, h(z,p) = 0 (since z € F(p)), and
Po(z-xo) = ep(z) = y. By the local uniqueness assertion of
Theorem 2.1 we then have z = x(y,p) = (¢p<:ep)(z), SO thattbpo 6p
is the identity of W, n F(p). This completes the proof.
Evidently, if p; and p, belong to V, then by, 00y, is 2 ¢’
diffeomorphism of W, N F(pl) onto W, N J(pz) whose inverse is

g o epz' This provides a significant contrast to the situation

P1
of [4], in which only reguiarity (as opposed to nondegeneracy)
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held. For example, consider the regular system

(1 -1 p)x=0

X € REXR,

where Py = 0. The feasible set F(po) is the half - plane
{(@aB8) a> 0, B € R}, of dimension 2 in R>. The origin is

a degenerate feasible point. If p is now changéd from O to small
positive or negative values, then the new feasible set F(p)

acquires a vertex at the origin and therefore cannot be diffeomorphic

to F(po).

We can obtain a more detailed picture of the structure of F(p)

near x, if we examine the faces of A that meet U,. Every point of A
is in the relative interior of exactly one face of A [5, Th. 18.2].
The intersection of such a relative interior with the open set U,
is again a relatively open convex set, so for each p € V_ its

image under wp is a C" manifold whose dimension equals that of the
face in question. The collection of all such manifolds must form

a partition of W, n F(p), so we have the following theorem:

THEOREM 2.3:

Assume the notation and hypotheses of Theorem 2.2. For each p € V_,

the set W, n J(p) is a union of mutually disjoint c’ manifolds, each

being the image under wp of U, N ri F for a distinct face F of A.

If C is polyhedral then for each p there are only finitely many such

manifolds.
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PROOF :

Everything has been proved except for the last statement, which
follows from the fact that a poiyhedral convex set has only finitely

many faces [5, Th. 19.1].

3. Application to nonlinear programming.

Here we apply the results of Sections 1 and 2 to study the local

solutions of the noniinear optimization problem

min f(x,p)
X (3.1)(p)
subject to h(x,p) = 0, x € C,

where f is a C" function from QxI into R, and where h and C are as
previously defined. Note that if Xo is a nondegenerate feasible point

for (3.1)(p0), then Theorem 2.2 says that for p € V* the sets
W ncChn {xlh(x,po) =0, U*n (C-xo) n K

are c" diffeomorphic copies of each other. Hence, if we are interested
only in the behavior of (3.1)(p) near Xos We might just as well study

the problem

min ¢(y,p)

Y (3.2)(p)
subject to y € A,

where we have set
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¢(y,p) = flx(y,p),pl = [f(-,p)Otbg (y) .

Note that the feasible set of (3.2)(p) is a convex set, independent
of p, which will be polyhedral if C is polyhedral. For the rest
of this section we make the blanket assumption that C is polyhedral

and X, is a nondegenerate feasible point of (3.1)(p0).

We shall exploit the relationship between (3.1)(p) and (3.2)(p) in
several different ways in what follows. One first result is a simple
proof of the well known first order optimality condition. It will

also yield geometric insight that we can apply to find other results.

PROPOSITION 3.1:

If x, is a local minimizer of (3.1)(p0), then

f (XgsPg)Py € =Ne(X4) - (3.3)

PROOF:

Since Xo is a local minimizer of (3.1)(p0) the origin is a local
minimizer of (3.2)(p,). Suppose d € T.(x ); since L = Tin To(x )

and Pod =d- PLd, we have Pod € Tc(xo). However, since d € Tc(xo) c M,
we have PJd = 0, and thus Pod = PKd € K. Hence Pod € Kn Tc(xo), and
for small A > 0 we have APOd €Kn (C-xo) since (C-xo) agrees with
Tc(xo) near the origin. But then APod is feasible for (3.2)(p0) and

therefore ¢(APod,p0) > ¢(0,po) for small A. Hence we must have

¢y(0,p0)Pod:i 0, but by the chain rule ¢y(0,po) = fx(xo,po)PO, and
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. 2 _ .
since Po = Powe have fx(xo,po)Pod >0 for alli d € TC(xo). But this

means fx(xo,po)Po € -NC(xo) and this completes the proof.

One may think that (3.3) is not the usual first order optimality

condition. To see that it really is, recall that

Po = T = PylX5apg) 0y (x4.p0)
and define

- %

A(x,5Pg) == = (x,5P,) 1 F, (x 5p,) - (3.4)

Then (3.3) becomes
*

£ (XaPo) + 1, (x50 *M(x,0,) € -Ne(x,) (3.5)

which is the familiar multiplier rule.

It is worth noting that under the nondegeneracy hypothesis the multi-
pliers appearing in (3.5) are unique. To see this, suppose that M

and A, satisfy (3.5) when substituted for A(xo,po) there. Then
*
h, (XgsPg) (A = Ay) € aff Ne(x,)
and by part (b) of Proposition 1.2 we then have Al = AZ'

Now denote ¢y(0,p0) by 9o The necessary optimality condition in
Proposition 3.1 shows that, if Xo is a local minimizer of (3.1)(p0),

then X5 belongs to the set

awE(-go) = {X € C|<-go,x> = zggc<-go,c>}
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It is easy to show that this set is a face of C; we shall denote

it by Fo' It is also easy to show that (FO - xo) n K is a face of
A, which we shall denote by @0. What may be Tess obvious is that if
we apply wp to 2, We recover, locally, exactly the intersection of
Fo with h-l(O). This is the content of the next result.
PROPOSITION 3.2:

If X, is a local minimizer of (3.1)(p0), then for any p € V_,

¢p[U* N ®J = W* N FO n F(p) .

PROOF:
Suppose y € U, N ¢ ; let x = wp(y) = x(y,p). By Theorem 2.2,

x € Wy n F(p). By Theorem 2.1, Po(x-xo) = Poy. By the definition

of 2, we have y € K n (F0 -xo); thus,

o
0]

<Gga¥> = 0, (0P )y = F,(X55Po )Py

fx(xo,po)Po(x-xo) = <ggeX = X> s

S0 X € FO.

For the opposite inclusion, suppose that x € W* n F0 n F(p). Let
y = ep(x) = Po(x-xo); then we know that x = wp(y) and y € U, n A
by Theorem 2.2; thus in particular y € K and X * Y € C. However,

. 2
sin = P_ we have
ce Po o

o
i

<gysX = X > = fx(xo,po)Po(x- xo) =

fx(xo,po)Po[Po(x-xo)] = <go,y> s

and thus Xo +yE€ Fo’ which completes the proof.




- 20 -

It will turn out that the face 2, and, therefore, its image

F N h'l(O), contain all of the local minimizers of (3.2)(p) and
(3.1)(p) respectively. In order to establish this fact, we show
first that the local minimizers of (3.1)(p) and (3.2)(p) are in

1-1 correspondence for each p.

PROPOSITION 3.3:
For any p € V., and any y € U_ N A, y is a Tocal minimizer of (3.2)(p)

if and only if wp(y) is a local minimizer of (3.1)(p).

PROOF:

Obvious, since wp and its inverse 6_ are diffeomorphisms and

P

o(+,p) = f(-,P)Otbp.

The next resuit shows that the local minimizersof (3.2)(p) and of the

more tightly constrained problem

min ¢(y,p)
(3.6)(p)
subject to y € Qo s

are identical. From now on, we assume that fxx(x,p) is continuous at

(xo,po) and that r > 2.

THEOREM 3.4:

There exist neighborhoods Ulof the origin in R" and V1 of Py in 1, such

that for any (y,p) € Uy xV;, y is a local minimizer of (3.2)(p) if and

only if y is a local minimizer of (3.6)(p).
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PROOF:

We will require the following lemmas, proved in the appendix.

LEMMA 3.5:

Let C be a polyhedral convex set in R". Let z, € R" and define

%o

z € U then *(z) = Wy (z).
0

awE(zo). Then there is a neighborhood U of z such that if

C

This lemma says, geometrically, that the face of C picked out by z
is the same as the face of Zo picked out by z, as long as z is
close to z,. A related result was proved in [2] . The lemma obviously

makes essential use of the property of polyhedrality.

LEMMA 3.6:

Let C, zo and Z0 be as in Lemma 3.5. Assume Zo # ¢, and for x € R"

let z(x) be the projection of x on Zo. Then there is a constant y > 0

such that for each x € C,

<Z 5% - zZ(x)> < =yl x=2z(x)Il .

For the proof of Theorem 3.4, note first that if y is a local
minimizer of (3.2)(p) that is close to 0, and if p is close to Py then

y € a¢Z[-¢y(y,p)]. Using Lemma 3.5 we conclude that y € aw; [-¢y(y,pﬂ

0
and, in particular, that y € @o. But as y is a local minimizer of
(3.2)(p), it is evidently also a local minimizer of the more tightly

constrained problem (3.6)(p). For the converse, we can deduce from our
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hypothesis about fxx that there exist a ball 20B of radius 2p about
the origin in ]Rn, a neighbgkh_eod. V1 of-po inI, and a constant A, such

that if Y1s¥p € 20B and p € V, then

1
0(¥psP) = 6(y1.p) + 0, (¥1sP) (Yo = ¥p) + alyysypsP)

with la(yl,yz,p)l ;-ZI-AII yl-yzllz. Further, if p and V, are taken to
be small enough, then p < A'ly and if y € 20B and p € V1 then y € U,,

p €V, and || ¢y(y,p) -9 (0,po)ll < %-y, where y comes from Lemma 3.6

Y
with z, = -¢y(0,p0). Now let Uj :=pB. Let (yo,p) € UpxVy and suppose
Yo is a local minimizer of ¢(-,p) on ¢, so that for some positive n,
ify € ¢ with |l yo-y|| < n then ¢(y,p) > qb(yo,p). Choose any y € A
with |l y—yoll < minfn,o}. Let Y be the projection of y on &; then

2 2
as y, € ¢ we have <y-y¢,yo-y¢>; 0, so that || yo-ycbll + Ily-yq)ll <
< ly-y 1%, Hence Nyl < lly-y ll + Iy Il <2 and similarly

llyq)ll < 20. Now we have

O(¥sP) = 0(¥gsP) + 0" (¥4sP) (Y -¥y) + @ s

where lal < -%A iy -y(bll2 . Therefore

0(¥sP) = (¥ sP) = [9(ysP) =0(yysP) + [9(y4sp) = 0(y,sPN 2
2 0(¥sP) - 9(¥ysP) = (3.7)

=0y (¥grP) (¥ -Yg) + oy

since q:(yq),p) > cb(yo,p) because s € o with Ilyq)-yoll < y-yoll <n.

Applying Lemma 3.6 with z, = -¢>y(0,po), we find that

¢y (0P ) (¥ =¥g) 2 YILY -y,
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But also, since Ye € 20B and p € Vl’

1
1o, (¥gsP) = ¢, (0PI < 7Y

y

Hence we conclude that

1
by (YgP) (Y =¥g) 25 Y1y =y,

From (3.7) we then have

0(¥sp) = 8(¥ysP) 2 0, (¥4sP) (¥ =¥y) + @ 2

1 1 2
> Eyuy y¢H ﬁxuy-y&l >0,

y

since ||y-y¢l| P < A-ly. It follows that Yo is a local minimizer

of (3.2)(p), which completes the proof of Theorem 3.4.

We have thus shown that, for the purpose of optimization, when
considering (3.2)(p) one may as well restrict one's attention to

the face 2, i.e., to the problem (3.6)(p). (This explains, incidentally,
the prominent appearance of ¢0 in the second - order optimality
conditions.) The immediate corollary to this is that in considering
(3.1)(p) one may look only at the image of 2 under wp; as we showed

in Proposition 3.2, this will, locally, be the restriction of F(p)

to the face F0 of C picked out by fx(xo,po)Po. Thus we could consider,

instead of (3.1)(p), the more tightly constrained problem

min f(Xx,p)
X (3.8) (p)
subject to h(x,p) =0
X € F0 .
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By Proposition 3.2 the local minima (near xo) of (3.8)(p) will be
the images under wp of those of (3.6)(p). The latter, in turn, are
by Theorem 3.4 identical to those of (3.2)(p), which finally are
the images under ep of those of (3.1)(p) by Proposition 3.3. We
conclude that, for any p near Py the local minimizer of (3.1)(p)

and of (3.8)(p) are the same.

It is worth pointing out here that if F is any face of C that
contains Xg then the nondegeneracy hypothesis actually implies

that X, is a nondegenerate feasible point for the system
h(x,po) =0, x€F, (3.9)

in which C has been replaced by F. To see this, let U be an open
ball about the origin in Rn, small enough so that the neighborhood
N in the definition of nondegeneracy contains U. If f--x0 € (F- xo) nu,

then
(f-x0)+Ln Uc(F-xO) nu+Ln UcC-xo

However, f + L n U is then a relatively open convex subset of C,
which meets F. Thus, by [5, Th. 18.1] we have f + L 0 U = F. But this

implies

(F-xo) nNU+LnUcF - Xg

so that Xo is a nondegenerate feasible point for (3.9). In particular,
if in place of F we put the face Fo’ we find that Xys 35 @ feasible
point of (3.8)(p0), inherits the nondegeneracy that it had as a feasibie
point of (3.1)(p0).
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Appendix.

The purpose of this appendix is to prove the two lemmas on polyhedral
convexity required for the proof of Theorem 3.4. For convenience we

repeat here the statements of the lemmas.

LEMMA 3.5:

Let C be a polyhedral convex set in R". Let z, € R" and define

Zo = awE(zo). Then there is a neighborhood U of z such that if
z € U then awE(z) = awi (z).

0
PROOF :

We first show that for z near z, we have abE(z) < Wy (z). Indeed,
0
ifye awé(z) then for each ¢ € C, <z,c-y> < 0. This holds in

particular if c € Zo’ so ify € Z0 then y € W7 (z). Thus we have
0
to show that there is a neighborhood of z, such that for all z in

that neighborhood we have awE(z) < Zo. If this were not so, there
would be a sequence {zn} converging to Z,s such that for each n there

exists Y, € awE(zn)\Z Each set awE(zn) is a face of C, but the set

o
of such faces is finite since C is polyhedral [5, Th. 19.11 . Therefore
some face G of C recurs infinitely often among the awE(zn). Let

g € G; then for infinitely many n the pair (zn,g) belongs to the
(closed) graph of awE. But then (zo,g) belongs to this graph too,

SO g € awE(zo) and thus in fact G < awE(zo) c Zo' However, this
contradicts the existence of the Yps SO we see that awE(z) c aw; (z)
0

for all z in some neighborhood, say Ul’ of Zo'
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To prove aw; (z) = 3¢E(Z) for z near zo, we first obtain a formula for

0
the inverse of awi : i.e., for N, . If z € Zo then, near 0, C-z and

Zo

0
Zo- Z agree with Tc(z) and T, (z) respectively. Also, if we denote by

A

0

L the halfline {-A, |A > 0}, then we know that
0

. 0
Z0 -z=(C-z)nlL".

Thus for some neighborhood V of the origin,

VnTZ(z)=Vn(Z-z)=Vn(C-z)nL°=
o 0
. 0
=Vn TC(Z) nL .
But since TZ (z) and Tc(z) n L% are cones, we then have
0
TZ (z) = TC(Z) n L% and hence, by polyhedrality, NZ (z) = NC(Z) + L.

0 0
Thus, for each z € C we have

No(z) + L, ifzel
¢ 0 (A.1)
? , ifz€1

Having this representation for Nzo, we next show that, for small
elements of Nzo(z), only small elements of L need be used in the
representation (A.l). Recall that NC is constant on the relative
interior of any convex subset of C, and in particular this holds

for faces of C. But the relative interiors of the faces partition

C [5, Th. 18.2], and thus NC takes only finitely many distinct values.
Each of these is a cone in R™: call them Kl""’KI' For each i let

G1 be the convex polyhedral multifunction taking t € R, to Ki - tzo.
Then Ki +L = GiOR+), so by [3, Prop. 2] there is some a; > 0 with
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B N (K; +L) = B N G (R,) = 6,([0,a;])

.)

It follows that

(a778) n (K, +L) = 6.(10,11) ,

I

and if we let a := maxi 1% then a > 0 and

i

1

(@ "B) N (K;#L) € G.(10,11), i =1,...,I. (A.2)

Hence in order to represent elements of Ki + L having norm not greater

than afl, we do not need to use elements of L having length more than 1.

Igy.

Let z € U; then either awi (z) is empty or it contains some point, say
. 0
y. In the Tatter case z € NZ (y), so if w € Z0 then <z,w-y> < 0.

0
But then also <z-zo,w-y>‘; 0 since <z sW-y> = 0 because w and y

Now define a neighborhood U of z by letting U = U; n (zo+a'

belong to ZO. Thus z-2 €N, (y), so by (A.1) and (A.2) we have for

ZO

some 1, Z- z, € Gi[O,H . Thus there is some t € [0,1] with
z -z, € Nc(y) - tz0 . (A.3)

However, we also know that (1~ t)zo € Nc(y), since Nc(y) is a cone

and y € awg(zo). Combining this with (A.3) we find that z € NC(y), so

C
the proof of Lemma 3.5.

that y € aYx(z). It follows that awi (z) < awg(z), and this completes
0

LEMMA 3.6:

Let G,z and Z be as in Lemma 3.5. Assume Z + ¢, and for x € R" let

z(x) be the projection of x Qﬂ-zo‘ Then there is a constant y > 0 such

that for each x € C,




- 28 -
<Z 5% - z(x)> < =vll x = z(x)l

PROOF :
Define an extended real valued function Q:Hf’-»R by:
Q(x) := <-zo,x-z(x)> + wc(x). Since the projector taking x to

-1

z(x) can be written as (I +N , it is a polyhedral multifunction

7 )
in the sense of [3]. However,OQ can be constructed from this
projector through operations of addition and composition with
obviously polyhedral multifunction, so Q itself is polyhedral.
Note that the set of zeros of Q is precisely Zo‘ Applying

[3, Corollary to Prop. 1] we see that for some positive y and

6, and all x € C with d[x,Z] inf{ll x-wil [we€Z3} <6, one

has

dix,Z] = dx,Q1(0)] ;Y'ld[o,o(x)] = Y‘1|<-zo,x-z(x)>|

Choose any x € C. For small positive u the point Xu := (1-n)z(x) +ux

remains in C and satisfies d[xu,ZJ < 6. By (A.4), we then have

-1 _..=1
d[xu,ZO] <Y |<-zo,xu zZ(x)>| = uy

I<-zo,x-z(x)>1
However, one has for each w € Zo’
T Z(X),W=2(x)> = u<x=z(x),Ww=-2z(x)> <0,

so z(x) is the projection of X, on Zo' Hence

ﬁﬁfzg =qu-zU)H = ull x=z(x)il ,
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and from (A.5) we then obtain
Il x=z(x)lIl < Y'1|<-zo,x-z(x)>| . (A.B)

However, we note that since z(x) € awﬁ(zo), we have <-zo,c-z(x)>_3 0

for each ¢ € C and particularly for ¢ = x. Thus (A.6) becomes
Qoa-zux>;-ﬂ[x-ﬁxm,

which completes the proof.
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