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Abstract

The IAEA nuclear material safeguards system consists
basically of two different parts. One is the data veri-
fication scheme: the operators of nuclear plants report
all relevant data on nuclear material processed in the
plant to the safeguards authority. These data are then
verified by the safeguards authority with independent
measurements. The other part is the material account-
ability scheme: in case there are no significant differ-
ences between the operator's and the safeguards author-
ity's data, all of the operator's data are taken for the
nuclear material balance establishment.

The purpose of this paper is to evaluate the overall
probability of detection of this system in case someone
tries to divert material. This evaluation takes into
account the different diversion strategies available. It
is complicated because the two decision functions on
which the evaluation is based--the difference between
operator's and inspector's data and the difference be-
tween book and physical inventory--are stochastically
dependent. Exact formulas are derived and applied to a
realistic case; it is shown that with a good approxima-
tion, one may neglect the correlation and thus, use

simplified formulas.



Material Accountability and Its Verification:

A Special Example of Multivariate Statistical Inference

Rudolf Avenhaus and Nebojsa Nakicenovic

1. Introduction

On March 5, 1970, the Treaty on the Non-Proliferation of
Nuclear Weapons [l] was enforced after having been verified by
forty-three nations. This treaty is aimed at preventing the
proliferation of nuclear weapons; it was conceived by Great
Britain, the U.S.A. and the U.S.S.R., and was signed on July
1, 1968. The exceptions are those nations which possessed
nuclear weapons prior to the signing of the treaty. In order
to achieve non-proliferation , the treaty has established
international safeguards which guarantee that a diversion of
significant amounts of nuclear material from the peaceful
nuclear fuel cycle will be detected early. These safeguards
are carried out by the International Atomic Energy Agency
(IAEA) in Vienna, Austria.

At the time of the Treaty's conception there existed, at
least in the U.S.A., 25 years of experience of handling and
controlling nuclear material; it quickly became clear, however,
that an international control of national industries would
cause completely new problems. For this reason, various nations
began intense research and development activities with the
purpose of establishing a practicable and acceptable inter-
national safeguards system (see, e.g. [2,3,4]).

A significant step was made when the Safeguards Committee
was able to establish a model agreement for an international
Safeguards System [5]; this was conceived as a model for the
Safeguards Treaties between the IAEA and those nations which
signed the treaty. The Safeguards Committee was established
by the Board of Governors at the IAEA, and represented more
than forty nations. The agreement was negotiated from July
1970 to February 1971.



According to this model agreement, material accountability
was established as the fundamental safeguards measure, with
containment and surveillance as complementary measures. In
this context, material accountability means the comparison
between the book inventory, i.e. the added material inputs and
outputs of a material balance area during the inventory period,
and the physical inventory at the end of an inventory period.
The reason for this structure of the Safeguards System was the
fact that such a system can be formalized better and is more
objective than any other possible system; this was a necessary
condition for international acceptability.

Furthermore, in the IAEA Model Agreement, the rules were
established according to the way in which nuclear material
safeguards must be carried out: the operator of a nuclear
plant collects all source data which are necessary for the
material balance establishment. The safeguards authority
verifies these data with the help of independent measurements
on a random sampling basis. If there exist no significant
differences between the operator's and the inspector's data,
then the safeguards authority assumes all of the operator's
data to be correct and establishes the material balance with
the help of these data. If significant differences exist
either in the data comparison or in the material balance, then
a "second action level” is induced to clarify whether or not
they indicate a diversion of nuclear material.

Due to the fact that only declared material is subject
to international safeguards ("misuse" of nuclear plants is not
the subject of IAEA safeguards), the nuclear plant operator
who wants to divert nuclear material has two different pos-

sibilities or strategies:



1) Either he diverts nuclear material without
falsifying any data which he reports to the
safeguards authority and expects that the
measurement uncertainties of the material
balance to cover the diversion; or

2) he falsifies the data to be reported and
diverts the corresponding amount of material
in such a way that the material balance is
correct and expects that either the measurement
uncertainties or the random sampling procedure
to cover the diversion.

Clearly, a combination of both strategies is also
possible.

The evaluation scheme of the safeguards authority is
based on two "decision functions": (1) the difference between
the book and physical inventory MUF ("Material Unaccounted For"),
and (2) the difference D between the operator's and inspection
team's data. These decision functions are subject to
significance tests of the following form: If the realized
values of MUF resp. D are smaller than given significance
thresholds S, resp. s, then it is stated that the operator
behaved legally. If, on the contrary, at least one of
these quantities is larger than the significance threshold,
then the second action level is induced.

A measure for the efficiency of this procedure is
the overall probability of detection for a given amount
M of material to be diverted. The safeguards authority has
to assume that the operator who intends to divert the amount
M of material will do it in the most efficient way (from
his point of view) and will choose that strategy which
minimizes the probability of detection. On the contrary,
the safeguards authority chooses that inspection strat-
egy which maximizes the probability of detection, mini-

mized by the operator. We call this the guaranteed



probability of detection as it represents a lower limit
of the probability of detection. These considerations have
been discussed in an illuminating way by W. Hafele [6].

The determination of the overall probability of
detection is complicated because the two decision
functions MUF and D are stochastically dependent: The
operator's data are used in both cases. The purpose of
this paper is to show that in practical cases, the overall
guaranteed probability of detection can be easily deter-
mined with simplified formulas as a good approximation.

In order to achieve this we will first develop the theory
of the material balance establishment as well as the theory of
data verification. Thereafter, we will determine the overall
probability of detection and study its properties: we can
show that the probability of detection is practically
independent of the correlation between the two decision
functions MUF and D, if the correlation is smaller than zero.
Furthermore, it will be shown that under general assumptions
the correlation is, in fact, smaller than zero.

The theoretical results obtained are illustrated by
a realistic example (an irradiated nuclear fuel reprocessing
plant) which was a subject of contract research between the

IAEA and among others the authors of this paper [7].

2. Theoretical Considerations

2.1 The Material Balance Concept

Let us consider a "material balance area” which contains
at a given time t , some material into which material enters,
and from which material goes out during a given interval of

time (to,tl).

The material contained in the material balance area at

time ts is called the physical inventory Io; The algebraic




sum of the amounts of material which enter and leave the mate-
rial balance area in the interval of time (to,tl) is called
the throughput D. The physical inventory at tO plus the

throughput in (to,tl) give the book inventory B at tys i.e.

the amount of material which should be contained in the mate-
rial balance area at tl:

B=1I_ +D . (2-1)

The amount of material actually contained in the material bal-
ance area at tl is the physical inventory Il.

If all material contained in and passing through the
material balance area is carefully accounted for, and if no
material has been diverted, then the difference between the

book inventory B at t, and the physical inventory Il should

1
be zero. This difference is called "Material Unaccounted For":

MUF =B - I (2=2)
Thus, we have the problem of finding out whether the nonzero
difference is caused by measurement errors, or by the diversion
of material.

In order to solve this problem, a significance test must
be performed where the null hypothesis is given by the state-

ment: the expectation value of MUF is =zero,
E(MUF/HO) =0 , (2-3a)

and where the alternative hypothesis is given by the statement:

the expectation value of MUF is M, > O,

1

E(MUF/Hl) =M, > o . (2-3b)



The significance test i1s determined by the significance
threshold Syt if the realized value of MUF is smaller than
or equal to s;, then the inspector will state "HO is correct";
but if MUF is larger than Sqs he will state "Hl is correct”
(which does not immediately mean that a diversion of material

is stated):

MUF < s H is true ,

1 o}
MUF > Sy Hl 1s true .
This procedure may cause two kinds of false statements:

i) the inspector states "H, is true", when in fact HO

1
is true;
ii) the inspector states "HO is true", when in fact Hy
is true.
The probabilities of committing these errors are called aq
and Bl:
ay: = prob {MUF > sl/HO} , (2-5a)
Byt = prob {MUF < sl/Hl} . (2-5b)

It is assumed that it will be clarified at a "second action

level" whether or not the "alarm" was justified at MUF > Sq-
Here, aq is called false alarm probability, whereas 1 - Bl
is called probability of detection.

Because of the random measurement errors, the quantities
IO, D, Il and, therefore, MUF are random variables. Let
Ig’ GS, and OIi be the variances of these random variables.

Then the variance of MUF is given by

g

_ 2 2 2 _. 2 _
var (MUF) = Org v 0p * 0 =: 0o (2-6)



independent of whether or not a diversion MUF would
take place. If the random variables IO, oDz and Il2 are

normally distributed, then MUF is also normally distributed

and one obtains from (2-5)

1
1 - a; = ¢ ) (2-7a)
1 SMuF
] - M
1 1
B, = o¢( ) ' (2-7b)
1 SMUF

where ¢ is the Gaussian distribution function:

X 2
¢ (x) = 7%§ J exp(—%r)dt

- OO

If one eliminates the significance threshold Sq in (2-7b),

with the help of (2-7a), one obtains

M.L
1 - Bl = (b(OMUF - Ul_al) ’ (2—8)

where U is the inverse of the Gaussian distribution function.
Up to now we have considered one inventory period. The
treatment of a sequence of inventory periods poses special
problems because of the question of how to choose the starting
inventory: If at the end of an inventory period there are
no significant differences between book and ending physical
inventories, one can take one of these inventories or a linear
combination of both as the starting inventory for the next
period (see, e.g. [8],[9]). However, since the vari-
ance of the physical inventory is much smaller than the var-
iance of the throughput, as in the example analyzed in the next
chapters, we will take the ending physical inventory as

the starting inventory for the next period. Thus, the



correlation between different inventory periods may be ne-

glected. If amounts Ml and M2 are diverted in two periods,

the total probability of detection is simply given by

My M,
1-8=1-¢(U, - —"you, -
l1-a;  Oyyp 1-ay  Oyyr

) .

In the following, we will consider only one inventory period.

2.2 Data Verification

As described in the introduction, the safeguards
system is constructed in such a way that the plant
operator performs all measurements necessary for the estab-
lishment of the material balance; he then reports the
measurement data to the inspector, who in turn verifies these
data with the help of independent measurements. Among the
many possibilities for the comparison of the operator's and
the inspector's data, the use of the so-called D-statistics
(see [10,11]) has proven most successful. Therefore, we
will also use it here. 1In the following, we will describe
the D-statistics with the help of a simplified model; the ap-
plication to a realistic case will be given in the next chap-
ter.

Let us assume that there are R classes of material, and
that in the inventory period under consideration the ith
class (i =1,...,R) consists of Ni batches. Let X,

ij”’
i=1,...,N i=1,...,R, be the measurement result for the

:
material co;tent of the jth batch of the itD class reported
by the operator. Let us furthermore assume that the inspec-
tor verifies n; measurements in the ith class with the help
of independent measurements, and that his results are Yi"

j = l,...,ni, i=1,...,R. The variances of the random (r)
and systematic (s) errors of the operator's (o) and inspec-
2 2 2

2
o} o} and o and are
or’ “os'’ “Ir Is

assumed to be known,where the errors themselves are assumed

tor's (I) measurements are ¢

to be normally distributed.



In order to check whether or not the data of the oper-
ator are correct, the inspector forms the D-statistic which
is defined by
R N, i
z

E_l(Yij - Xij) . (2-9)

1
n. .
It should be noted that this definition specifies that the
inspector verifies only data from those batches reported by
the operator which he has measured himself. The reason for
this is that by means of this procedure, the influence of the
variation of the true material contents of the batches within
a class is eliminated.

Under the null hypothesis, i.e. under the assumption
that no data reported by the operator are falsified, the ex-
pectation value and the variance of D are given by the fol-

lowing expressions:

E(D/Ho) =0 , var (D/H)) =0 =

O
~N
oo
Il X
'_l
2
|_l
N
/\
Q
H
}_l
Q
[0)]
e N
S———

(2-10a)

Under the alternative hypothesis Hl’ i.e. under the assump-
tion that r of the Ni batches of the ith class are falsified

by the amount pi,i =1,...,R, one obtains

E(D/Hl) = I T, (2-10b)

R
var (D/Hl) : 0 = L N. —_— 4+ 0 5 + u.



-10-

According to this scheme, the maximum amount of material

which can be diverted is given by r, =N, i=1,...,R:

max _
My, = iuiNi . (2-11)

For the diversion without data falsification as described in
the foregoing section such an upper limit does not exist.

If the measurement of one batch does not consist of a
single measurement, but of several (e.g. weight and con-
centration determination), p ¢ r is not the amount directly
falsified. An example for this is given in the next section.

Let s, be the significance threshold of the inspector's

2
test. Then we have as in {2-5)

o prob {D > 52/Ho} (2-11a)

2:

By: prob {D < s,/H{} . (2-11b)

If we assume that D/HO and D/Hl are approximately normally
distributed (see [11]), then we obtain (corresponding to
(2-8)) the following expression for the probability of de-

tection:

E(D/Hy)) = opy Uy
1-8,=¢ o 2 (2-12)

o
D/Hl

We will not go into the details of the question of how the
inspector chooses the Mo and how the operator chooses the
r., as this has been analyzed elsewhere (see [11]).
Here, only the results of an approximation procedure will be
given. Let the inspector's effort for the measurement of one
batch in the ith class be Ei’ and let the total effort avail-
able be C. Then a game theoretical treatment gives the fol-

lowing optimal values:



-11-

0 _ C
ni = m uiNi ’ (2-13a)
y JJ 3
0 _ M . _
r; =% F LN EiNi . (2-13Db)
3 JJ 3]

2.3 Total Probability of Detection

As a measure for the efficiency of the entire test pro-
cedure described above--data verification and material-balance
establishment with the help of the operator's data--we define
the total probability of detection 1 - B:

1 - B: =1 - prob{D £ s, . MUF £ s1/H1} , (2-14a)

2

where H1 means

E(D/H1) = M, ~» E(MUF/H1) =M

> (2-14Db)

1

In the same sense we define the total false alarm probability

o by

1 - a: = prob{D < s, ~ MUF £ s,/H )} , (2-15a)
where Ho means

E(D/Hy) = E(MUF/H,) = 0 . (2-15b)

As the operator's data are used both for the data verification
procedure and for the material balance establishment,
the random variables D and MUF are stochastically dependent,

and one obtains

1 U1—a1 U1—a2 t% - 2t2t20 + t%
1 -4 = —F ¢ dt dt2 exp -
2

1 2
21 /1 - p - 21 - »7)

- 00

(2-16a)
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g U -M
M2 D/H0 1—a1 1
U - o
g = ! at. 2 MU | >/
21 /1 - p2 | " 2
tf - 2t1t2p + tg
- exp |- 5 . (2-16Db)
2(1 - p%)
where
cov (D1MUF)
°* T GD/H, - oMUF (2-16¢)
is the correlation coefficient.
For p = 0, one obtains from (2-16)
1T -0 = (1 - OL1) + (1 - oL2) , (2=17a)
M Op/H. ° Cl-q, T M
I e R I 1
1—a1 oMUF oD/M1
8182 . (2-17b)
Eq. (2-17a) is well known in the area of multivariate statis-

tical inference. A discussion of this equation is given in

the Annex. In Figures 1 and 2, the results of numerical calcu-
lations are presented: Figure 1 shows for a1 = Qg
dence of oy from p, with o as parameter; Figure 2 shows the

the depen-

dependence of 04 from Oy with p as parameter, and for fixed
oo = 0.005. The main result is that for p < 0 (which is the
case in the example given in the next chapter) Egq. (2-16a)
can be well approximated by Eq. (2-17a).

In order to achieve as high an efficiency of the safeguards
procedures as possible, in other words, to achieve as high a
total probability of detection as possible, the inspector will
use those values for Oy and Oy which maximize 1 - B. For ob-
vious reasons, however, he cannot use values which are too
high. Therefore, we assume that there is an agreed value of
the total false alarm probability o, and that the inspector
can choose only those values of oy and oo which satisfy the

boundary condition (2-16a).
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On the other hand, as the inspector does not know the

values of M. and M2 chosen by the operator, and as the in-

spector wanis to optimize his system for a given value of a
total amount M = Ml + M2 assumed to be diverted, he must
take into account the best strategy from the operator's
point of view; i.e. that choice of M
1 - B.

Therefore, the optimum strategy (al*,a

1 and M2 which minimizes

2*;&) of the in-

spector is defined as the result of the following optimiza-

tion problem:

max min (1 - B) = :1 - B** . (2_18)
a1,a2: M1,M2:

subject to eq. M1+M2=M

(2-16a) for

given value of o

1 - B** is called the total guaranteed probability of detec-
tion.

It is clear that the optimization problem defined above

cannot be carried out analytically. In addition, it is too
complicated for practical purposes. Therefore, one might

want to replace it with p = 0. As can be seen from Figures 1
and 2, at least the false alarm equation (2-16a) can be
suitably replaced by the approximate equation (2-17a). It is
the question of whether or not this approximation also holds
for the probability of detection. In order to answer this
question, a realistic example will be analyzed in the next
chapter. It may be stated at this point that one can, in fact,
approximate the probability of detection given by (2-16b) and
by the simplified formula (2-17b). Furthermore, for practical

purposes one might want to put

a, = a, =1- V1 -0a . (2-19)
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Therefore, another purpose of the following numerical cal-
culations is to see how far the guaranteed probability of
detection (2-18) deviates from a probability of detection
which has been determined on the basis of (2-19).

One general gquestion may be raised concerning our pro-
cedure: As the variances of the measurement errors are as-
sumed to be known, could one transform to the two independent
random variables Y, and Yoy, and thus, avoid the complicated
formulas (2-16)? In fact, such a scheme has been discussed
recently by Bennet et al. [12]. The answer is that the safe-
guards authority would like to perform the two tests con-
cerning material balance and data verification separately and
see whether or not one of these tests indicates a significant
difference; this would provide an immediate idea as to the
source of the errors, losses, or diversion Therefore, a
transformation to quantities which have no physical meaning

is not of much help.

3. Application to a Realistic Case

3.1 Basic Data of the NFS Irradiated Fuel Processing
Plant

In the following we consider as an example The Nuclear
Fuel Services (NFS) plant near Buffalo, N.Y. This plant repro-
Ccesses irradiated fuel elements of reactors on the basis of
the PUREX process. The numerical data are taken from Ref.
[7]1.
We shall consider the case of one inventory period. As it is
assumed that there are two inventory periods per year, this
means a time period of 6 months. The campaign data and
the batch data are given in Table 1 for plutonium; this
is the only important material in this context and will be

considered exclusively in the following.
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3.2 Measurement Accuracies; Variance of the "Material

Unaccounted For"

According to Section 2.1 the establishment of the mate-
rial balance includes the establishment of the
i) inital physical inventory I.i
ii) book inventory B (Io + input - product - waste);
iii) ending physical inventory I1.
3,2.1 Physical Inventories

We assume

EI, = EI, = 1[kg] , (3-1a)

and assume further that the variation of these inventories
is of the same order of magnitude:

T~ 10kgl s 1), <1+ 1[kg] . (3-1b)

If we assume, in addition, that the physical inventories are
equally distributed random variables with a range given by
(3-1b), we obtain

var I, = var I, = 0.333[kgz] . (3-1c)

3.2.2 Input

One measurement of the plutonium content G1j of the jth
input batch consists of a

i) wvolume determination v.lj [1];

ii) drawing of a sample |[g Pu/2%];

iii) concentration measurement C_., of the sample.

J
Therefore, in the case of no data falsification the operator

reports the data
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where

_‘<1
Il
=
<
+
D

(3-2b)

Q
I
o]
(@]
+
1
-0

o,c -
+ d1,j (3-2¢)

v,r v,s .
and where e1'j and e1' are the random and systematic errors
!

of the volume determination; e?’r

and e?'s are the random and
1
systematic errors of the concentration determination; and
d?'; is the sampling error in the operator's sample.
H

The variances of these errors are

var eY:g = 03,r,1

var eY:i = 03'5,1

var e$:§ = Og,r,1 (3-3)
var e?:i = Og,s

var d?:? = 03'1 .

If one assumes that one calibration per inventory period is
performed both for the volume and for the concentration
measurement, and if one neglects error terms of the second
order, then the total input reported by the operator is
given by

1
= . . clr cls O,C
Input = N, * Ev, * Ec, + £1 [-Ev1631 .+ e + d j) +

and the variance is
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= g2 . G2 . g2 . g2
var [Input] = E v1(N1 0c,r,1 + N1 05’1 + N, 00,5,1) +
2 . 2 2, 2 _
+ E c1(N1 0v,r,1 + N1 Ov,s,1) . (3-5)

3.2.3 Waste

The situation in the case of waste is exactly the same
as in the case of input except that all the characteristics
quantities have different values. Thus, for waste--character-

ized by the index 3-- we have

2 .2 . o2 -
var [Waste] = E“v,(N, Oc,r,3 N, Og,3 T N3 Oc,s,3) +
2 2 2
+ Efcy(Ng + 0y 3+ Ny =0l 3) . (3-6)

3.2.4 Product

The situation in the case of the product is different,
insofar as not the volume but the total weight of the batch
is determined by taking the gross and the tare weight of the
batch; thus, the systematic errors of these measurements are
cancelled. Therefore, one has for the material content G 3

2
of the i product batch.

sz = Vgt ch (3-7a)
vyy = Ev, +ey'd+ e¥:§[kg] (3-7b)
Cp5 = Ecp + e§:§ + eSS 4 d§i§[:£§—%%z , (3-7c)
where eg:§ and e;’t are the random errors of the gross and
c,r c,s

tare weights of the weighing procedure; e, 3 and e,
r

the random and systematic errors of the concentration mea-

are

surement; and dg’g is the sampling error of the concentration
14

measurement.
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The variances of these errors are

v,5 _ v,t _ 2
var e2,j = vzr ez,j OV,Z
c,r
var el'. = 0
2,3 c,r,2 (3-8)
var eS’S = 02
2,3 c,S,2
o,c _ 2
var d2,j = OS,2

Therefore, the variance of the total product during the refer-

ence time is

N
2
var [Product] = var z Ev. [e€'E + &S5 & dg,c +
5=1 2\ ¢c,j 2 ’
vV,9 v,t _
+ e . + e . =
ECZ<2,J 2:]))
= 2 L4 2 . 2 [ 2
= E v2<N2 Oc,r,2 + N2 Os,2 + NZ Oc,s,2) +
+ E%c., + 2N, + o2 . (3-9)

3.2.5 Material Unaccounted For

According to Eq. (2-2) the Material Unaccounted For is
defined as

MUF: = I0 + Input - Product - Waste - I1 . (3-10)

If the operator does not divert any material (null hypothesis
Hy) , the expectation value of MUF is zero; in case of di-
version of the amount M, the expectation value of MUF is M
(see Egs. (2-4)). The variance of MUF is, in both cases,
given by
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2

var (MUF) = :OMUF

= 2var IO + var (Input) +
+ var (Product) + var (Waste)

(3-11)

where the single expressions are given by Egs. (3-1c, 5, 6,
9).

Numerical values for all variances (resp. relative
standard deviations) are listed in Table 2. The results of

the Material Unaccounted For are given in Table 3.

3.3 Verification Procedure

It is assumed that the inspector observes all of the
measurements necessary for taking the physical inventory,
and that he must not verify the volume and weight determi-
nations or the sampling procedures, as they are automatized
and therefore, tamperproof. It is further assumed, that the
inspector verifies the concentration determinations on the
basis of a random sampling scheme, and that both the operator
and the inspector use the same measurement methods.

In case the operator wants to divert material by means
of data falsification, he proceeds as follows: he dilutes ry
of his samples in order to simulate a smaller amount of input.
In this way he gains material which he can divert. Therefore,

instead of (3-2c¢) we have

_ Cc,r c,s o,c _ .C s
c1'j = Ec1 + e1'j + e + d1,j Mg for j = 1,...,r1
_ c,r c,s o,cC v -
C1,j = Ec, + e1,j + e, + d1,j for j = 1,...,N1 r,
(3-12)
The operator reports, however, cij + Hqs for j = 1,...,r1 in

order to keep the material balance.

He proceeds in the same way for the product and the
waste, except that in these two cases he concentrates the
samples.
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Remark: Clearly, the effects will be the same if the
operator does not dilute or concentrate samples, but
simplify reports wrong data.

Therefore, if cg:%, i=1,2, 3, 3= 1,...,ni, are the re-
sults of the concentration measurements reported by the
operator and those of the inspectidn team, then the D-
statistics according to eq. (2-8) are given by the following

expression:

n n
N 1 N 2
D=1 ) ol -0 )+ 2 ) SA S
n1 1 1,3 1,3 n2 1 2,3 2,3
n
N 3
3 0 I
+ = c, . - C. . . 3-13
njy % ( 3.3 3’3> ( )

The reason for this special choice of signs was explained
above.
The expectation values of D under the null and alterna-

tive hypothesis are given by

E(D/HO) (3-14a)

0
E(D/H,) = ] uSor. (3-14Db)
1

c
where My is the amount by which the concentration of a fal-
sified batch of class i is falsified. The amount of material
which can be diverted this way is given by

3 3
M, = ) EV.U, r. = ) J.r, (3-15)

where

U.: = Eviui . (3-16)
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As one can see from Egs. (3-15) and (3-14), M2 and E(D/M1)
are not identical. Therefore, the optimization procedure
sketched in Chapter 2 must be modified; instead of Eg. (2-13)

we now have

N.
nd - < Cou, e =, (3-17a)
i z N . u.e i E2V
J
N.
r0 = M s g, o 1 (3-17b)
i i E2V
z ——l— U. * E. i
Under these conditions we have
My 0
E(D/H,) = ¥ 5o ° T
i
or
E 2 v €1 " P4
E(D/H1) = z N . M2 . (3-18)
s £, * .
i Ezvi i i

The basic data for the verification scheme are collected in
Table 4a. Because of the large difference of the amounts ui
by which the data have to be falsified, practically all of
the effort must go to the product stream. It does not mean,
however, that the input and waste stream data must not be
verified at all. The following procedure is proposed:

For small amounts of effort, only one batch is verified
in the input and one in the waste stream; the rest goes to
the product stream. If there is more effort available than
for the verification of all product batches, then the remain-
ing effort must be distributed between input and waste ac-
cording to formula (3-17).

The optimal sample sizes ng are given in Table 4c as a

function of the total effort C. The optimal numbers of fal-
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sified batches rg are given in Table 4c as a function of the
total amount M2 assumed to be diverted. The standard devia-
tions of the D-statistics under the null and the alternative
hypotheses as a function of the effort C and the amount M

2
assumed to be diverted are given in Table 5.

3.4 Determination of the Correlation Between Data

Verification and Material Balance Establishment

It was previously mentioned, the random variables MUF
and D are stochastically dependent because the data of the
operator are used both for data verification and for material
balance establishment. In case of the null hypothesis HO’ we

have:
cov (MUF,D/HO) = E[(MUF - EMUF) °* (D - ED)/HO)]

= E[MUF - D/HO]

1 2772772 3773773

= E [[ﬁ1Ev1Ec - N,Ev,Ec, - N,Ev,Ec, +
Ny

c,r c,s 0

+ ¥ (Ev1(e1,j + e + d1

1
v,Y v,Y v,S
+ Ec3<e3’j + e3,j + e3,j>>]><
9 El £/ 4 S48 gl | ChT _ Cus _ 4
7, L (1.3 1 1,3 1,3~ €1
J
+ ﬁg ) oCrT 4 oCrS d0,c - £C/T _ £Cys _
n, & 2,73 2 2,73 2,73 2
b 3 bo(eS7E + eSr8 4 g9rC - £S0T - £G4
3 3 3,3 3 3,3 3,3 3
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where f and dI are the errors of the inspector corresponding
to those of the operator.

If we omit the vanishing terms we obtain

cov (MUF, D/Ho) =

— . 2 2 2 . 2 _20
= .21 [Evi Ni(c’c,r,i T o3,i t My 0c,s,i>] - (3720)

This means that MUF and D are negatively correlated.
From Eq. (3-20) we obtain the correlation coefficient

for the null hypothesis HO:

cov (MUF,D/HO)
Py ¢ = . (3-21)
0 Yvar (MUF) -+ yYvar (D/HO)

In case of the alternative hypothesis H1 (diversion of the

amounts M1 and M, by means of the two strategies) we have,
instead of Eq. (3-17),

cov (MUF,D/H;) = E[(MUF - M,) (D - ED)/H,l (3-22)

where
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ED = ) u° - r
v v
v

Here, E(MUF, D) is given by Egs. (3-4) etc., (3-12) etc.,
and (3-19) by the following expression:

E [(MUF - M) (D - ED)_J =

1
cr/Y c,S o,c v,Y V,S
+ 321 (EV1<e1,J + e + d1’3) + Ec1<e1lj + e1,j>)+
No
c,r c,s o,c V.9 v,t) +
- j£1 (Ev2<e2’J + e, + d2,3> + Ec2<e2,J e2,j‘
N3
- C,r 'S 0,c VT 4 eV %) - ] x
j£1 (EVB(e3,3 + eg + d3,j) + EC3<e3,J e3’j>) 1
N
c,r c,s I,c _ ,x _ _Cc,s _ ;0,cC 1 c
LHT § <f1,j HET Ay - ey - e d1’j) + T h
N N
2 c,r c,s o,c _ .cr _ .¢s _ JI,C 2 c
* ) <e2’3 +eyS +dyl - £yl - £ d2,j> " hous
J
N N
3 c,r c,s O,c c,r c,s I,c 3 c
- I I I. - ll - r - ; + -
+ n Z <e3,3 + €3 * d3,j f3,] f3 d3,j) n h3“3
33 3
D TR (3-23)
i J J

where hv’ v =1, 2, 3 are the numbers of batch data falsified
by the operator and contained in the samples of the inspec-
tion team.

With

N1EV1EC1 - N2EV2EC2 - N3EV3EC3 = M1
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and because of the independence of the e, d, £ on one hand

and kV on the other hand, we obtain
cov (MUF, D/H1) = cov (MUF, D/HO) (3-24)

which also means that in this case we have p < 0. However,
because of the difference of the variance of the D-statistics

in case of H0 and H1 we have, instead of (3-21),

cov (MUF1D/H0)
= (3-25)
1 Yvar (MUF) -+ vYvar (D/H1)

PH

The correlations Py and Py, as a function of the effort C
0 1
and amount M of diverted material are given in Table 6.

3.5 Overall Probability of Detection

In Figure 3, the results of the numerical calculations
for the overall probability of detection 1 - B according to
Egs. (2-16b) and (2-16a) are presented for one inventory
period (i.e. 6 months) for the parameters M = M, + M, = 10kg Pu,
o = 0.05, A, = ey, and for varying M1 (resp. M2) and effort
C. The corresponding probabilities of detection for p = 0
which have been calculated according to (2-17b and (2-17a)
are almost the same as those for p < 0; this is not surpris-
ing because for p < 0, the false alarm relation Eg. (2-16a)
is practically the same as that for p = 0, i.e. Eg. (2-17a).

As can be checked numerically, the minimum of the prob-
ability of detection is given approximately for those values
of M1 and M2 for which the following relation holds.

1 E(D/H,)
= . (3-26)
1
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The relation is intuitive because of the symmetry of the for-
mulas, at least for p = 0. Accordingly, the maximum of the
probability of detection with respect to the inspector's
strategies (for an optimal operator's strategy) is approxi-
mately given for oy = oy This can be seen in Figures 4 and 5
where the values of o, and a, are different.

At first sight it seems strange that for a certain
range of the M1 (resp. MZ) values, the probability of detec-
tion decreases with increasing effort C. However, the expla-
nation is given easily. As shown in Table 5, the variance
Var(D/M1) decreases monotonously with increasing effort C,
which is intuitive. This means that the probability of

detection

E(D/H,) - © - U,
1 D/H0 1 a,

GD/H1

increases with increasing effort if the argument of the ¢
function is positive, and decreases if the argument is
negative. As can be seen from the numerical data, the change
in direction of effort C's influence is given at that place
where the argument of the ¢-function changes its sign.

The numerical calculations may be summarized by stating
that the overall guaranteed probability of detection for a
given effort C, and a total amount M of material to be diverted
for one inventory period is simply calculated according to
formulas (2-17b) and (2-17a) for a, = a M, amd M, are

1 27 2
chosen according to (3-26).

4. Conclusion

The purpose of this papér was to evaluate the efficiency
of the international nuclear material safeguards system which
is based on material accountability and its verification at
the hand of a realistic numerical example. The problem was

complicated because the two statistics on which the inspector's
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statements are based are stochastically dependent. It was
shown that this depencence may be neglected in the practical
situation. Therefore, rather simple formulas may be used for
the determination of the system efficiency, i.e. the total
guaranteed probability of detection.

All considerations were based on the case of one mate-
rial balance area which was one plant. If one considers
more than one material balance area, then new correlations
arise; in some cases, these may be important for the reduc-
tion of inspection effort is kept constant. An example is
the shipper-receiver-correlations between two different
nuclear plants; they may be used either to replace the
measurements at both sites by simple sealing measures, or as
an additional check if both measurements are kept. Therefore,
the consideration of a nuclear fuel cycle as a whole which
includes many material balance areas, raises questions which

go beyond the scope of this work.
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Table 1. NFS campaign and batch data for the reference
time T (6 months) for the plutonium throughput.

Pu throughput/T [kg]
Liquid waste [% of input]
Hull losses [% of input]
Number of campaigns/T
Number of working days/T
Input
Input/campaign [kg]
Number of batches/campaign
Batch volume [1]
Pu content/batch [kg]
Batch-to-batch variation [%]
Product
Number of batches/campaign
Weight of batch [kg]
Pu content/batch [kg]
Batch~to-batch variation [7]
Liquid Waste
Number of batches/campaign
Batch volume [1]
Pu content/batch [kg]

Batch-to-batch variation [%]

1750
0.9
0.1

125

175
25
4009

10

76

15
2.28

10

90

5000
0.019

10
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Table 2. Pu measurement system for the NFS plant
(source: [7]).

Standard
deviation Effort per
per single single
Class Measurement measurement measurement
Man-
hours Cost
% % [h] [US$]
Volume determination 35 1 7 _
(diptube system) * * )
Input Sampling 1 - 1.5 -
Concentration deter-
mination (isotopic .6 .3 - 400
dilution)
Weighing .02 - 3 -
Sampling .5 - 2.25 -
Product
Concentration deter-
mination (amperomet- _
ric titration and - -3 200
isotopic analysis)
Volume determination 5 5 1 -
(level indicator)
Liquid Sampling 50 - .5 -
Waste
Concentration deter-
mination (TTA extrac- 15 10 2 40
tion and counting)
Physical

Inventory ashout .577 [kg] -
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Table 3. Variance of the material unaccounted for (MUF)
for one inventory period.

Variance [kgl Standard deviation [kg]
Input 8.564 1) 2.926
Product 6.837 2) 2,615
Waste 0.958 3) 0.979
Inventory 0.333 4) 0.577
MUF 17.026 5) 4.126

1) Eq. (3-5)
2) Egq. (3-9)
3) Eq. (3-6)
4) Eg. (3-1c)
5) Eq. (3-11)
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Table 4a. Input data for the concentration measurement

verification.
Pu con- Effort Ei Amount My
Total num- Batch tent per (US$) per [kg] rer
Class ber of size batch verifica- batch to be
i batches Ni Evi [kg] tion diverted
Input 1 125 4000([1] 7 400 147
Prod- 380 15[kg]  2.28 200 0342
uct
Waste 3 450 5000([1] .019 40 L0114
Table 4b. Optimal sample sizes of the inspector (!): Here, the
application of (3-23a) gave ng > N;; therefore in this
class n? = Ni was taken and the remaining effort
Cc - E;n., was distributed according to (2-23a).
C [% of
max effort] 100 80 60 50 30 20 10 5 1
n,° 125 96 26 1 1 1 11 1
n,° 380  380') 380') 358 214 142 70 34 5
n3° 450 17 5 1 1 1 101 1

Table 4c. Optimal sample sizes of the operator.

Amount M
to be
diverted
[kg] .1 .5 1 2 3 4 5 6 7 8 9 10
O
r, 0 1 1 1 1 1 1 1 1 1 1 1
r2° 3 10 25 54 83 112 142 171 200 229 258 288
r30 1 1 1 1 1 1 1 1 1 1 1 1
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FIG.2: MUTUAL DEPENDENCE OF THE SINGLE TEST FALSE
ALARM PROBABILITIES ay AND a, WITH CORRELATION o
AS PARAMETER FOR TOTAL FALSE ALARM PROBABILITY
a =0.05
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Annex
Discussion of the False Alarm Equation

A.l1 Formulation of the Problem

According to (2-15a), the false alarm equation is given by

the following expression:

U

1-a Ul—u (t2-2t t,p+t
1 7 1 172

dtl dt2 exp | -

-_ 00 - 00

l-a =

1
21/1 - p2

where U is the inverse of the normal distribution function ¢

-1 l X _t2
ulx) = ¢ (X} ;5 ¢(x) = J exp (—§—> dt . (a-2)
vam e
As one can see immediately, Eg. (A-1) reduces to the following

form for p = 0:

1l -a= (1 - al)-(l - az) ' (A-3)

which is well known in the field of multivariate statistical
inference (see, e.g. [A-1l]). Therefore, (A-1l) may be consid-
ered as a generalization of (A-3) for the case of stochas-
tically dependent random variables.

In the following, we will discuss the analytic properties
of the false alarm equation, as well as graphical and numerical
methods for the tabulation of the relation between 0q and a,

for given values of the parameters o and p-

A.2 Bonferroni's Inequality

Let X and Y be Gaussian distributed random variables with
expectation values 0 and variances 1. Then (A-1l) is equiva-

lent to the following form:

(A-4)
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Now, Bonferroni's inequality [A-1] generally states

pr {AUB} = pr {A} + pr {B} - pr {A N B}l< pr {A} + pr {B}
(A-4)
or, with the duality theorem

pr {AUB} = pr {(AN B} =1 - pr {A NB} < pr {A} + pr {B}

Therefore, with A - C, B + D, we obtain

pr {Cc N D} > pr {Cc} + pr {D} -1
Application to Eg. (A-4) gives with Egs. (A-2)

(A-5)

for any value of p. (The complementary inequality which can
be derived from (A-4),

is without practical application in this text.)

A.3 The Bivariate Normal Distribution Function

The random variables X and Y are said to be distributed
as a bivariate normal distribution with means and variances
(0,0) and (1,1) and correlation p, if the joint probability
that X is less than or equal to h and Y is less than or equal
to k is given by

h k 2 2
Pr{Xih,Yik}—_l_f ds[ dt exp [_o 2ost+t]

21/1 - p2 2(1 - p2)

-0 -0

L(-h,-k,p) . (A—6)
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The following properties are important for the discussion of
(A-1):

[o0] [ee]

2 2
L(h,k,0) = —I——J ds[ dt exp [- 0 '2pSt+2t ] (A=7)
2n/1-0% bk 2(1-p%)
L(h.k,1) = 31 - ¢(h)y , for k < h (A=8)
1 - o(k) |, for k > h
L(h,k,-1) =3o , forh+%k >0 (A=9)
1 -9¢() - ¢(k) , for h + k <

With the help of (A-6), (A-l) can be expressed in the following
way

l - o =L(-U,_ - U . 0)
1 0y 2

Or, if we use the relation

we obtain

1 -a=0L(U_,U0 ,p) . (A-10)

A.4 Extreme Values for the False Alarm Equation

For o, = 0 we obtain, using lim U = », from Eq. (A-1)
2 1-o
0 4+0 2
2
[&-ul 2
1 t 1
l-0 = 1lim — dtl exp[— —} —_
Ul-uz+oo 2ﬂ—w 2 /5;/1 —p2
U

1- 2

J ) (t2-ptl)
. exp |-
2(1 - p?)

- 00
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3] 2
1-0 t U - pt
- 2
= lim —1—J ldtlexp[——zz-]¢ 1-a,
U >0 Y27
1-a, - /1 - p2
U 2
1-a t
= L L dt, exp |- 2= l1-o
exs 1 2 1
For a; = 0, we obtain the same result for reasons of symmetry,
i.e.
{al ’ for o, = 0
a = _ (A-11)
Ay for a; = 0
For p = 1 we obtain, from (A-8) and (A-10),
1-¢w, ), foru <U
l -a= L(Ua ’Ua 1) = 1 2 1
1 2 1 - (b(UOt ) , for U, > u,
2 2 1
Therefore,
o o, < a
1 7 - "1
= f =
a {a or o 1, and ) ) (A=12)
2 ! 2 =71
For p = -1 we obtain, from (A-9( and (A-10),
0 , for U -+Ua >0
1-a=L(U, ,U, ,-1) = %1 2
1 2 1-¢(U_ ) -¢(Ua ) , for Ua -+Ua <0
%1 2 1 2

As the case
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is not interesting here, we have
for p=-1 and a; + a, <1 (A-13)

which is the limiting case in Bonferroni's Equation (A-5).

A.4 Monotony of the Function al(p) for a, = a, and a given

In this section we show that for oy = o, and o given, the
function al(p) as defined implicitly by (A-1), is monotonously
increasing for -1 < p < 1.

We start by performing the second integration in (A-1)

which immediately gives

U - .
L (1-a, 2\ [Cimag T XCP
l -a= ———»J dx exp |- 5— o) (A-14)
V2m 2
1 -0
For a; = a,, we obtain the implicit representation of the

function al(p) we are interested in:

U — .
L [l 2 Yi-q, ~ %7 °
l -a= — J dx exp (— —) ) (A-15)
) 2 Yy
do
We want to show that the derivative Tl does not change its
sign. As Ul—a = -Ua , and furthermore,
1 1
dUa dUa da
1 1 1 (A-16)
do = dal dp
du du
o o
we may simply consider the derivative because 3o does
dp 1

not change its sign.,.
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Partial derivation of (A-15) gives

2 — .
1 U-a)\  (P1-op T Prmayt P\ ey
0 = — exp |- o .
V2 2 1 - p2 dp
U - . - L]
I R 2 Ul—a x*0 Ul—a x*p
+ 2 1 X 1 d 1
> dx exp |- 5 |eXP a0
- 2(1 - p?) /1 -p?
(A-17)
In the following we simply write o instead of aj . We then
obtain with the following relation
-U. - x°*p p—-U_ +x -p2 du
A 6} - _ 1 o + G+x

dp
1 - p2 1 - p2 ﬁ__pz dp

1l - p2 1 - p2
from (A-17)
2
U du
1 p - 1
0 = - — exp (— >-¢ . .
/2T 2 0‘ z) 9°
l1-p
-U
1 Ui o (x+pUOL)2
- o5 eXP \ 3 J dx exp |- —————i;——
~ 2(1-p07)
p U du
. 1 + + X .
l_pz l—p2 do l_pz
With

x + pU
— 2=z or x =z Y1l - p2 - p‘Ua
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we obtain (_Ua+pUaV/&_02

-1 dUa 1 z2 dUa z
0 =+ ¢ Ua- P —* + [ dz exp[— . +

Or, by use of

Ja 2 ( 2
z a
dze z *cexp |- —]|= - exp |- > ’
- 00 2

we finally obtain

0 -1 dUa 0 -1 dUa
= . . . +
1-p 1-op
2
1 1 Uy (1-02)
plyi S < B R
)/ZTT l_p2 d l_pz
U
This can be solved for Tﬂ%:
2
du U
p-1 a 1 1 1 a 1-p
of RUNE . = 5 . . exp | - . (A-18)
2 2 1+p
CIENVAS 02

@ G__pz dp

As the term on the right hand side of (A-18), as well as the
du du

factor of 7ﬂ% are greater than zero, we have shown that Tﬂ%
and therefore, that g% is greater than zero of -1 < p < 1.
We will show, in addition, that the function a(p) has no
inflection points. For this purpose it is again sufficient
a%u
to consider as, according to (A-16), we have
de
v auw
; _ o .daz . (A-19)
dp dp dp

From (A-18) we get

2 2
U 2
L oexp - 2. 2z0)” 1 1 p-1

e 2 a o 2
V2 1-p 1 _02 1+p ﬁ__pZ dp




_2 U2
=%'_l‘<'%)’(l-02) 2 . (-20) - exp (- R
V27 2 l+p
2 2
+l. 1 1 exp (_ UOL l-p).(Ua) (_ 2 )
— [ ] —')— -——— e
2 o > A (1+0)°
l-p
which gives
_1 d2U
¢vU' P . o8

The right hand side is greater than zero if and only if

2.U + P 4y%._1 > 0
& 1-p & 1+p
or equivalently, if and only if
F(p): = p2(1 + 20 ) + p(1-U%) -2u +0U% >0 . (A=20)
Pr: P o o o o

For 1 + ZUa < 0, or a < 0.31, this is true for all P with

pl <p < pz, where
2 2 2 _
P1,2 -(1-20)) Py 5 (1-u)) -2U,+U, =0

As can be seen easily, for Ua < =1 (or a < 0.16), the inequality
(A-10) is fulfilled for any p with -1 < p < 1.

A.5 Monotony of the Function az(al) for given a and p
T dao
In order to determine the derivative Jo_’ for given o and
1

p of the function az(al), which is given implicitly by (A-1),

we start again from (A-14).

l1-p (1 +p)

)



Partial derivation gives

Ui U, +U_ -0 SU
0 = L. exp (— 2)- ol- 2 . (-1) - 2
2

%
2
V2 ﬁ.—p dul
2
_Uu Q{J - X°*p
2 exp X 2 3 dal
-0 2(1 -p) 1-op
or
2
o

-U 2
u? o, x+U  +p au
1 % o o
+ ;:: exp|- . dx exp * o . (A-21)
2m 2 o 2(1 - p2) 1
du
%2
Therefore we obtain the result < 0, and with
do
1
du du a
2 _ %2 9% (A-22)
dal da2 do !
that
duz dUuz
Jo <0 , as 3o > 0
1 2

The guestion arises whether or not the function uz(al) has
inflection points. In order to analyze this we write (A-21)

in the following form

2 2
U U *p=-10 U ep-1U
o o a do a o o
0 = exp ( __2> . ¢ 1 . 2 + exp (— l)o ¢ 1 2

2
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Derivation after aq gives

2 .« A - 2

Ua2 Ua2 P Ual dUa2 da2 Ua2

0 = exp -_ oq) . —U . . + exp -
2 5 a2 da da 2

o o o da
2 1 1 2 2
® Vord exp |- . 0 - - 1),
u 2 (1 _02) G__OZ da doy dal
2 .o - 2
Ua Ua P Ua dza Ua
2 1 1 2 1
+ expl|l- —- ) ¢ . 3 + exp \- —
2 A2 da? 2
U *p-0U du
*1 ) (.. \... %
" 2 Uo‘l a
1 -0 %1
U2 U +«p=-1U au du
+ exp (— —il) .1 exp -< "1 uzj N S e ! - *2
2 o 5 dal dal
/2 2(1-02) 1-p
dzu
As the factor of 5 is greater than zero, we obtain
do
1
a% U2 o P U, du, do... V
2] 2 2 1 2 2
Sgn 2 - exp_ ¢ .Ua . . JE—
dul 2 1 - pZ 2 da2 dal
C?az'p'-ua 1 dUal dUa2 da.,, do,
+ exp -_ —_] . — p . .
V2w 2(1 -p)2 l-—pz doy da, da, day
u? U +p-U au
ay oy P SN oy
+ exp |- — l|¢] —— .Ua .
27 1 _02 1 dal
U «p-0U du du
L1 < o 0‘5 1 i ®
— €Xp |- 5 . . -0
V27 2(1 - p%) /o p2 da, day daq
d2a2
for the sign of 5
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For aqs0, < 0.5, we obtain
dza
2
sgn <0
daz
1
if p = 0, or if
qu
1 dUaz da, dUaz do, v 1
-p° . >0 and . -p- <0
docl daz dal daz dal dal

This is true for p > 0. It cannot be shown in this way that the
2
d7o

du%

sign of

does not change for p < 0.

A.6 Graphical Representation of the False Alarm Equation

In the following, we want to represent Equation (A-1)
graphically: we plot oy as a function of 05 with p as a
parameter for a given value of a. For p = -1, 0,1 we already
know the analytical form (Egs. (A-13, 17 and 3)); we also
know the form for o, = 0 and a, = 0 for arbitrary

1 2
values of p. Bonferroni's inequality (A-5) and the conditions

0 < a a, < o (A-23)

l 14

(which follow from (A-11) and from symmetry considerations)

limit the possible values in the (o, = az) plane.

1
In the following, three different methods for the tabu-
lation of the false alarm equation are discussed
i) Graphical method;
ii) Simulation method;

iii) Use of approximate formulas for L (h,k,p).
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A.6.1 Graphical Method

In Ref. [A-2], the function

(ph -k) » sgn h

L|lh,0 (A-24)

7
/ﬁz-thp + k2

is tabulated for -1 < p < 1 and 0 < h < 2.5. With the help

of the relation
1
L(h,0,-p) = 5 - L{-h,0,p) ,

function (A-24) can be tabulated also for negative values of

h. In addition, we have

(ph = k) sgn h (ph - h) sgn k
L(h,k,p) = L|h,0, + Llk,0, +
/n2 ~ 2hko + k2 /n? - 2hkp + k2
o, if hk > 0 and h + k > 0
- * A-25)
{%- , otherwise (

Therefore, the false alarm equation can be represented in the

following form:

2U -U sgn U pU -u )sgn U
( oy a2> al_ . ﬁ o, aq 5

o
l1- aoa= LJU 0, + LJU r VYV S .
" g2 —2u o + U2 \E: ¢y G -2u, U -+U§ 5
%y % %) %1 1 %2 2
. . N
0] ’ if Ul—a Ul—a > 0 and aq + o, > 1
_ 1 2
% R otherwise

This relation has been used to tabulate a, as a function of
@, with p and o as parameters on the basis of the graphical

representation of the function (A-24) in Ref. [A-2].
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As the accuracy of the (A-24) representation is not
better than 0.01, it has not been possible to obtain a satis-
fying accuracy for values of (al,az) approaching (0,a) and
(,0) therefore, different methods had to be used in these

critical regions.

A.6.2 Simulation Method

In order to tabulate Eg. (A-1) with the help of a simu-
lation method, the following procedure is used: Let A, B, and

C be normally distributed random variables, with

EA = EB = EC =0 , var A = 0 , var B = o; , var C

Then we can tabulate (A-1l) by means of the following form:

l—otz{prob A¥B S U, . #AFCC Ul-az} ,

where the variances are determined in such a way that the

variances of A + B and tA + C are 1:

and where the correlation takes the value ¥ op:

(ot 2

2

+
“a
cor (A+B,+A+C) =

to. = p .

2
A

The disadvantage of this method is that it provides no direct

method of calculation of o, as a function of 0, for given

1
values of o and p; one has to fix al, o and p and determine
o, which means that one must iterate until one has reached

the previously chosen value of o chosen below.
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A.6.3 Use of Approximate Formulas for L (h,k,p)

The method which has proven most successful for the
numerical calculations uses approximate formulas for the
bivariate normal distribution function given by Owen [A-3].

Let us define

B(h,k;p) =

h k X2 C 2oxyv 4+ 2
J dx J dy exp |- PXy T ¥ (A-26)

1
) 2
27 w/{-pz—oo — 2(1 - p%)

and furthermore,

1 a dx h2(l-+x2)
T(h,a) = — J 5 exp |- ————| - (A=27)
2m 1+x 2

Then we have according to Owen

rl k - oh

1
§'¢’(h) - Tlh, +-2-‘¢!(k) - Tlk,

h/1 - p° k/1 - p?

J if hk >0 or if hk = 0 , h or k > 0
B(h,k,p) = . (A-28)

1 k - oh 1
79 (h) - olp, 2P0 + F0(k) - Tk, _%

hv/1 - o3 K/1 - 2

if hk <0 or if hk = 0 , h or k < 0

Furthermore, we have

T(h,a) = 2ECtg a _ 1 Y oC. 223+l
o 27 J (A-29)

where
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converge rapidly for small values of a and h.

On the basis of these formulas, the false alarm relation
(A=1) has been determined numerically for fixed values of M.

In Figure 1 (in the main part of this paper), for Gy = 0y
the values of a; as a function of p have been represented for
different values of a. As can be seen directly, the value of
p is practically independent of the value of a for p <0.
Therefore, for p < 0 (A-3) 1is favorable instead of (a-1),

, =1~ /1-a.

In Figure 2, for a fixed value of o = 0.05, the values

OLl=OL

of a; as a function of o, with p as a parameter have been
represented. Again, for p < 0, (A-3) is favorable instead
of (A-1).

A.7 False Alarm Equation for Symmetric Tests

All the considerations of this paper have been based on

one-sided tests. For completeness we give the false
alarm equation for symmetric tests, i.e. for tests where the
null hypothesis is given by

< ED < p, , =p, < EMUF < p,

As can be seen easily, in this case, the false alarm equation

is given by the following formula:

U U
l—al l—gg
1 1 2 2
L-a= o —————; [ at, J dat,
/l-p _y ~U
l—al l—az
2 2
(t2 - 2t t.p + t2)
1 172 2
L) exp —

2(1 - %)
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Without going into a thorough discussion of this formula, it
should be stated only that it is invariant to the

change of the sign of p. So for a; = o, we obtain
a; = a, =0 for p=+1

We lose the nice property of the one-sided test that for
p < 0, the false alarm relation is practically independent of
the value of a.
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