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PREFACE 

A pipe of a differential inclusion is a set-valued map 
associating with each time t a subset P(t) of states which 
contains a trajectory of the differential inclusion for any 
initial state xo belonging to P(0). As in the Liapunov method, 
knowledge of a pipe provides information on the behavior of the 
trajectory. In this paper, the characterization of pipes and 
non-smooth analysis of set-valued maps are used to describe 
several classes of pipes. 
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STUDY OF SOLUTIONS TO DIFFERENTIAL 
INCLUSIONS BY THE "PIPE METHOD" 

Jean-Pierre Aubin 

INTRODUCTION 

We propose a method analogous to Liapunov's second method 

for studying the asymptotic properties of solutions to differ- 

ential equations or inclusions. 

Let F be a set-valued map from a subset K C JRn to JRn des- 

cribing the dynamics of the system: 

(0.1) x'(t) E F(x(t)) x(O) = x given in K 
0 

Let V be a function from a neighborhood of K tolR+. 

All methods falling under the name of Liapunov's second 

method deal with the fact that inequalities of the type 

(0.2) vx E K, in£ <v' (x) ,v> 2 - W(x,v) 
VEF (XI 

(where W is a non-negative function on Graph(F)) imply, under 

reasonable assumptions, that 

Vxo E K, there exists a solution x ( 0 )  to (0.1) such 
(0 - 3 )  

that t -+ V(x (t) is decreasing 



According to the choice of the function V (and the function W), 

we then can deduce information upon the behavior of some solutions 

to (0.1) ; in particular, that 

(We refer to Aubin-Cellina 119841, Chapter 6, for a presentation 

of the Liapunov method for non-differentiable functions V and for 

differential inclusions.) The "pipe methodv we propose aims for 

the same objectives. A "pipev P is a set-valued map 

which is related to the dynamics described by F by 

where 

denotes the 'contingent derivativen of P at (t,x) E Graph(P) 

(see Aubin-Cellina [1984], Section 4.3). Indeed, Haddad's via- 

bility theorem (see Haddad [ 19811 , Aubin-Cellina [ 19841 , Section 
4.4) implies that under reasonable conditions, condition (0.6) 

implies that 

[Vxo E K, there exists a solution x(*) to (0.1) such 

1 that Vt 2 0, x(t) E P (t) 

According to the choice of the pipe P, we are able to infer pro- 

perties of the behavior of some solutions to (0.1). The pipe 

method has drawbacks analogous to Liapunov's method: when the 

dynamics of a system are described by a map F, how can we find 

its pipes? 

However, we shall give several examples of pipes in the 

following pages. We begin with pipes derived from potential func- 

tions V, of the form 



(0.9) P (t) : = {X E K ~ V ( X ( ~ )  ) 5 w (t) 

where w(t) is a function we shall construct in terns of F and V. 

Such pipes yield information analocjous to the ones provided by 

Liapunov method. 

We shall also characterize pipes of the form 

and more generally, of the form 

We shall study pipes defined by constraints 

where A is a continuous map from lR+ x lRn to a vector space lRp. 

Finally, we consider pipes of the form 

where C and D are closed subsets of lRn and @ is a differentiable 

map from a+ x an x an. In particular, when C is reduced to a 
point c, we investigate pipes of the form 

Such pipes allow us to infer that for any xo E c + $(O)D, there 
exists a trajectory x(*) of (0.1) converging to c at time T when 

$(T) = 0. 

We shall rely on results of non-smooth analysis as they 

are presented in Chapter 7 of Aubin-Cellina [I9841 to give suf- 

ficient conditions for set-valued maps of the form (O.11), (0.12) 

or (0.13) to be pipes of a given set-valued map F. 



1. THE PIPE METHOD: A GENERAL DESCRIPTION AND BACKGROUND NOTES 

Let us consider a dynamical system described by a set-valued 

map (t,x) E [o,T] x IRn + F(t,x) E IRn. 

We consider the initial-value problem for the differential 

inclusion 

where (0 ,xo) E Dom(F) is given. 

We recall the definitions of the contingent cone TK(x) to 

a subset K at x E K: 

I (x) : = {v E IRn ("I lim in£ d(x+hv,K) = 01 
h + O +  h 

(see Aubin-Cellina [19841, pp.176-177). When G is a set-valued 

map from X to Y and when (x,y) belongs to the graph of GI the 

contingent derivative DG(x1y) of G at (x,y) is the closed process 

(set-valued map whose graph is a closed cone) from X to Y defined 

by 

DG(x1y) (u): = {v E Y I  lim inf d(v, G(x+hul) - y h = 01 
h + O +  
u' + u 

We observe that 

When P is a set-valued map fromIR to XI it is enough to know the 

values of the contingent derivative DP(t,x) of P at (t,x) E Graph 

(P) at 1, 0 and -1. We observe that 

(1.5) DP(t,x) (1) = {v E X I  lim in£ d(v, P(t+h) - x) = 01 
h + O +  h 

and we shall often set 



We also observe that 

and that 

(1.7) ~P(t,x) (-1) = {v E X 

(Equality holds when P is Lipschitz around x.) 

lim inf d(v, P(t-h) - X) = 0) 

h + O +  h 

Definition 1.1: We shall say that a set-valued map P from [O,T] 
to an is a pipe of a set-valued map F : a x mn + an on [ O,T] if 

r (i) Graph (P) is closed and contained in Dom(F) 

(1.9) f (ii) vt E [O,T[, Vx E P(t), F(t,x) DP(ttx) # fl 

(iii) Vx E P(T) , F(T,x) n DP(T,x) (0) # PI 
A 

Condition (1.9)iii) naturally disappears when we take T: = +w. 

Hence Haddad's viability theorem (see Haddad [1981], Aubin-Cellina 

[1984], Theorem 4.1.1, p.180) can be reformulated in the following 

way : 

Theorem 1.2: Let us assume that 

(1.10) F is bounded, its gra~h is closed and its values are 

convex. 

Let P be a pipe of F on [o,TI. Then, for any xo E P(O), there 

exists a trajectory of (1.1) satisfying 

(i) Vt E [ O,T] , x(t) E P(t) 
(1.11) 

(ii) for almost all t E [ O,T[ , x' (t) E DP(t,x(t) ) . 
and, when T < +w, 

(1.12) vt E [T,w] , X' (t) E F(T,x(t)) and x(t) E P(T). A 



Proof: We introduce the following set-valued map G from Graph(P) 

to lR+ x lRn defined by 

When T < T, condition (1.9)ii) implies the existence of v in 
F (T ,x) n DP (T ,x) . We then deduce that (1 ,v) belongs to the con- 

tingent cone to Graph (P) at (T ,x) . When T - > T, condition (1.9) iii) 

states that (0,v) belongs to the contingent cone to Graph (F) at 

(T,x). Hence, the set-valued map G satisfies 

V(r,x) E Graph(P), G(T,x) n T ~ ~ ~ ~ ~ ( ~ )  ('1~x1 # PI. 

Since G is bounded, its graph is closed and its values are convex, 

Haddadts theorem states that the differential inclusion 

has a viable trajectory t + (T (t) ,x (t) ) in Graph (P) . Since 

~ ( t )  = t when t E [O,T], ~ ( t )  = T when t - > T, we infer that 

x(-) is a solution to (1.1) satisfying (1.11). rn 

In order to check that a set-valued map P is a pipe of a 

given set-valued map F, we-need to use some calculus on contingent 

cones and contingent derivatives of set-valued maps. Sooner or 

later, we shall need regularity assumptions of the type: x  + TK(x) 

is lower semicontinuous at some point xo. This motivates the 

introduction of the Kuratowski lim in£ of the contingent cones 

(1.14) lim in£ TK(y): = n u n (TK(y) + EB) 
Y + X  E>O a>0 +BK(x,a) 

A theorem due to Cornet [ 19811 , Penot [ 19811 (see ~ubin-Ekeland 

[1984], Theorem 7.1.7, p.409) implies that this lim in£ of the 

contingent cones is the tangent cone CK(x) to K at x introduced 

by Clarke [ 19751 (see also Clarke [ 19831 , ~ubin-Ekeland [ 19841 , 
Definition 7.1.3, p.506) and defined by 



It is a closed convex subcone of the contingent cone TK(x), which 
1 coincides with it when K is a C - manifold, when K is convex or 

more generally, when y + T (y) is lower semicontinuous at x. K 

When G is a set-valued map from X to Y and when (x,y) 

belongs to the graph of G, we define the derivative C~(x,y) of G 

at (xty) by 

When G is ~ipschitz around x, we observe that 

(1.17) CG(x,y) (u) = {v E Y I lim d (vt G(xl+hu) - y1 h = 0) 
h + O +  

(x'ty') + (xty) 
Graph (G) 

1 When G is a C - single-valued map, CG(x,G(x)) coincides with the 
usual Jacobian G' (x). When V is a function from lRn to lR U {+a) 

and when we want to take into account the order relation (for 

defining pipes of the form 

for instance), we are led to introduce the epigraph of V defined by 

(1.18) Ep(V) : = { (x,w) E Dom V x lR/~(x) - < w) 

We then observe the following facts: 

is the epigraph of the epi-contingent derivative D+V(x) defined by 



(1.19) D+V(x) (u) = lim in£ V(x+hu) - Vx 
h + O +  h 

u' + u 

and that 

is the epigraph of the epi-derivative C+V(x) of V at x, which is 

a lower semicontinuous, positively homogeneous convex function. 

We always have 

and equality holds when V is c1 around x, or convex. When V is 

Lipschitz around x, we obtain simpler formulas 

r 
(i) D+V(x) (u) = lirn in£ V(x+hU) - (a Dini derivative) 

h + O +  h 

(1.21) 1 (ii) C+V(x) (u) = lirn sup V(y+hu) - V(Y) (clarkets 
h + O +  h 

Y + X  
directional derivative) 

We observe also that when V is upper semicontinuous at x and 

w > V(x), then TEp(V) (x'w) = CEp(v) (x,w) = nn x n. 

We shall also use the notation: 

c ~ ( x )  (u) : = lirn in£ V(y+hu) - V(y) - 
h + O +  h 

whose hypograph is the tangent cone to the hypograph of V at (x,V(x)) 

(when V is locally Lipschitz). Finally, we define the generalized 

gradient aV(x) of V at x as the (possibly empty) closed convex sub- 

set 



In particular, when V: = qK is the indicator of a subset 
K(qK (x) = 0 when x E K and OK (x) = +m when x K} , then 

where NK(x) is the normal cone to K at x. We say that a solution - 

(1.25) x E K and 0 E av(x) + ~ ~ ( x )  

is a critical and stationary point of V on K. Elements x E K 
minimizing V on R are critical points; the converse is true when 

V is convex. 

2. PIPES DERIVED FROM POTENTIAL FUNCTIONS 

Let K CIRn be the viability domain and let us consider a 

"potential function" V from lRn to lR+ U {+m). We shall study in 

this section pipes of the form 

where w is a non-negative function defined on [O,T]. We shall 

begin by providing sufficient conditions on KIV,w and F implying 

that set-valued maps P of the form (2.1) are pipes of F. We 

obtain in this case the following result: 

Proposition 2.1: Let us assume that K is closed and that V is 

locally Lipschitz around K. Let w be a cl- function defined on 
a neighborhood of V such that 

Vt E [ O,T[ the elements of P(t) are not critical 
(2.2) 

points of V on K 

We posit the following condition 

Vt E [O,T[, Yx E K such that V(x) = w(t), 
(2.3) 

3u E F(t,x) n CK(x) such that C+V(x) (u) - < wl(t) 



and 

(2.4) 
If x E K satisfying V(x) = w(T) is a critical 

point of V on K, then 0 E F(T,x). 

Then the set-valued map P defined by (2.1) is a pipe of F on [O,T]. A 

Therefore, if F satisfies assumption 1 . 1 0 ,  then for all xo E K 

satisfying V(x) - < w(O), there exists a trajectory of the differ- 

ential inclusion (1.1) satisfying 

(i) Vt E [O,T], x(t) E K and V(x(t)) - < w(t), 

(2.5) (ii) for almost all t 2 0, 

X' (t) E T~(x(~)) and D+V(x(t) (x' (t)) 2 w' (t) I 
1 We recall that when V is C , 

and that when V is convex and continuous, 

D+V(x) (u) = C+V(x) (u) = inf V(x+hu) - V(x) 
h h > O  

We shall also study pipes of the form 

where c is a function from I 0, TI to K and w - and w+ are non- 
negative functions, which define some kind of neighborhood around 

a function t -+ c(t), such as periodic trajectories of the dynamical 

system (1.1). They are special cases of pipes associated to p 

potential functions Vi by the formula 

where O is a smooth map from [O,T] x K to Dom 3. We shall then 

provide sufficient conditions on 0,; and the functions Vi for a 

set-valued P of this type to be a pipe for a given set-valued map F. 



Theorem 2.2: Let us assume that K is closed, that @ is c1 around 
[ O,T] x K, that ; is c1 around [ 0 ,TI and that the p potential 

functions Vi are locally Lipschitz on a neighborhood of @([O,T] x K). 

Let us set 

We assume that 

and that 

0 E F(t,x) for all x E P(T) such that there exists 
(2.11) 

i E I(T,x) such that 0 E @;(T,x)%v~(@ (T,x)) + NK(x) 

We posit the following assumption 

I (i) ~t E [O,T[, vx E ~ ( t ) ,  3u E F(t,x) n CK(x) such that 

(2.12) 1 (ii) Vx E P(T),3u E F(T,x) n cK(x) such that 

I Vi E I(T,x) ,C+Vi (9 (T,x) ) (9'(T,x)u) < 0 
X - 

Then the set-valued map P defined by (2.8) is a pipe of F. 
A 

If F satisfies assumption ( 1 1 0 ,  then, for all xo E K 

satisfying Vi(O(O,x)) 5 wi(0) (i=l, ...,p), there exists a trajec- 
tory of the differential inclusion (1.1) satisfying 

I (i) Vt E [O,T[, V = , ,  p, Vi(9(t,x(t)) 5 wi(t) 

(ii) for almost all t E [ 0,Tl , for all i E I (t,x(t) 1 ,  

x1 (t) E TK(x(t)) and 



Remark: Observe that the elements x E K satisfying 

are the critical points of x + Vi ( @  (t.x) ) on K. Assumption (2.11) 

states that critical points of some function v~(@(T,*)) on K are 

equilibria of F(Tlo). We can say that a solution to 

is a Pareto critical point of the functions Vi (a (t. ) ) , (Pareto 
minima do satisfy this inclusion). 

Remark: Observe also that if 

then property (2.10) follows from (2.12). This is usually the interest- 

ing case, since we would like the pipes P(t) to decrease when t 

increases. 

Corollary 2.3: Let K be a closed subset, V be a c1 function from 
1 a neighborhood of [O,T] to K, w- and w+ be C non-negative func- I 

tions satisfying 1 

Vt E [O,T[. 0 5 w-(t) < w-(T) = w+(T) < w+(t) 
(2.16) 

and wl(t) - > 0, w;(t) < 0 I 
i 

We posit the following assumption: 1 
P 

(i) Vt E [O,T[, Vx such that V(x-c(t)) = w+(t), I 
I 

there exists u E F(t,x) n C (x) such that K I 

(ii) Vt E [ 0 ,T[ , Vx such that V(x-c (t) ) = w- (t) I 

there exists u E F (t,x) n CK (x) such that 

c - V(x-c (t)) (u-c' (t) > w:(t) 

I (iii) Vx such that ~ ( x - c  (T) ) = w+ (T) = w- (T) , 0 E F (T,x) I 



Then the set-valued map P defined by 

(2.18) ~(t): = Ix E K ; w-(t) 5 V(x-c(t)) < w+(t) 1 
is a pipe of F on [O,T]. 

-b 
P 

-b 
Proof of Theorem 2.2 : We set Dom V = n Dom Vi , V(x) : = (Vl (x) , 

-b 
i=l 

,...,V (x)) and Ep(V): = {(x,w) E Dom 5 x lRPPIP(vi(x) < wi for 
P - 

i=l, . . . , p) 1. Let A be the c1 map from a neighborhood of [ 0 ,TI x K 

to lRn x lRP defined by 

Then we can write 

We then use Proposition 7.6.3, p.440, of Aubin-Ekeland [19841. 

It states that 

and that if the transversality condition 

then 

Inclusion (2.22) implies that for all t E [ 0 ,TI , 



since 

and since 

In the same way, inclusion (2.24) can be rewritten in the follow- 

ing form 

This inclusion and assumption (2.12) imply that P is a pipe of F. 

It remains to check the transversality condition (2.23), which 

can be written in the following way: 

such that 

By assumption (2.10) and the separation theorem, there exists 

E CK(x) such that 



There exists q such that C+Vi(@(ttx)) (@:(t,x)G + v) 5 0 when 
v E q ~ .  Let 6 = 0 if Ad - < 0 and 

A 

We take a = 6 + qllluall. Hence, r :  = 0 and u: = au provide 

a solution to (2.29). 

Then this transversality condition holds true for all t E [O,T[ 

and all x E P(t). When it fails to be true for some x E P(T), 

we then assume that such an x is an equilibrium of F(T,*). m 

3 .  PIPES DEFINED BY TIME-DEPENDENT CONSTRAINTS 

Let us consider a continuous single valued map A from a 

neighborhood of [ O,T] x K to a vector space IRP and a subset M of 

. We shall provide sufficient conditions for a set-valued map 

P of the form 

to be a pipe of a set-valued map F. We begin with the case when 

A is continuously differentiable. 

Proposition 3.1: Let K and M be closed subsets and A be continu- 

ously differentiable. We assume that for all t E [ o , ~ ]  ,Vx E P (t) , 

If for any t E [O,T] and any x E P(t), there exists v E F(t,x) 

n CK(x) satisfying 

C (i) ~i(t,x)v E CM(A(t,x)) - A;(t,x) when t < T 

when t = T 

then the set-valued map P defined by (3.1) is a pipe of F on [O,T] 
and 



We can relax the assumption that A is continuously differ- 

entiable and replace the Jacobian of A by the derivative 

CA(t,x): = CA(t,x,A(t,x)) whose graph is the tangent cone to the 

graph of A at (t,x) . 
Then Proposition 3.1 follows from 

Proposition 3.2: Let K and M be closed subsets and A be a con- 

tinuous map. We assume that for all t € [ O,T] ,Vx € ~ ( t ) ,  

(i) Dom CA(t,x) = IR x lRn 
(3.5) 

(ii) CA(~,X) (o,c~(x)) - c~(A(~,x) = IRP 

If for any t E [O,T] and any x E P(t) there exists v E F(t,x) 

n CK(x) satisfying 

(i) CA(t,x) (1,~) E CM(A(t,x) ) when t < T 

(3.6) 
CA(T,x) (0,~) E CM(A(T,x)) when t = T, 

then the set-valued map P defined by (3.1) is a pipe of F on 

[O,T] and 

Proof: The graph of P is the projection onto IR x IRn of the subset 

L: = ([o,T] x K x M) n Graph A ClR xlRn xlRP 

By Proposition 7.6.3, p. 440 of Aubin-~keland [ 19841 , we know that 

C(T[ 0 r TI 
(t) x TK(x) x TM(Ax) ) n Graph DA(t,x) ) 

t 
This implies inclusion (3.7). 



We also know that the transversality condition 

(3.9) T[ O.T1 
(t) x CK(x) x CM(x) - graph CA(t1x) = lR xlRn xlRP, 

implies that 

(3.10) CL(ttx~A(ttx)) 3 Ti olT] (t) x CK(x) x CM(Ax) n Graph CA(t1x) 

We then observe that 

Indeed, let w belong to CA(t,x) (r,u) n c~(A(~,x)) and let tn -+ t, 

x -+ x and hn -+ 0 +. Since (r,u,w) belongs to CL(tlx.A(t,x)), n 
there exist sequences T~ -+ T, un -+ u and wn -+ w such that 

(tn + h,~~, xn + hnunl A(tn,xn) + hnwn) E LI i.e. such that 

xn + hnUn E P(tn + hnrn) for all n. This implies that u belongs to 
C(t,x)(~). It remains to check the transversality condition (3.9). 

n n Let T,U,W be given inlR xlR xlRp. Since Dom CA(t,x) =lR xlR , 
there exists v E CA(t1x) (-T, -u) . By assumption (3.5) ii) , there 
exist ul E CK(x) and wl E CM(A(t.x)) such that -w-v E CA(O,ul) - wl. 
Hence - w belongs to CA(-T ,ul-u) - w, i.e., (0-T .ul-ulwl-w) belongs 

to Graph (A) and (O,ul lW1) C[ O,T] x K x M (trxtA(ttx)) 

4. HOMOTOPIC TRANSFERS 

Let us consider two closed subsets C and D of1~" and a 
n differentiable map @ from a neighborhood of [ O,T] x C x D to lR . 

We consider pipes of the form 

Proposition 4.1: Let us assume that 

Yt 5 T Yx E P(t), 3(y,z) E C x D such that @(t,y,z) = x, 

3(u1v) TC (y, z) such that 



(i) if t < T,@'(~,~,z)u + Q~(t,y,z)~ E F(ttx) - @;(tt~tz) 
Y 

(4.2) 
(ii) if t = TI@' (Ttytz) + @i(TtytZ)v E F(Ttx) 

Y 

Then the set-valued map P defined by (4.1) is a pipe of F on [ O,T] . A 

Proof: We observe that Graph(P) is the image of [ O,T] x C x D 

under the map I) defined by $(t,y,z) = (t,@(t,y,z)). 

By Proposition 7.6.2, p.430 of Aubin-Ekeland 119841 , 

" (t'ytz)T[ O,T] x C x D (ttytz) ' T~raph(~) (ttytz)). We deduce 

that condition (4.l)i) implies property (1.9)ii). We proceed 

in the same way to show that (4.1) ii) implies (1.9) iii) since 

P(T) = @(TICID). 

When C and D are closed and convex, we can characterize 

pipes of the form (4.1) through dual conditions. If K is a sub- 

set of IR", we denote by 

(4.3) a(KIp): = sup <p,x> 
x E K 

its support function. 

Proposition 4.2: Let us assume that the values of F are compact 

and convex and that the subsets C and D are closed and convex. 

If for any t E [O,T] ,Vx E P(t), there exists (x,y) E C x D satis- 

fying @(t,y,z) = x and for all 

we have 

1 (i) Vt < TI <pt@;(ttyt~)> + o(~(tt@(ttYtz))t-~) 2 0 

i' ii) for t = TI ~(F(T,@ (Ttytz) ) ,-p) 2 0 

then the set-valued map P defined by (4.1) is a pipe of F on [ 0,1:] . A 



Proof: When C and D are convex, T~ x D (yfz) = T~(Y) x T~(z) SO 

that conditions (4.2) i) and ii) can be written 

The separation theorem shows that they are equivalent to condi- 

tions (4.4). ¤ 

Corollary 4.3: Let us assume that C and D are closed convex sub- 

sets and that the values of F are convex and compact. Let 

I$%+ +IR+ be a differentiable function satisfying either one of 

the following equivalent conditions: 

For any t - > 0, x E P(t), there exists y E C,z E D such that 

x = y + I$ (t) z and either 

I (i) (F(t,y+$(t)z) - I$'(t)z) (TC(y)+TD(z)) # % if t < T 
(4.6) 

ii) o(F(T,y+$ (T) z) ,-p) 1 0 if t = T 

Then the set-valued map P defined by 

is a pipe of F on [OtT] A 

Let us consider the instance when C = Ic} and when 0 belongs 

to the interior of the closed convex subset D. 



We introduce the function a. defined by 

ao(t,w): = I 
I SUP SUP inf <P,V> 

z E D P E ND(z) v E F(t,c+ w z) 
a 

= 1 

inf SUP <PtV> I. zsEPD V E F(~,c+wz) p ' ND(z) 
OD(p) = 1 

(The last equation follows from the minimax theorem.) 

Let us assume that there exists a continuous function 

a : lR+ xlR+ +lR, satisfying a(t,O) = 0 for all t - > 0, such that 

Let 0 be a solution to the differential equation 

(4.11) 0' (t) = a(t,+(t)), 0(0) = 0, given 

satisfying 

Since aD(p) > 0 for all p # 0, we deduce that for all z E D and 

all p E ND(z) , 

Hence, condition (4.7)i) is satisfied. Also 



Then 

defines a pipe of F. 

For instance, if D: = B is the unit ball, then oB(p) = 

Ypl and NB(z) = Az for all z E S: = { X I  lxl = 1). Hence, in this 

case we have 

(4.15) ao(t,w): = sup inf <v,z> 
nzn=l E F(~,c+wz) 

In other words, the function a. defined by (4.9) conceals all the 

information needed to check whether a given subset D can generate 

a pipe P. 

Remark: When a is non-positive and satisfies a(t,O) = 0 for all 

t - > 0, then there exists a non-negative non-increasing solution 

$ ( - )  of the differential equation (4.11) 

When T = a, we infer that iia(r ,@ (r) )dr is finite. Let 

us assume that for 0 all w,€ 1R+, 

(4.16) lim a(t,w) = a, (w,) 
t + a J  
W + W* 

Then the limit $, of $(t) when t + satisfies the equation 

Otherwise, there would exist E > 0 and T such that a,($,) + E < 0 

and for all t > T, a(t,$ (t)) 2 a, ($,) + E by definition of a,. 

We deduce the contradiction 

when t is large enough. 



Example: L e t  u s  c o n s i d e r  t h e  c a s e  when F does  n o t  depend upon t. 

W e  s e t  

(4.17) po: = sup  i n f  ( h w  - a. ( w )  l 
A E I R w  > 0  

Assume a l s o  t h a t  ho  EIR a c h i e v e s  t h e  supremum. W e  c an  t a k e  $ ( w ) :  

I f  po > 0 ,  t h e  f u n c t i o n  

f 

t 
i s  such t h a t  P ( t )  : = {c+mT ( t )  D} i s  a  p i p e  o f  F such  t h a t  P (T) = {c}.  

I f  po 2 0  and ho < 0 ,  t h e n  t h e  f u n c t i o n s  

1 - e hot) $ ( t ) :  = - (po  
h o  

a r e  such  t h a t  P ( t )  : = c+mC ( t )  D d e f i n e s  a  p i p e  o f  F on [ 0  ,m[ such 
Po t h a t  P ( t )  d e c r e a s e s  t o  t h e  set Pm: = c + p  . 
0 
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