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PREFACE 

This paper discusses various stochastic quasigradient methods and 
considers their computer implementation. It is based on experience 
gained both a t  the V. Glushkov Institute of Cybernetics in Kiev and a t  
IIASA 

The paper falls naturally into three parts. The first is concerned 
with problem definition and various ways of choosing the step size and 
step direction. A detailed description of an interactive stochastic optimi- 
zation package (STO) available a t  IIASA forms the second part. Finally, 
the  use of this package is demonstrated by application to three test  prob- 
lems tha t  have arisen during the course of IIASA work they include a 
facility location problem and a water management problem. 

This work was carried out within the Adaptation and Optimization 
Project of the System and Decision Sciences Program. 

ANDRZE J WIERZBICKI 
Chairman 
System and Decision Sciences 



A number of stochastic quasigradient methods are discussed from 
the  point of view of implementation. The discussion revolves around the 
interactive package of stochastic optimization routines (STO) recently 
developed by the Adaptation and Optimization group a t  IIASk (This pack- 
age is based on the  stochastic and nondifferentiable optimization pack- 
age (NDO) developed a t  the  V. Glushkov Institute of Cybernetics in Kiev.) 
The IIASA implementation is described and its use illustrated by applica- 
tion to three problems which have arisen in various IlASA projects. 



STOCHASI7C QUASIGRADENT METHODS AND THEIR 
IMPLEMENTATION 

Y w i  E?rmoLiev and A l e z e i  G a i v o r o n s k i  

1. INTRODUCTlON 

This paper discusses various stochastic quasigradient methods (see [1,2]) 

and considers their computer implementation. It is based on experience 

gained both a t  the V. Glushkov Institute of Cybernetics in Kiev and a t  IIGk 

We a r e  concerned here mainly with questions of implementation, such as 

the best way to choose s tep directions and s tep sizes, and therefore little atten- 

tion will be paid to  theoretical aspects such as convergence theorems and their  

proofs. Readers interested in the theoretical side are referred t o  [1.2]. 

The paper is divided into five sections. After introducing the main problem 

in Section 1, we discuss the various ways of choosing the step size and s tep  

direction in Sections 2 and 3. A detailed description of an interactive stochas- 

tic optimization package (STO) currently available at  IIASA is given in Section 4. 

This package represents one possible implementation of the methods described 

in the previous sections. Finally, Section 5 deals with the solution of some test  

problems using this package. These problems were brought to our attention by 

other IIASA prcjects and collaborating institutions and include a facility loca- 

tion problem, a water resources management problem, and the  problem of 

choosing the parameters in a closed loop control law for a stochastic dynamical 

system with delay. 

We are  mainly concerned with the problem 

where z represents the variables to be chosen optimally, X is a set  of con- 

straints,  and o is a random variable belonging to some prubabilistic space 

(R ,B,P) .  Here B is a Bore1 field and P is a probabilistic measure. 

There a re  currently two main approaches to this problem. In the first, we 

take the mathematical expectation in ( I ) ,  which leads to multidimensional 



integration and  involves the use of various approximation schemes [3-61. This 

reduces problem (1) to a spe'cial kind of nonlinear programming problem which 

allows the application of deterministic optimization techniques. In this paper 

we concentrate  on the second approach, in which we consider a very Limited 

number of observations of random function f ( z , o )  a t  each iteration in order to  

determine t h e  direction of the  next step. The resulting errors  are smoothed 

out until t h e  optimization process terminates (which happens when the s tep 

size becomes sufficiently small). This approach was pioneered in [7,9]. 

W e  assume tha t  set  X is defined in such a way t h a t  the projection operation 

z -. nX(z)  is comparatively inexpensive from a computational point of view, 

where nx(z) = arg min llz - = ! I .  For instance, if X is defined by linear con- 
z EX 

straints,  then  projection is reduced to a quadratic programming problem 

which, although challenging if large scale, can nevertheless be solved in a finite 

number of iterations. In this case it is possible to implement a stochastic 

quasigradient algorithm of the following type: 

Here zs is the  cur ren t  approximation of the optimal solution, ps is the s tep  

size, and v S  is a random step direction. This s tep direction may, for instance, 

be a statistical estimate of the gradient (or subgradient in the  nondifferentiable 

case) of function F(z) :  then vS  = such tha t  

where as decreases as the number of iterations increases,  and the vector vS  is 

called a stochastic quasigradient of function F(2).  Usually p, 4 0 as s 4 = and 

therefore Ilzs+l - zS 1 1  -, 0 from (2). This suggests t ha t  we should take zS as the 

initial point for the solution of the projection problem a t  iteration number s +1, 

thus  reducing considerably the computational effort needed to solve the qua- 

dratic programming problem a t  each s tep s = 1,2. ... . Algorithm (2)-(3) can 

also cope with problems with more general constraints formulated in te rms  of 

mathematical expectations 

by making use of penalty functions or the Lagrangian (for details see [1,2]). 



The principal peculiarity of such methods is their nonmonotonicity, which 

may sometimes show itself in highly oscillatory behavior. In this case it is 

dificult to judge whether the  algorithm has already approached a neighborhood 

of the optimal point or not,  since exact values of the objective function are not 

available. The best way of dealing with such difEculties seems to be to use an 

interactive procedure to choose the step sizes and step directions, especially i f  

it  does not take much t ime to make one observation. More reasons for adopting 

an interactive approach and details of the  implementation are given in  the fol- 

lowing sections. 

Another characteristic of the algorithms described here  is their pattern of 

convergence. Because of the probabilistic nature of t he  problem, their asymp- 

totic rate of convergence is extremely slow and may be represented by 

Eere z *  is the optimal point to which sequence zS converges and  k is the 

number of observations of random parameters o, which in many cases is pro- 

portional to the number of iterations. In deterministic optimization a super- 

linear asymptotic convergence rate  is generally expected; a ra te  such as (4) 

would be considered a s  nonconvergence. But no algorithm can do asymptoti- 

cally any better than this for stochastic problem (1) in the presence of nonde- 

generate random &sturbances,  and therefore the aim is to  reach some neigh- 

borhood of the solution ra ther  than to find the precise value of the solution 

itself. Algorithm (2)-(3) is quite good enough for this purpose. 

2. CHOICE OF SllW DIRECTION 

In this section we shall d ~ s c u s s  different ways of choosing the  step direc- 

tion in algorithm (2) and  some closely related algorithms. We shall first discuss 

methods which are based on observations made a t  the cur ren t  point zS or in its 

immediate vicinity. More general ways are  then presented which take into 

account observations made a t  previous points. 

2.1. Gradients of random function f (z , 0) 

The simplest case arises when it is possible to obtain gradients (or subgra- 

dients in the nondifferentiable case) of function f ( z , w )  a t  fixed values of z and 

w. In this case we can simply take 



where oS is an observation of random parameter LI made a t  s tep number s .  If 

both the observation of random parameters  and the evaluation of gradients are  

computationally inexpensive then  it is possible to take the average of some 

specified number N of gradient observations: 

These observations can be selected in two ways. The first is to choose the oilS 

according to their probability distribution. If we do not know the  form of the 

distribution function (as, for example, in Monte-Carlo simulation models) this  is 

the only option. However, in this case t h e  influence of low-probability high-cost 

events may not be properly taken into account. In addition, the  asymptotic 

error  of the gradient estimate is approximately proportional to 1/ q. The 

second approach may be used when we know the distribution of the random 

parameters o. In this case many other  estimates can be derived; the use of 

pseudo-random numbers* in particular may lead to an asymptotic e r ror  approx- 

imately proportional to log (N)/ N, which is considerably less than in the purely 

random case. However, more theoretical research and more computational 

experience a re  necessary before we can  assess the true value of this  approach. 

The main question here is whether the increase in the speed of convergence is 

sufficient to compensate for the  additional computational effort required for 

more exact estimations of the F,(zS). 

Unfortunately, our theoretical knowledge concerning the  asymptotic 

behavior of processes of type (2) tells u s  little about the optimal number of 

samples, even for relatively well-studied cases. For instance, what would be the 

optimal number N of observations for the case in which function F(z) is 

diflerentiable and there a re  no  constraints? In this case we can establish both 

asymptotic normality and the value of t h e  asymptotic variance. If,  additionally, 

p, - C / s  then the total number  of observations required to obtain a given 

asymptotic variance is the same for all N << s .  If sp, -, = then the wait-and-see 

approach is asymptotically superior as long as 1Ir << s .  

*A concept which arose ?om :he xse of quasi-Monte-Carlo zec:lmques in mult~&mensional 
integration [9]. 



However, there is strong evidence that  in constrained and/or 

nondifferentiable cases the value of JV should be chosen adaptively. A very sim- 

ple example provides some insight into the problem. Suppose tfiat z E R', 

X = [a,=), F ( z )  = z, f,(zS.wS) = 1 + wS,  where the wS, s = 1,2 ,..... are indepen- 

dent  random variables with zero mean. The obvious solution of this problem is 

z = a. Suppose for simplicity tha t  ps = p. This will not a l ter  our  argument 

greatly because ps usually changes very slowly for large s .  In this case method 

( 2 ) . ( 5 )  will be of the form: 

T, = max 1 0 ,  a - zS + p ( l  + wS)j 

Method (2),(6) requires us to choose a s tep size N times greater  than  p; other- 

wise its performance would be inferior to that  of method (2),(5) (unless the ini- 

tial point is in the immediate vicinity of the minimum). Method (2),(6) then 

becomes 

In order to  compare the two methods we shall let s in the last equation denote 

the  number of observations rather  than the number of i terations and  renumber 

the observations winS. The process 

lo if i # 1N for 1 = 1,2. ... or a < y i  - p ( l  + oi) 
xi = a - y i  + p ( l  + oi) otherwise 

has  the property tha t  yiN = zS  and therefore it is sufacient t o  compare 

y k  with zk for k = LN, where 

Suppose tha t  z0 = y o  # a. Then if t: = min tk : zk = aj represents the t ime a t  

which process rk first encounters the optimal point and t: = min I1 : y L N  = a ]  



represents the time of the corresponding encounter  of process z k  with the 

optimal point, it is c lear  that t: S t i  because from (7) and  (9)  we have that  

yk  = zk lor k < t d .  This means that  algorithm (2),(5) will get from some 

remote initial point to the vicinity of the optimal point faster then algorithm 

(2),(6) with N > 1. Now let us take z0 = y o  = a. Then (7) and (8) imply tha t  

& = 0 for k < N while rk may differ from zero. Therefore in this case 

z N >  y N  = z 1  and the performance of algorithm (2),(6) with N > 1 becomes 

superior to t ha t  of algorithm (2),(5) after reaching the vicinity of the optimal 

point. This simple example demonstrates several important properties of con- 

strained stochastic optimization problems, although more work is necessary 

before we can make any firm theoretical recommendations concerning the 

choice of the  number of samples N. Above all, an appropriate definition of the 

rate  of convergence is needed: recent  results by Kushner [ lo]  may be useful in 

this regard. 

A rather  general adaptive way of changing the  number N would be to begin 

with a small value of N for the first few iterations ( N  = 1, lor example), and 

increase N if additional tes ts  show tha t  t he  cur ren t  point is in the vicinity of 

the optimum. The following averaging procedure has been shown to be useful 

in tests of this  type: 

where r is defined by (5) or (6). It c an  be shown (see [1.2]) tha t  

l/uS - F,(zs)II -+ 0 under ra ther  general conditions, which include ps / a s  -+ 0. 

The decision as to whether to change iV may then be based on the value of 

r, = \lzs - rrX(zs - vs)ll. One possibility is to  est imate and its empirical vari- 

ance a t  the same time: 

and choose N such tha t  oi S @rs, where the value of @ is set  before beginning 

the iterations. In practice it is suf icient  to consider a constant 

a, a - 0.01-0.05, where the greater the randomness,  the smaller the value of 

a. Our empirical recommendation for the initial value of N is 

a: - 0.1 max 112, -=,I\. 
z l , r z a  



This method can be used to increase the number of samples per iteration 

automatically. Another possibility is to al ter  the  value of N interactively; this 

is one of the options implemented in the interactive package STO, which has 

recently been developed a t  IIASk Numerical experiments conducted with this 

package show tha t  in problems where f , ( z , w )  has a high variance, choosing a 

value of N greater  than one can bring about considerable improvements in per- 

formance. 

The method described above uses increasingly precise est imates  of the 

gradient. and therefore shares  some of the features of t he  approximation tech- 

niques developed in [3-61 for solving stochastic programming problems. All of 

the remarks made here concerning sampling a re  also valid for the  other 

methods of choosing described below. 

However, i t  is not always possible to use observations of the gradient 

f , ( z , w )  of the random function to compute a stochastic quasigradient. In 

many cases the analytic expression of f , ( z , w )  is not known, and even if it is, it 

may be difficult to create  a subroutine to evaluate it, especially for large-scale 

problems. In this case it is necessary to use a method which relies only on 

observations of f  ( z , w ) .  

2.2. FiniteditTerence approximations 

If function F ( z )  is differentiable, one possibility is to  use forward finite 

differences: 

or  central  h i t e  differences: 

where the ei a re  unit basis vectors from R". The most important question here 

is the  value of 6,. In order to ensure convergence with probability one it is 

sufficient to take any sequence 6, such tha t  Exm=, pf/ 6f < =J. I f  it is possible to 

take w f , ,  = u:,, then any 6, + 0 will do. However, the method may reach the 

vicinity of the optimal point much faster if 6, is chosen adaptively. On the first 

few iterations 6, should be large, decreasing ris the cur ren t  point approaches 



the optimal point. The main reason for this is tha t  taking a large s tep 6 ,  when 

the cur ren t  point is far from the solution may smooth out the randomness to 

some extent,  and may also overcome some of the  problems (such as curved val- 

leys) caused by the erratic behavior of the deterministic function ~ ( z ) .  One 

possible way of implementing such a strategy in an unconstrained case is given 

below. 

(i) Take a large initial value of 6, .  such as 6 ,  - 0.1 max (12 - z,ll 
r l , z z E X  

(ii) Proceed with iterations (2), where is determined using (10) or (11). 

While doing this, compute an estimate of t h e  gradient vS from (9). 

(iii) Take 

where the values of and p2 should be chosen before beginning the itera- 

tive process. 

It can be shown tha t  this process converges when ufB1 = o;,~, although i t  will 

also produce a good approximation to the solution even if this requirement is 

no t  met. Estimate (9) is not the only possibility - in fact, any of the estimates 

of algorithm performance given in Section 3 would do. 

Another strategy is to relate changes in the finite-difference approximation 

s tep  to  changes in the s tep size. This is especially advisable if the s tep  size is 

also chosen adaptively (see Section 3). In the  simplest case one may fix PI > 0 

before starting and choose 6, = pips, which, although contrary to theoretical 

recommendations, will nevertheless bring the cu r r en t  point reasonably close to 

the  optimal point. To obtain a more precise solution i t  is necessary to reduce 

PI during the course of the iterations. This may  be done e i ther  automatically 

o r  interactively; both of these options are  current ly available in the stochastic 

optimization package STO. 

Finite-difference algorithms (10) and (11) have one major &sadvantage, 

and  this is that  the stochastic quasigradient variance increases as 6, 

decreases. This means that finite-difference algorithms converge more slowly 

than algorithms which use gradients (5). There a re  two ways of overcoming this 

problem. Firstly, if i t  is possible to make observations of function f ( z , w )  for 



various values of z and  fixed w ,  it  is a good idea to take the  s a m e  values of w for 

t he  differences (i.e., uTml = gfS2) when 6, is small because this  reduces  the  vari- 

a n c e  of the  es t imates  quite considerably. Another way of avoiding th i s  increase  

in  t he  variance is to  increase  t h e  number  of samples used  to  obtain when 

approaching the  optimal point, i.e.. to  use finite-difference analogues of (6). If 

t h e r e  exists a y  > 0 such  t ha t  Ns6: > y ,  where N, is the  number  of samples  

t aken  a t  s t ep  number  s ,  t h e n  the  variance of remains  bounded. 

I t  is somet imes useful to  normalize the  p ,  especially when t h e  variance is 

large.  

Another disadvantage of t h e  finite-difference approach is t h a t  i t  requires 

n + 1 evaluations of t he  objective Function for forward differences and  2n for 

c en t r a l  differences, where  n is t h e  dimension of vector z.  This may  no t  be 

acceptable in Large-scale problems a n d  in cases where function evaluation is 

computationally expensive. In th i s  si tuation a stochastic quasigradient can  be 

computed  using some analogue of random search techniques.  

2.3. Analogues of random search methods 

When i t  is not feasible to compute  n + 1 values of the  objective function a t  

each  i teration,  t h e  following approach (which has some things  in common with 

t h e  random search techniques  developed for deterministic optimization prob- 

lems) may  be used: 

Here t h e  h, a r e  vectors distr ibuted uniformly on the  uni t  sphere ,  .Ms is the 

n u m b e r  of random points a n d  6, is t he  s tep  taken in t h e  random search.  The 

choice of M, is de te rmined  by t he  computational facilities available, al though i t  

i s  advisable to  increase  M, as  6, decreases. This method  of choosing p has  

m u c h  in common with finite-difference schemes,  and t h e  s t a t e m e n t s  made 

above about t he  choice of 6, in t h e  flnite-difference case  also hold for (12). 

2.4. Snmothmg the objective function 

Methods of choosing p which rely on finite-difference o r  random search 

techniques  a r e  only appropriate when the  objective function F ( z )  is 

differentiable. The u s e  of similar procedures in the  nondifferentiable case 



would require some smoothing of the objective function. Suppose tha t  the 

function F ( z )  is not differentiable but satisfies the Lipschitz condition, and  con- 

sider the function 

where H ( y , r )  is a probability measure with support in a ball of radius r cen- 

tered at zero. We shall assume for simplicity tha t  H ( ~ , T )  has nonzero density 

inside this ball. The function F ( z , r )  is differentiable and  F ( z , r )  + ~ ( z )  uni- 

formly over every compact set as r -r 0. It is now possible to minimize the  

nonsmooth function ~ ( z )  by computing stochastic quasigradients for smooth 

functions F ( 2 . r )  and find the optimal solution of the initial problem by lett ing 

r -. 0. This idea was proposed in [ l l . ]  and studied further in [ 1 2 ] .  It is not actu-  

ally necessary to calculate the  integral in ( 1 3 )  - it is sufficient to compute tS 
using equations ( 1 0 ) - ( 1 2 ) ,  but at  point zS + y S  ra ther  than point z S ,  where y S  

is a random variable distributed according to H ( Y , T , ) .  In this case ( 1 0 )  

becomes: 

The most commonly used distribution H ( y , r )  is uniform distribution on an  n-  

dimensional cube of side r .  If we want to have convergence with probability one 

we should choose r, such tha t  b , / r S  -. 0 and (r ,  - r s + l ) / p s  + 0. In practical 

computations it is also advisable to choose the  smoothing parameter rs in a 

similar way to 6,. using one of the adaptive procedures discussed above. 

Smoothing also has beneficial side effects in tha t  i t  improves the behavior of 

the deterministic function F ( z ) .  In the case where ~ ( z )  may be written a s  the 

sum of two functions, one with a distinct global minimum and the other  with 

highly oscillatory behavior, smoothing may help to overcome the influence of 

the oscillations, which may otherwise lead the process to local minima far from 

the global one. Thus it can sometimes be useful to smooth the objective func- 

tion even if we can obtain a gradient f , ( z , o ) .  In this case we should take a 

large value for the smoothing parameter r, on the first few iterations, decreas- 

ing it as  we approach the optimal point. The points a t  which r, should be 

decreased may be determined using the values of additional estimates,  such as  

those described below in Section 3 or given by (9). Everything said about the 

choice of the  finite-difference parameter 6, is also valid for the choice of the 



smoothing parameter ,  including the connection between the step size and the 

smoothing parameter  and the possibility of interactive control of r,. The only 

difference is tha t  a decrease in 7, does not lead to  an increase in t he  variance 

of tS and tha t  it is preferable to have 6, < 7,. This is also reflected in the sto- 

chastic optimization software developed a t  IIASA 

All of the methods discussed so far use only the information available a t  

the current  point or  in its immediate vicinity. We shall now discuss some more 

general ways of choosing the s tep direction which take into account the  infor- 

mation obtained a t  previous points. 

2.5. Averaging over preceding iterations 

The definition of a stochastic quasigradient given in (3) allows us to use 

information obtained a t  previous points as the i terations proceed; this informa- 

tion may sometimes lead to faster convergence to the vicinity of the  optimal 

point. One possible way of using such information is to  average the stochastic 

quasigradients obtained in preceding iterations via a procedure such as (9). 

The us obtained in this way may then be used in method (2). This is another 

way of smoothing out randomness and neutralizing such characteristics of 

deterministic behavior as curved valleys and oscillations. Methods of this type 

may be viewed as stochastic analogues of conjugate gradient methods and were 

first proposed in [13]. We can choose according to any of (5). (6). (10). (ll), 

(12), or (14). Since vS -, Fz(zs) under r a the r  general conditions (see [1.2]), 

method (9) can be considered as a n  alternative to method (6) for deriving pre- 

cise estimates of gradient Fz(z). This method has an  advantage over (6) in tha t  

it provides a natural way of using rough estimates of F,(zS) on the first few 

iterations and then gradually increasing the  accuracy as the cur ren t  point 

approaches the optimal point. In this case (9) can be incorporated in t he  adap- 

tive procedures used to choose the smoothing parameter and the s tep in the 

finite-difference approximation. 

However, i t  is not necessary to always take a, -, 0,  because we have conver- 

gence for any 0 s  a, S 1. Sometimes it is even advantageous to take 

a, = a = constant, because in this case more emphasis is placed on information 

obtained in recent  iterations. In general, the grea te r  the randomness. the 

smaller the value of a tha t  should be taken. Another averaging technique is 

given by 



where Ms is the size of the memory, which may be fixed. 

2.6. Using secon&order information 

There is strong evidence tha t  in some cases setting 

may bring about considerable improvements in performance. Here can be 

chosen in any of t he  ways discussed above. Matrix -% should be positive definite 

and take into account both the  second-order behavior of function F ( z )  and the  

s t ruc ture  of the  random part of the problem. One possible way of obtaining 

second-order information is to use analogues of quasi-Newton methods to 

update matr ix 4. To implement this approach, which was proposed by Wets in 

[3], it is necessary to have - F,(zs)II -. 0. 

3. CHOICE OF SlXP SIZE 

The simplest way of choosing the step-size sequence in (2) is to do it before 

starting the iterative process. Convergence theory suggests that any series 

with the  properties: 

can be used as  a sequence of s tep  sizes. In addition, it may be necessary to 

take into account  relations between the  s tep size and such things a s  the 

smoothing parameter  or  the s tep  in a finite-difference approximation. Rela- 

tions of this type have been briefly described in the preceding sections. In most  

cases the  choice p, - C / s ,  which obviously satisfies (17), provides the  best pos- 

sible asymptotic ra te  of convergence. However, since we are  mainly concerned 

with reaching the  vicinity of t he  solution, rule (17) is of limited use because a 

wide variety of sequences can be modified to satisfy it. The other disadvantage 

of choosing the  step-size sequence in advance is that this approach does not 

make any use of the  valuable information which accumulates during solution. 

These "programmed" methods thus perform relatively badly in the majority of 

cases. 



The best s t ra tegy therefore seems to be to choose the  s t ep  size using an 

interactive method. It is assumed that  the user can monitor t he  progress of 

the  optimization process and  can  intervene to change the  value of the  s t ep  size 

or other  parameters .  This decision should be based on the  behavior of t he  esti- 

mates  p(zs) of t he  c u r r e n t  value of the  objective function. The es t imates  may 

be very rough and a r e  generally calculated using only one observation per 

i teration,  a s  in the  following example: 

I t  appears t ha t  al though t he  observations f (zS ,oS)  may vary greatly,  the  ? 
display much  more regular  behavior. Monitoring the  behavior of some com- 

ponents of the  vector zs in addition to  the  ? also seems  t o  be useful. One pos- 

sible implementation of t h e  interactive approach may proceed along t he  follow- 

ing lines: 

(i) The user  first chooses the  value of t h e  s tep  size and  keeps it cons tan t  for a 

number  of i tera t ions  (usually 10-20). During this period t h e  values of the  

es t imate  ? and  some of t he  components of the  vector zS a r e  displayed. 

pozsibly with some  additional information. 

(ii) The user  decides on a new value for the  s tep size using t he  available infor- 

mation. Three different cases  may occur: 

- The cu r r en t  s t e p  size is too large. In this case both t he  values of the  

es t imate  ? a n d  t he  values of the  monitored components  of zS exhibit 

random jumps. It is necessary to decrease t he  s t ep  size. 

- The cu r r en t  s t ep  size is  just right. In th is  case the  es t imates  decrease  

steadily a n d  some of the  monitored components of the  cu r r en t  vector 

zs also exhibit  regular  behavior (steadily decrease o r  increase).  This 

means  t ha t  t h e  use r  may keep t he  s t ep  size constant  unti l  oscillations 

occur  in t h e  es t imate  and/or  in  t he  components of the  cu r r en t  

vector zs . 

- The cu r r en t  s t ep  size is too small. In this case  t he  es t imate  ? will 

begin to change slowly, or simply fluctuate, after  t he  first few itera- 

tions, while t he  change in zS is negligible. It is necessary to increase  

the  s tep  size. 



(iii) Continue with the  i terations,  periodically performing s tep (ii), until 

changes in the  s tep  size no longer result  in any distinct t rend in either the 

function es t imate  or  t he  cur ren t  vector zS, which will oscillate around 

some point. This will indicate tha t  the cu r r en t  point is  close to  the solu- 

tion. 

This method of choosing the  s tep  size requires an experienced user,  but  we 

have found tha t  the  necessary skills a re  quickly developed by trial and error.  

The main reasons for adopting an  interactive approach may be summarized as  

follows: 

- Interactive methods make the  best use of the information which accumu- 

lates during the  optimization process. 

- Because t h e  precise value of the objective function is not available, i t  is 

impossible to  use  t h e  rules for changing the  s tep  size developed in deter- 

ministic optirnization (e.g., line searches).  

- Stochastic effects make  i t  extremely difficult to  define formally when the  

s tep size is "too big" or  "too small"; theoretical research has not thrown 

any light on this  problem. 

The main disadvantage of t he  interactive approach is tha t  much of the 

user's t ime is wasted if i t  takes the computer  a long t ime to  make one observa- 

tion f (zS,wS). For this  reason a great  effort has  been made to develop 

automatic adaptive ways of choosing the s tep  size, in which the value of the  

s tep size is chosen on the  basis of information obtained a t  all or some of the  
- 

previous points zi ,  i = 1,s. Methods of this type a re  considered in [14-201. The 

approach described in the  following sections involves t he  estimate of some 

measures of algorithm performance which we denote by $i(5s ,uS) ,  where ZS 

represents t he  whole sequence lz1,z2, ..., zs j and  us t h e  s e t  of parameters  used 

in the estimate.  In general,  algorithm performance measures  are  a t tempts  t o  

formalize t he  notions of "oscillatory behavior" and "regular behavior" used in 

interactive step-size regulation, and possess one  or  more  of the following pro- 

perties: 

- the  algorithm performance measure is quite large when the algorithm 

exhibits distinct regular behavior, i.e.. when t h e  est imates  of the function 

value decrease or the  components of the cu r r en t  vector zS show a distinct 

trend: 



- the  algorithm performance measure becomes small and even changes its 

sign if the estimates of the current  function value stop improving or if the 

cur ren t  point s ta r t s  to oscillate chaotically; 

- the  algorithm performance measure is large far from the solution and 

small in t he  immediate vicinity of the optimal point. 

Automatic adaptive methods for choosing the s tep size begin with some reason- 

ably large value of the step size, which is kept constant as long as the value of 

the algorithm performance measure remains high, and then decreases when 

the  performance measure becomes less than some prescribed value. The 

behavior of the  algorithm usually becomes regular again after a decrease in the 

step size, and the  value of the performance measure increases; after a number 

of iterations oscillations set in and the value of the performance measure once 

again decreases. This is a sign that it is t ime to decrease the s tep size. A 

rather  general convergence result concerning such adaptive piecewise-linear 

methods of changing the  s tep size is given in [18]. However, in many cases it is 

difficult to determine how close the current  point is to the  optimal point using 

only one such measure - a more reliable decision can be made using several of 

the measures described below. Unfortunately, i t  is not possible to come to any 

general conclusions as to which performance measure is the "best" for all sto- 

chastic optimization problems. Moreover, both the values of the parameters 

used to estimate the performance measure and the  value of the performance 

measure a t  which the s tep size should be decreased a r e  different for different 

problems. Therefore if we fix these parameters once and for all we may achieve 

the same poor performance as  if we had chosen the whole sequence of s tep  

sizes prior to  the optimization process. Thus, i t  is necessary to  tune the 

parameters of automatic adaptive methods to different classes of problems, and 

the interactive approach can be very useful here. An experienced user  would 

have li t t le difficulty in using the values of the performance measures to deter- 

mine the correct  points at  which to change the s tep  size. and in learning what 

type of performance measure behavior requires an  increase or a decrease in 

the s tep  size. The interactive approach is of particular use if one iteration is 

not very time-consuming and there are a number of similar problems to be 

solved. In this case the user can identify the most valuable measures of perfor- 

mance in the &st few runs, fix their parameters and incorporate this 

knowledge in automatic adaptive step-size selection methods for the remaining 

problems. 



Although interactive methods usually provide the quickest means of reach- 

ing the  solution, they cannot always be implemented, and in this case 

automatic adaptive methods prove to be very useful. The stochastic optimiza- 

tion package ST0 developed a t  IIASA and the Kiev stochastic and 

nondifferentiable optimization package NDO both give the user the choice 

between automatic adaptive methods and interactive methods of determining 

the step size. Below we describe some particular measures of algorithm perfor- 

mance and methods of choosing the s tep  size. 

The main indicators used to evaluate the performance of an algorithm are 

estimates of such things as the  value of the objective function and its gradient. 

The averaging procedure (9) may be used to estimate the value of the gradient, 

as described earlier in this paper. The main advantage of this procedure is that  

i t  allows us to obtain estimates of the  mean values of the random variables 

without extensive sampling a t  each iteration, since a very limited number of 

observations (usually only one) is made at  each iteration. This estimate. 

although poor a t  the beginning, becomes more and more accurate as the itera- 

tions proceed. One example of such an estimate is (18). which is a special case 

of the more general formula 

Any observation pS with the property 

can be used instead of f (zS,oS)  in (19), where d, -, 0. For example, (6) would 

do. In order to get lim,,,l - F(zS)  I = 0 it is necessary to have p,/7, -, 0. 

However, estimate (18) assigns all observations of function values the same 

weight. This sometimes leads to considerable bias in the estimate for all the 

iterations the user can afford to run. Therefore for practical purposes i t  is 

sometimes more useful to adopt procedures of the type described in Section 2 

for the estimation of gradients. These include estimate (19) with fixed 7, = 7. 

where 7 - 0.01-0.05. and the method in which the average is taken over the 

preceding rCI, iterations: 



Although these estimates do not converge asymptotically to  F(zS), they place 

more emphasis on observations made a t  recent  points. All of the estimates ? 
may also be used in an interactive mode to determine the  s tep size, as  

described above. In addition, the values of the  parameters  used to determine 

the step size may also be chosen interactively. For example, the  values of 

parameters b and b in 

can be made to depend on t h e  behavior of p.  
We shall now describe some automatic  adaptive rules for choosing the  s tep 

size. The important  point a s  regards implementation is how to choose t h e  ini- 

tial value of the s t ep  size po. We suggest t ha t  the  value of a stochastic quasigra- 

dient should first be computed a t  t he  initial point. and tha t  the  initial value 

of the  step size should then be chosen such tha t  

where 1 - 10-20 and D is a rough estimate or the  size of the domain in which we 

believe t h e  optimal solution to be located. This means  tha t  i t  is possible to 

reach the vicinity of each point in this domain within the  first 20 iterations or  

S 0. 

3.1. Ratio ot function estimate to the path length 

Before beginning the  iterations we choose the  initial s tep size po, two posi- 

tive constants cxl and az, a sequence M, and an  integer fi. After every fi itera- 

tions we revise the  value of the s tep size in the  following way: 

(i) Compute the quantity 

Here the us a re  t h e  averaging parameters used in  the  estimation of both ? 
and M, , while Z9 is again the whole sequence of points preceding 2' .  The quan- 

tity 



is the length of the path taken by the algorithm during the preceding Ms itera- 

tions. The function 91(53,uS) is another example of a measure which can be 

used to assess algorithm performance. 

(ii) Take a new value of the step size: 

f 

Ps+l - p, otherwise 
- 1 

In this method the step size is changed a t  most once every f i  iterations. This is 

essential because function ipl changes slowly, and if its value is less than a2 a t  

iteration number s i t  is likely that  the same will be true at iteration number 

s +l. Therefore a should lie in the  range 5-20. This procedure can be modified 

in various ways, such as continuing for & iterations with a fixed step size. then 

starting to compare values until inequality (24) is satisfied whereupon the step 

size is reduced We then wait another fi iterations and repeat the  procedure. 

Recommended values of al  and a2 lie within the  ranges 0.5-0.9 and 0.005-0.1, 

respectively. The number Ms may be chosen to be constant and equal to &. If 

we have a number of similar problems i t  is very useful to make the first run in 

a semi-automatic mode, i.e., to  intervene in the optimization process to  

improve the  values of parameters al , a2 ,  @ - the new values can then be used 

in a fully automatic mode to solve the remaining problems. 

This algorithm is by no means convergent in the traditional sense, but it  

outperformed traditional choices like C / s  in numerical experiments because it  

normally reaches the vicinity of the optimal point more quickly. However, i t  is 

possible to safeguard convergence by considering a second sequence C / s ,  

where C is small, and switching to  this sequence if the step size recommended 

by (24) falls below a certain value. This step size regulation was introduced in 

[ 151. 

3.2. Use of gradient estimates 

Take 92 = cS instead of 91(2s,us) in (24), where cs is one of the gradient 

estimates discussed above, and the  us represent all the parameters used. 

including averaging parameters and the  frequency of changes in the step size. 



3.3. Ratio of progress and path 

The quantity I I Z ~ - "  - zs 11 represents the progress made by the algorithm 

between iteration number s - Ms and iteration number s .  If we keep the step 

size constant, the  algorithm begans t o  oscillate chaotically after reaching some 

neighborhood of the  optimal point. The smaller the  value of the step size, the 

smaller the neighborhood a t  which this occurs, and thus the  total path between 

iterations s and s - Ms begins to  grow compared with the distance between 

points z - 61, and zS. This means tha t  the function 

can be used as a performance measure in equation (24). 

3.4. Analogues of line search techniques 

The decision as to  whether (and how) to change the  step size may be based 

on the values of the scalar product of adjacent step directions. If we have 

(P-l,P) > 0, then this may be a sign that  regular behavior prevails over sto- 

chastic behavior, the function is decreasing in the  step direction and the  step 

size should be increased. Due to stochastic effects the function will very often 

increase rather  than decrease, but in the  long run the  number of bad choices 

will be less than the  number of correct  decisions. Analogously. if this inequal- 

ity does not hold then the step size should be decreased. The rule for changing 

the step size is thus basically a s  follows: 

where the values of al, a2, a3 (recommended values al - 0.4-0.8 , 1 < a2< 1.3 

and 0.7 s a3 < 1) should be chosen before starting the iterations. It is also 

advisable to have upper and lower bounds on the step size to  avoid divergence. 

Sometimes it  is convenient to  normalize the vectors of s tep directions, i.e., 

il = 1. The lower bound may decrease as  the iterations proceed. This method 

may also be applied to the choice of a vector step size, treating some (or all) 



variables or groups of variables separately. A number of different methods 

based on the use of scalar products of adjacent step directions to control the 

step size have been developed by Uriasiev [19], Pflug [16]. and Ruszczynski and 

Syski [20]. 

The interactive stochastic optimization package implemented a t  IIASA 

(STO) is based on the same ideas as the package for stochastic and 

nondifferentiable optimization developed in Kiev (NDO). It allows the user to 

choose between interactive and automatic modes and makes available the s to- 

chastic quasigradient methods described in Sections 2 and 3. In the interactive 

mode the program offers the user the  opportunity to change the step parame- 

ters  and the methods by which the step size and step direction are chosen dur- 

ing the course of the iterations. The user can also stop the iterative process 

and obtain a more precise estimate of the value of the objective function before 

continuing. The package is written in FORTRAN-77. 

Before initiating the optimization process the user has to: 

(i) Provide a subroutine UF which calculates the value of function f (z ,o)  for 

fixed z and w and. optionally, a subroutine UG which computes the gra- 

dient f,(z,w) of this function; the function evaluation subroutine should 

be of the form: 

FVNCl"I0N UF(N,X) 

DIMENSION X(N) 

Calculation of J (z,w) 

RETURN 

END 

Here N is the dimension of the vector of variables X (Note that  the imple- 

mentation on the IIASA VAX actually requires the subroutine to be entered 

in lower-case letters rather than capitals.) A description of the subroutine 

which calculates a quasigradient is given later in this paper. 

(ii) Compile these subroutines with the source code to obtain an executable 

module. 



(iii) Provide a t  least one of the following additional data files: 

- algorithm control file (used only in the  non-interactive option) 

- parameter Ale (used only in the interactive option) 

- initial data Ale (should always be present) 

All of these files are described in some detail later in the paper. 

The optimization process can then begin. The program first asks the  user 

a series of questions regarding the required mode (interactive or automatic), 

method of step size regulation, choice of step direction. etc. These questions 

appear on the  monitor and should be answered from the keyboard or by refer- 

ence to a data file. We shall represent the dialogue as follows: 

Question? Answm 

with the  user's response given in italics. The first question is 

Interactive mode? reply yes or no yes/no 

To choose the interactive option the user should type in yes (or y); to select the 

automatic option he should answer no (or n). In the  lat ter  case the program 

would ask no further questions, but would read all the  necessary information 

from the algorithm control file (which is usually numbered 2 - under UNrX con- 

ventions its name is fort.2). The iterative process would then begin, terminat- 

ing after 10,000 iterations if no other stopping criterion is fulfilled. The algo- 

rithm control file must contain answers to all of the following questions except 

those concerned either with dialogue during the  iterations or with the parame- 

te r  f3le (such questions are  marked with an asterisk below). This file is given a 

name only for ease of reference - the  important thing for the user is  its 

number. 

Assume now that  the user has chosen the  interactive option by answering 

yes to the first question. The program then asks 

parameter f lle? (number) 

The user should respond either with the number of the  file of default pararne- 

ters  or with the number of the file in which the current  values of the algorithm 

parameters are stored. The file of default parameters is provided with the pro- 

gram and has the name fort.12 (under UNlX conventions); thus,  to refer the 

program to the default file the user should answer 12. The purpose of this file is 

to help the user to set  the values of algorithm parameters in the ensuing dialo- 

gue and also to  store such improved values as may be discovered by the user 



through trial  and error. I f  the user  assigns the  algorithm parameters any 

values other  than  those in the default file. the  new values become the  default 

values in subsequent runs  of the  program. This Ale is optional. 

The program then asks 

read parameter file? reply yes or no y e s / n o  

The answer yes  implies that the  file specified in  t he  previous question 

exists, and  t h a t  default parameter  values are  stored in  this file. In this  case, 

when asking t h e  user  about parameter  values. the program will read the default 

option in t h e  parameter  file and  reproduce i t  on the  screen  together wi th  the  

question. If t h e  u se r  accepts this default value he should respond with 0 (zero); 

otherwise h e  should en te r  his own value, which will become the new default 

value. 

The answer no means tha t  no default values a r e  available a t  the moment.  

In this case the  program will form a new default file (labeled with the number  

given a s  an  answer to the previous question); i ts  conten ts  will be based on the 

user 's  answers to future questions. This new default file, once formed, c a n  be 

used in  subsequent runs. 

The next  question is 

number of variables? ( n u m b  e r )  

t o  which the  user  should respond with the dimension of t he  vector of variables 

2. He is then  asked 

Initial data file? (nurn b e r )  

and  should reply with the number of the initial data  file. This file should con- 

tain the following elements (in exactly this order): 

- The initial point, which should be a sequence of numbers separated by 

commas  or other delimiters. 

- Any additional data required by subroutines UF  or TJG if such data  

exists and the  user chooses to put it in the  initial data file (optional). 

- Information about t he  constraints (described in more detail below) 

The program then asks 

step size regulation? is 

Here is is a positive integer from the se t  11,2.3,4,6,7{, where the diflerent 

values of is correspond to different ways of choosing the  s tep  size. (The integer  

5 is reserved for an  option currently under  development.) 



1 Adaptive automatic s tep size regulation (24) based on algorithm perfor- 
mance function (22) and function estimate (18). 

2 Manual step size regulation based on algorithm performance function 
(22) and function estimate (18). 

3 Adaptive automatic s tep size regulation (24) using algorithm perfor- 
mance measure (22) and a function estimate based on a finite number of 
previous observations (21). 

4 Manual step size regulation based on the same estimates of algorithm 
performance as for is = 3. 

6 Automatic step size regulation using algorithm performance measure 
(24) and function estimate (19) with Axed y,. 

7 Manual step size regulation based on the same estimates of algorithm 
performance as for is = 6. 

The difference between adaptive automatic and manual s tep  size regulation 

(see is = 1.2) is that  in the first case the step size is chosen automatically, 

although the user may terminate the  iterations a t  specified points and con- 

tinue with another step size regulation. while in the second case the  user 

changes the value of the step size himself. Both step size regulations are based 

on the same estimates of function value and algorithm performance. 

The next question is 

s tep  direction? (5 figures) id2 id2 id3  id4 id5  

The user has to respond with five figures which specify various ways of choosing 

the step direction, e.g., 11111. W e  shall refer to these figures as  i d l ,  id2, id3, 

id4 and id5. The subroutine which estimates the step direction makes some 

number of initial observations a t  each step; these are then averaged in 

some way to  obtain the vector p.  and the final step direction v s  is calculated 

using both p and values of v z  for i C s. 

The value of id1 specifies the nature of the initial observations 

id1 Definition 

A direct observation of a stochastic quasigradient is available For and 
the user has to specify a subroutine UG to calculate it: 

SUBROUTINE UG(N,X,G) 
DIMENSION X(N),G(N) 

Calculation of a stochastic quasigradient 
RETURN 
END 

where C(N) is an observation of a stochastic quasigradient. 

2 Central finite-difference approximation of the gradient as in (11). 



3 The pvs are  calculated using random search techniques ( 1 2 ) .  

4 Forward finite-difference approximation of the initial observations pms as 
in ( 1 0 ) .  

5 Central finite-difference approximation of the  gradient as  in  (11) .  All 
observations of the  function used in one observation of raS a re  made 
with the  same values of random parameters  o. 

6 The F" a re  calculated using random search techniques ( 1 2 ) .  All obser- 
vations of the function used in one observation of a r e  made with the 
same values of random parameters o. 

7 Forward finite-difference approximation of the  initial observations pas as 
in (10) .  All observations of the:function used in one observation of pus 
are  made with the  same  values of random parameters  o. 

Note that  for id1 = 5 6 . 7  all observations of the function used in one observation 

of a r e  made with the  same  values of random parameters  o. In this case the  

user should write a function UF which supports this feature as  follows: 

FVNCTION UF(N,X) 

DIMENSION X(N) 

COMMON/OMEG/LO,MO 

If LO= 1 and  MO= 1 then obtain new values 

of random factors o and set  MO=O. 

Make an  observation of the function a t  point z. 

RETURN 

END 

The second figure idzde termines  the point a t  which observations a r e  made: 

id2  Definition 

1 The initial direction is calculated a t  the  cur ren t  point zS 

2 The initial direction is calculated a t  a point chosen randomly from 
among those in the neighborhood of the cur ren t  point zS 

The value of id3 deflnes the  way in which the s tep  in a finite-difference or ran- 

dom search approximation of p" is chosen: 

id3 Definition 

1 The approximation s tep  is Axed. The observations of the objective func- 
tion a t  point zs originally used to  obtain gradient observations PnS a re  
not used to update the estimate of the function employed for s tep size 
regulation. 



2 The rat io  b , / p s  of the s tep  in the Bnite-&fference approximation to the 
s tep  size of the algorithm is fixed (see (10)-(12)). The observations of 
the  objective function a t  point z S  originally used to obtain gradient 
observations pas are  not used to update t he  est imate of the  function 
employed for s tep size regulation. 

3 The approximation s tep is fixed. The observations described for id3 = 1,2 
above are used to update the cu r r en t  est imate of the objective function. 

The rat io  6 , / p s  of the s tep  in the finite difference approximation to the 
s tep  size of the algorithm is  fixed (see (10)-(12)). The observations 
described for id3 = 1,2 above are used t o  update the cu r r en t  est imate of 
t he  objective function. 

The fourth figure id4 defines the  type of averaging used to  obtain from obser- 

vations p". 
id4 Definition 

-. 
1 No averaging, P = ttlS, i = 1. 
2 Number of samples > 1. 

The value of id5 specifies the  way in which the final s tep direction u s  is 

obtained from previous values of u s  and from r .  
id5 Definition 

1 No previous information is used. The final vector v S  is simply s e t  equal 
t o  p .  

2 (9) is used. 

3 A positive number n3 is provided by the  user.  Set 
k ( s )  = max Ik : kn3  + 1 < s 1. Then the  final direction v S  is computed 
from (15). where Ms = s - k ( s ) n g  + 1. 

4 No previous information is used. The final vector u s  is s e t  equal to r 
a n d  is normalized. 

5 (9) is used. The final vector v S  is normalized. 

6 A positive number  n3 is provided by the  user. Let 
k ( s )  = max Ik : kn3 + 1 S s 1. Then the  final direction v S  is computed 
from (15). where M, = s - k ( s ) n 3  + 1. The final vector v S  is normalized. 

The program then  asks about the type of constraints present in the problem: 

constraints? (numb er) 

The answer (in the present implementation) must  be 1,2,3 or  4. These values 

deflne the  type of constraints present and correspond to  the  following options: 



1 There are  no constraints a t  all. 

2 There are  upper and lower bounds on the variables. The values of these 
bounds should be given a t  the end of the initial data file in the form of 
strings of numbers separated by commas or other delimiters. The string 
containing the upper bounds should come first. 

3 There is one constraint zF=l 4 z i  s b .  The coefficients q should be 
given a t  the end of the initial da ta  file. The string containing the 
coefficients of linear form comes first and then. on a separate line. the 
right-hand side. 

4 There are  general linear constraints b l  s Az < b,. In this case the pro- 
gram computes a projection on these constraints at each iteration, using 
the  quadratic programming package SOL/QPSOL [21]. The previous point 
t s - l  is used as the  initial approximation t o  the solution a t  iteration 
number s. The precision of projection also varies, being rough during 
the  flrst few iterations and improving as  the process proceeds. All of 
these facilities are  intended to  reduce the amount of computation 
required a t  each iteration. 
The following information should appear a t  the end of the initial data file 
(in exactly this order): 

upper bounds on variables z 
lower bounds on variables z 
upper bounds b ,  on general linear constraints 
lower bounds b l  on general linear constraints 
number of nonzero elements in matrix A 
numbers of nonzero elements in the columns of matrix A 
nonzero elements of matrix A in increasing order of column number 
row numbers of nonzero elements. in the same order as the  elements 
themselves 

The next question is 

termination condition? (numb e r )  

There is currently only one possible answer, which is 1. This means that  the 

iterations terminate when the step size becomes smaller than some value 

specified by the user. Additional options are  under development. 

The prograrn then asks the user whether the interactive mode is required 

during the iterations: 

interactive mode during iterations? reply yes or no yes/m 

Note that  the  answer to this question should not be included in the algorithm 

control file for the completely non-interactive option (as indicated by the aster- 

isk). If the user replies yes (or y), the progriun will allow the user to change 

the parameters of the algorithm and even the algorithm itself during the 

course of the iterations. I f  the answer is n o  (or n) the prograrn will not corn- 

municate with the user during the iterations but will instead ask the following 

two questions: 



n u m  ber of iterations? ( n u m b e r )  

This is the number of iterations tha t  should be performed before the  process 

terminates (if i t  has not already been terminated by some other condition). I t  

is necessary to put an answer to this question in the algorithm control file for 

the completely non-interactive option. 

extra output? reply yes or no y e s / n o  

This is the  program's way of asking the user whether information about the 

iterations should be saved. Note that  these two questions do not appear if the 

user has chosen to run  the program in the interactive mode during the itera- 

tions. 

Now comes a group of questions about step direction parameters. These 

questions depend on the values of id l ,  id2, id3, id4 and id5 given previously (see 

the discussion of answers to the question step direction?). 

If id1 = 4.5 then the question 

number of random directions? ( n ~ m b e r )  

appears. The required answer is Ms from (12). 

If idZ = 2 the user  is asked 

relation between step size and neighborhood? ( n u m b e r )  

The answer is the ratio of the step size to the size of the neighborhood (of the 

current  point) from which the  observation point is chosen (i.e., r S / p s  in the 

discussion of (13)). 

If id3 = 1,3 and id1 # 1 the program asks 

step in finite difference approximation? ( n u m b e r )  

The required answer is the value of step 6 ,  in the  finite-difference or random 

search approximation (10)-(12) of the  gradient observation. In this case 6, is 

fixed. However, if id3 = 2,4 the question 

relation between s tep  in flnite difference approximation and step size? ( n u m b e r )  

appears. The answer is the ratio 6 , / p ,  of the  finite-difference approximation 

step to the algorithm step size. 

If id4 = 2 the program asks 

number of samples? ( n u m b e r )  

This is the number of samples taken a t  one point to obtain the averaged esti- 

mate (see, for instance, N in (6)). 



The question 

discount rate? ( n u m b  e r )  

appears if i d 5  = 2.5. The required answer is the (Axed) value of a, from (9). 

However, if id5 = 3,6 the program asks 

number of averaging s teps?  ( n u m b e r )  

The user should respond with the value of ng (see ear l ier  discussion of i d 5  

options). 

We now have a group of questions concerning t h e  values of step size param- 

eters. Which questions appear depends on the  way in which the step size is 

being chosen (see earlier discussion of t he  question s t e p  size regulation?). 

If t h e  user  has  chosen automatic step size regulation (is = 1,3,6) he will be 

asked t h e  following four questions: 

lnitlal s tep  size? ( n u m b  e r )  

This is p,,. 

multiplier? ( n u m b e r )  

The required answer is al from (24). 

frequency of s tep  size changes? ( n u m b e r )  

The user should give the  value of fi (see discussion of (24)). 

lower bound on function decrease? ( n u m b e r )  

This is a2 from (24). 

However, i f  the  user  has chosen to regulate t h e  s tep  size interactively 

(is = 2,4,7) he will only be asked 

value of s tep  size? ( n u m b e r )  

The following questions appear only if there a re  general  linear constraints, i.e.. 

if the  answer t o  t he  question constraints? is 4: 

number of general linear constraints? ( n u m b  e r )  

correspondence between s t ep  size and accuracy of projection? ( n u m b e r )  

The answer to  t'he first question is obvious but  t he  second requires some expla- 

nation. In order to keep the amount of computation t o  a minimum, the accu- 

racy r, of projection is linked to the value of the s tep size: T, = ~ p , .  This leads 

to only rough projection during the first few i terat ions (when the step size is 

large) and  more  precise projection as  the cur ren t  point approaches the optimal 



point. The required answer to the last question is the value of c; recommended 

values lie in the range 0-1. 

Another group of questions is concerned with the  estimates of the objec- 

tive function and also affects the choice of s tep size: 

size of memory? (number) 

The answer is M, From (22). which in this implementation is fixed. If the s tep 

size regulation is defined by is = 6,7 the  program asks 

multiplier for function averaging? (number) 

The user should give the  value of y, in  (19). which is fixed. 

With the answers to  these questions the  algorithm control file for t he  non- 

interactive option is complete. The rest of this section describes the ways in 

which the  algorithm parameters  and the algorithm itself may be modified dur- 

ing the course of t he  iterations. This may be done only if the answer to the 

question Interactive mode during iterations? reply yes or no was yes.  In this case 

the program will now perform the  first iteration and produce a string of infor- 

mation something like this: 

1 0. 7505.826 7505.826 0. 1.000 100.458 109.575 

Here the first number  is the  number of the cur rent  iteration, the second is the  

value of some algorithm performance measure (see (22), (25) for examples of 

such Functions), the  third is the  estimate of the  value of the objective function 

a t  the  current  point (see (18). (19). (21) for examples of such  estimates). the 

fourth is an observation of f (zS,oS), the fifth currently has no meaning and 

always contains 0, t he  sixth is t he  s tep size, and the rest are values of variables 

qs ( the  default is that  only the  values of the first two such  variables are 

displayed). ARer th is  string the following question will appear: 

continue? reply "space",step,dir,var,estim,go,yes or no 

This gives the user the  opportunity to continue without any change. to alter the  

frequency of communication. to  change the  step size or  s tep direction pararne- 

ters ,  t o  display variables other  than the  first two, to stop a t  the cur rent  point 

and obtain a precise estimate of the value of the objective function, to switch 

from interactive to  automatic mode, or to terminate the iterations and con- 

tinue the  solution with another  algorithm. We shall now describe all of these 

options in some detail. 



"space" If the  user hits the space bar nothing will change and the  program 
will perform another 10 iterations. The information about the  pro- 
cess  is displayed after each iteration; after t h e  10-th i teration the  
use r  is once again given the  opportunity to  make changes ( the 
question continue? reply "space",step ... appears). 

s t e p  This means tha t  the user wants to change the s tep size parame- 
t e r s  (but not the s tep size regulation itself) and all the related 
questions will be repeated. Default or previous values of the  s tep 
parameters  will appear on the  screen together with the questions. 

di7 This means tha t  the user wants to change the  s tep direction 
parameters  (but not the way in which the  s tep direction is chosen) 
a n d  the questions concerned with this will be repeated. Default or  
previous values of the  direction parameters  will appear on the  
screen together with the  questions. 

war In this case the quantity and/or the selection of variables 
displayed on the  screen may be changed. The following questions 
will appear: 

number of printed variables? (number )  
i.e., if t h e  user wants to print out  the  values of four variables 
ra ther  than  the  default twb, he  answers 4. 

printed variables? (number ,  n u m b e r ,  ... .) * 
Here the user specifies which particular variables he wants 
displayed by giving the numbers  of the chosen variables separated 
by commas. 
Questions concerning the  frequency of communication will also 
appear here (see description of response yes  below). 

e s t h  In this case the program will s top a t  the cu r r en t  point a n d  esti- 
mate  the value of the  objective function. The following questions 
will appear: 

number of observations? (number )  
i.e., the number of observations to be made, and  

message frequency? (number )  
i.e.. the number of observations after which the cur ren t  est imate 
i s  displayed. The user is also asked for the  point a t  which the esti- 
ma te  should be made: 

what point? reply current, new or exit c u n e n t / n e w / e d  * 
If the  answer is new t he  program asks the question: 

where to find new point? reply screen or file screen/ f i le  
If the  user  wants to en ter  the new point from the keyboard he 
should reply screen (or  s ) .  He should then  type the desired point 
on a new line, separating the components by commas. If, however, 
t h e  new point is stored in some Ale the response should be f i l e  
(or  f )  and the user is then asked 

file number? (number )  
The answer is obviously the number  of the  file containing the  new 
point. This new point is taken as  the starting point for future 
i terations if the user  answers yes  to the following question: 

replace current point by new? reply yes or no yes /no 



which appears when the estimation of the objective Function a t  
the new point has been completed. This facility makes i t  possible 
to exchange the current point for an arbitrary point chosen by the 
user and also to make precise estimations a t  arbitrary points. 
Finally, if the answer to the question what point? reply current, new 
or exit is e z i t  the estimation procedure will end and the iterations 
will continue. 

This means that  the user does not want to continue in the interac- 
tive mode; he wants the process to proceed automatically. This is 
useful once the algorithm parameters have been established and 
also in the case when one iteration is very time-consuming. The 
user is then asked 

number of iteratlons? (number)  I 

i.e., the total number of iterations before termination. After this 
the program has  no more communication with the user  and ter- 
minates after the specified number of iterations. 

Yes In this case the frequency of communication can be changed. The 
following questions appear: 

output frequency? (number)  I 

This is the number of iterations after which information about the 
process is displayed on the screen ( the default value is 1, i.e.. a 
string of information is printed after every iteration). 

dialogue frequency? (number)  I 

This is the number of process information strings (see above) 
printed before the  user is asked the question continue? reply 
space,step,dir,var,estim,yes or no. The default is 10. i.e., the user is 
given ten strings of information about the process before he is 
asked whether he  wishes to make any changes. 

This means that  the user wishes either to  terminate the iterations 
or  change the method The program asks: 

continue? reply "space",yes or no "space" / y e s / n o  
Here hitting the space bar means that  the user  wishes to proceed 
with the iterations using the same method, maybe returning to 
the initial point (see below); yes means he  wishes to change the 
way in which the step size and/or s tep direction are chosen (the 
program will ask further questions about this - see below); n o  
means that he wishes to terminate the iterations completely 
(some self-explanatory questions will then appear). If the user 
answers ".spaceH or  yes the program will ask 

return to initial values? reply yes or n o  yes /no  
and the user should give the appropriate response. 

The very first appearance of the question continue? reply space,step,dir, 

var,estim,yes or no is followed by the question 

least value of s tep size? (numb e r )  I 

The answer is the  least permissible value of the step size. If the current  step 

size is less than this value then the iterations will terminate. In other cases 

the process terminates after 10,000 iterations with a question about whether to 

continue or not. 



Everything that appears on the screen during the interactive dialogue 

automatically also goes to file number 15 (fort. 15 in UNIX). This makes it possi- 

ble to study the process after it has terminated. 

This section provides some idea of the  capabilities of the package of sto- 

chastic optimization subroutines ST0 available a t  IIASA The implementation 

described here  is the first version, and development of the second continues. 

This revised version will include methods For solving certain special problems, 

in particular problems with recourse,  and new methods for step size regulation 

will be introduced. 

5.1. Facility location problem 

We first consider a simple model of facility location in a stochastic environ- 

ment.  Suppose tha t  we have to determine the amounts zi of materials, facili- 

ties, etc.. required a t  points i = l,n in order to meet  a demand oi. The demand 

is random, and all we know is its distribution function 

Pfo, I: Zl ,.... on < 53,j = H(G). The actual value w = ( w l  ...., on) of the demand is 

not  known when the decision concerning the z = (z, ,..., z,) has to  be made. 

Assume tha t  we have made a decision z about the distribution of facilities and 

then found tha t  the actual demand is o. We have to pay for both oversupply and 

shortfalls, i.e., the penalty charged a t  the i - t h  location is $f(oi - zi) if wi 2 zi 

and &(zi - oi) if oi < zip where the  functions $f(y) and $i(y) are  nondecreas- 

ing. In t he  simplest case these functions a re  linear and the total penalty for 

fixed z and o is z,TL=I max lai(wi - zi) , bi(zi - oi)j, where a, r 0. bi 1 0. 
- 

i = 1,n. In most  cases i t  is reasonable to select z in such a way t h a t  t he  aver- 

age penalty is a t  a minimum, i-e.. to  minimize the following function: 

J 5 max tq(oi - zi), bi(zi - ~i)jdH(~) 
i= l  

This approach can easily be generalized to deal with more complex facility loca- 

tion models (see [1.15.22]). The numerical experiment presented here  is basi- 

cally an  application of the facility location model described above to the 



problem of high school location in Turin. Italy (see [15.22]). In this example n 

is the number of districts in the city (23 in this case),  ui is  the number of s tu-  

dents who want to at tend schools in district i ,  and ii is the capacity of schools 

in district  i. It is assumed tha t  a s tudent  living in district i will choose a 

school in district j with probability p i j ,  where 

- , -% 
Pij - ,, 2 p i j  

j=1 

and  c,, is proportional to the distance between districts i and j .  The values of 

ci, a r e  taken from [15]. as a r e  the  values of the parameters  (A = 0.15 and 

% = bi = 1.0 for all i). The demand wi is assessed by assigning individual stu- 

dents  to a school in a particular district on the basis of probabilities pi j ,  thus  

simulating the student 's  choice of school. In order to  reduce the amount of 

computation the number of students was scaled. Table 1 gives the resulting 

solution ( the  number of places that  should be provided), together with the  total 

number  of students' actually attending schools in each &strict. 

TABM 1 The solution of the problem of high school location in Turin, Italy [15,22] 

District I 2 3 4 5 6 7 8 

Number of 13.0 15.0 11.0 14.0 14.0 11.0 
students 

12.0 I 
Number of 23.0 26.0 23.0 22.0 18.0 14.0 
students 

15.0 1 
Solution 

District 

17.9 13.0 18.9 19.0 16.0 13.9 10.8 10.2 

9 10 11 12 13 14 15 16 

Solution 
1 

District 

All real da ta  was divided by a scaling factor of 100. We also have the constraint 

XGlzi = M ,  where -M is the total number of students in the city divided by 100 

(339 in this case). Once o has been obtained it is quite easy to calculate a sto- 

chastic quasigradient. We can use vector p = ( ( f .  ($ .....(:) in method (2), 

where 

13.0 19.8 26.0 20.0 16.6 15.7 14.0 13.0 

17 18 19 20 2 1 22 23 

Number of 
students 

Solution 

14.0 14.0 10.0 10.0 5.0 8.0 2 1.0 

13.0 15.7 10.0 10.1 5.0 10.3 17.0 



Here  wf is t h e  demand  in dis t r ic t  i (calculated by s imulat ing t h e  students '  

behavior) a t  i tera t ion n u m b e r  s ,  a n d  zt is the  i - t h  component  of the  solution a t  

this  i teration.  The initial point  was obtained by assuming t h a t  e a c h  s tuden t  

goes to  school in his native distr ict .  After exte'nsive averaging, t h e  value of t h e  

objective function a t  th is  point  was found to  be 74.2 - t h e  opt imal  value is  55.9. 

We shall  first p resen t  resul ts  obtained using the  interactive option for changing 

the  s t e p  size,  i.e., resul ts  obtained by giving t h e  answer 2 t o  t h e  question step 

size regulation? The s t e p  direction was specified a s  11111, i.e, a d i rec t  observa- 

t ion of a s tochast ic  quasigradient  is available, th is  observation is  made a t  t h e  

c u r r e n t  point. t h e  approximation s t e p  is fixed. t h e r e  is n o  averaging, and no 

previous information is used. The size of the  memory  available for calculating 

t h e  performance m e a s u r e  (22) was s e t  at 10. Table 2 reproduces  t h e  informa- 

tion displayed on the  moni to r  during t h e  first 30 iterations. 

TABLE 2 Information displayed during the  first 30 iterations (facility location problem. 
interactive s tep size regulation) 

Iter. Performance Estimate Observation Step size z 4  223 

no. measure of F ( z 9 )  of J (zS ,us) 

The observations of f ( z S , ~ ' )  given in Table 1 do not provide a n y  c lues  a s  t o  

whether t h e  algorithm is improving the  values of t h e  objective function F ( z S )  

or  not. A t  Arst sight these  observations appear to oscil late randomly between 

40 and  80. By contras t ,  the  es t imates  ? of the  function F ( z S )  display m u c h  

more  s table  behavior, generally decreasing during t h e  Arst 22 i tera t ions  from 

73 t o  64 a n d  then  stabilizing a r o u n d  t h e  values 63-64 with some small  



oscillations. Looking at the behavior of the two selected variables, we see that 

their values show a steady increase or decrease until iteration number 8 for z4 

and iteration number 5 for zz3. In later iterations both variables exhibit oscil- 

latory behavior. The value of the performance measure during the first 4 itera- 

tions is negative, due to the  instability of the initial estimates. I t  then begins 

to increase and reaches approximately 0.2, reflecting the regular behavior of 

the estimate Fs. After this i t  decreases in an oscillatory fashion to the  range 

0.03-0.06. All of this indicates that  it is time to decrease the s tep  size. 

TABLE 3 Information displayed during iterations 31-59 (facility location problem, in- 
teractive step size regulation) 

Iter. Performance Estimate Observation Step size 
no. measure ? of F(zS) of J (zs .us) 

31 0.045 62.379 42.783 0.500 
33 0.025 62.295 62.783 0.500 
35 0.052 61.652 52.609 0.500 
37 0.063 61.565 46.957 0.500 
39 0.079 61.318 52.261 0.500 
41 0.050 61.211 68.174 0.500 
43 0.051 60.815 51.304 0.500 
45 0.070 60.452 57.9 13 0.500 
47 0.059 60.279 45.652 0.500 
49 0.035 60.277 64.957 0.500 
5 1 0.043 60.104 6 1.739 0.500 
53 0.017 60.133 64.696 0.500 
55 0.017 60.240 67.043 0.500 
57 -0.030 60.819 65.565 0.500 
59 -0.052 61.189 85.391 0.500 

After changing the s tep size. the estimates of F (zS)  decreased steadily dur- 

ing iterations 31-51, and then started to increase during iterations 52-59 (see 

Table 3). The performance measure first increased, reaching a level of 

0.05-0.07 between iterations 35 and 47 before dropping back to negative values. 

I t  is necessary to decrease the s tep size once again. 

We decided to stop after iteration number 80 (see Table 4) and estimate the 

value of the objective function a t  the current point. The average after the first 

500 observations was 56.53, which shows that we are fairly close to the optimal 

solution. Note that this estimate is considerably lower than the value of 

(61.0) given in the table. This is due to the fact that the estimate is calcu- 

lated from (18) including only one additional observation f (zS,wS) per itera- 

tion, and it therefore includes observations made at early points which are 

clearly far from the optimum. Nevertheless, this estimate is still useful in 

determining the value of the s tep size because it reflects the general behavior 



TABLE 4 Information displayed during iterations 62-80 (facility location problem, in- 
teractive s tep size regulation) 

Iter. Performance Estimate Observation Step size z 4 =23 

no. measure ? o f F ( z s )  o f f ( zS ,wS)  

of the algorithm. Subsequent iterations improved the value of the objective 

function only marginally (see Table 5). 

TABLE 5 [nformation displayed during iterations 90-3070 (facility location problem, in- 
teractive step size regulation) 

Iter. Performance Estimate Observation Step size 2 4 2 23 

no. measure % o f F ( z s )  o f I ( z s , o s )  

90 0.063 60.601 54.087 0.200 17.930 17.730 
100 0.143 59.876 45.739 0.100 18.287 17.687 
120 0.022 59.579 57.670 0.100 18.330 17.530 
140 0.061 58.890 45.374 0.100 18.626 17.826 
160 -0.011 59.161 56.278 0.100 19.226 17.626 
1 80 0.319 58.76 1 44.744 0.020 19.379 17.299 
200 0.008 58.608 49.144 0.020 19.237 17.277 
300 0.317 57.847 43.322 0.020 18.946 17.146 
400 -0.368 57.627 81.986 0.005 18.909 17.129 
500 0.270 57.584 63.554 0.005 18.869 17.099 
8 00 -0.830 57.0 12 58.455 0.00 1 18.967 17.017 

1100 3.773 57.071 66.512 0.0003 18.980 17.000 
1570 1.521 56.858 79.613 0.000 1 18.983 16.998 
2070 0.916 56.629 46.567 0.000 1 18.975 16.998 
2570 -0.874 56.603 71.741 0.0001 18.978 17.001 
3070 0.118 56.425 55.729 0.0001 18.982 17.000 

Our final estimate of the objective function was 56.0, which is close to the 

optimal solution. 

The same results can be obtained by automatic regulation of the step size. 

In this case we give the answer 1 to the question step slze regulation?, i.e.. adap- 

tive automatic step size regulation (24) using function estimate (18). We also 

set 

initial step size 1.0 

multiplier 0.7 

frequency of step size change 15 

lower bound on function decrease 0.02 

size of memory 15 



(see the  description of the s tep size parameters  in Section 4). The results a re  

presented in Table 6. 

TABLE 6 Information displayed during iterations 2-1200 (facility location problem, 
adaptive automatic step size regulation) 

Iter. 
no. 

Performance 
measure 

Estimate 
P OF ~ ( 2 ~ )  

77.826 
72.522 
69.232 
65.457 
63.609 
84.980 
64.435 
64.304 
61.951 
61.563 
60.593 
60.246 
59.526 
59.277 
58.495 
58.440 
57.936 
57.683 
57.387 
57.1 16 
57.006 
56.726 
56.623 

Observation 
of j ( z S , d )  

60.26 1 
57.739 
54.522 
48.174 
56.087 
65.652 
58.522 
49.652 
49.39 1 
68.696 
90.195 
65.349 
48.282 
50.012 
58.695 
63.486 
36.450 
47.760 
43.263 
50.086 
43.503 
76.801 
65.457 

Step size 

The value of the objective function a t  t he  final point (average of 4000 

observations) is 56.2, which is close to the optimal value. The behavior of the  

algorithm was virtually the same as  in the  interactive case: quite a reasonable 

approximation of the optimal solution was obtained after 100-150 iterations. 

with little improvement being observed thereafter.  

5.2. Control of water resources 

This example is taken from work by A. Prekopa and T. Szantai. An extended 

description of the  problem together with a solution obtained by reduction to a 

special type of nonlinear programming problem is given in [23]. Here we shall 

show how the  problem can be solved using stochastic quasigradient methods. 

The basic aim is to control the level of water in Lake Balaton (a large, shallow 

lake in western Hungary). A certain volume of water 2i flows into the lake from 

rivers, rainfall, etc.. in time period i. This inflow varies randomly from one 

period to  another ,  but it is possible to derive i ts  probabilistic distribution from 



previous observations. The control  pa r ame te r  is the  amount  zi of water 

released from the  lake into  the  River Danube in each t ime period; the  objective 

is  to  maximize the  probability of t he  water level lying within specified bounds. 

It t u rn s  ou t  t ha t  a reasonable control policy can  be determined by considering 

only two consecutive periods of t ime, which in this example a r e  measured  in 

months .  Mter  appropriate t ransformat ions  we arrive a t  t he  following problem 

(for details s ee  [23]): 

where t h e  s e t  Z(z1,z2) is defined a s  follows: 

Here %, bi a r e  respectively the  lower and upper bounds on the  "generalized" 

water  level: in this par t icular  example we took al = a2 = -205, b = b = 95. 

R = 200. The random water inputs w l  a n d  w2 have a joint normal  distr ibution 

H(wl,w2) with expectations E(wl) = -28.07. E(02) = -59.43 and  covariance 

mat r ix  

Let X(z1 ,z2 ,w1,~2)  denote t he  indicator function of the  s e t  Z(z1,z2),  i.e.. 

The problem then  becomes 

a n d  can be  solved using s tochast ic  quasigradient methods. We took (95.95) a s  

t h e  initial point; t h e  value of t h e  objective function a t  th is  point was 0.32. 

According to  [23], t h e  optimal solution is  (2,0), with an objective function value 

of 0.957. We decided to  solve t he  problem using a finite-difference 



approximation of a s tochast ic  quasigradient.  Below we demons t ra te  how our  

in teract ive  software package ST0 may  be used to solve this problem, specifying 

in teract ive  s t e p  size regulation (option 2) and  s t e p  direction 21124, (i.e., taking 

a centra l  finite-difference approximation of t h e  gradient,  calculating the s t e p  

direction a t  t h e  c u r r e n t  point ,  with a fixed approximation s tep,  a number  of 

samples  g r e a t e r  than  1, no previous information,  and such  t h a t  the  s t ep  direc- 

tion vector has  uni t  norm). 

The paramete rs  were s e t  a t  t h e  following values: 

step in finite difference approximation 10.0 

number of samples 5 

value of step size 10.0 

size of memory 20 

The resul ts  a r e  given in Table 7. 

TABLE 7 [cformation displayed during iterations 1-110 (water management problem, 
interactive s tep  size regulation) 

Iter. 
no. 

Performance Estimate Observation Step size 2 I =2  

measure ? of F ( z s )  of I (zs ,us) 

After i tera t ion 110 we s topped and  es t imated the  value of t h e  function a t  

t h e  c u r r e n t  point  on t h e  basis of 4000 observations - we obtained a value of 

0.843, which is close to  t h e  optimal value. Subsequent i tera t ions  improved the  

value of the objective function only marginally (see Table 8). 

After i tera t ion 200 we changed  t h e  s t ep  in the  finite-dfierence approxima- 

tion to 1.0. The value of t h e  objective function a t  t h e  final point was 0.85, i.e., 

we had reached  t h e  optimal value. However, t h e  values of t h e  controls were far  



TABLE 8 Information displayed during iterations 120-8090 (water management prob- 
lem, interactive step size regulation) 

Iter. 
no. 

Performance 
measure 

Estimate Observation Step size I 2 

P of F(z3) off  (zS,oS) 

0.625 1.000 1O.OCO 10.000 17.071 
0.673 1.000 1.000 0.106 1.707 
0.720 0. 1.000 2.707 6.309 
0.792 1.000 0.100 3.071 7.835 
0.797 0. 0.100 1.787 8.110 
0.829 1.000 0.100 3.463 6.392 
0.845 1.000 0.100 0.383 5.538 
0.852 0. 0.010 0.161 4.895 
0.854 1 .OOO 0.005 0.071 5.049 
0.856 1 .OOO 0.005 0.C64 4.955 
0.855 1.000 0.005 0.106 4.980 
0.856 1.000 0.00 1 0.016 4.970 
0.855 1.000 0.00 1 0.020 4.985 

from the solution due to the  flatness of the function around the  optimum. 

5.3. Determining the parameters in a closed loop control Law for stochastic 

dynamical systems with delay 

We have so far considered only static optimization problems. However, all 

of the techniques described above can also be applied to many classes of 

dynamical stochastic optimization problems. The example tha t  we shall con- 

sider was suggested by A. Wierzbicki and is the problem of finding the  optimal 

control parameters  in a closed loop control law for a l inear dynamical system 

disturbed by random noise. The s tate  equations include response delay and 

may be written a s  follows: 

where t is a discrete time. zt is the s ta te  of the  dynamical system at t ime t .  ut 

is the value of the control a t  time t ,  and wt is the random noise a t  t ime t .  In 

this particular example the wt were taken to be distributed uniformly over the 

interval [ - b  , b ]  and such that  wi and w j  are  uncorrelated for i # j. However, 

neither this particular type of dstr ibut ion nor these correlation properties are 

prerequisites for the use of the methods described in the preceding sections. 

The controls ut were chosen according to the following closed loop control law: 



where the  decision parameters  are  zl r 0 and z2 r 0. 

The objective is to minimize the deviation of the s ta te  of the system from 

zero. We may therefore s tate  the problem as follows: minimize the objective 

function 

with respect to the  control law parameters zl and  z2, subject to constraints  

(28) and  (29) and non-negativity constraints on z1 , z2. We solved the problem 

with the following parameter values: time horizon T = 100, delay k = 5, s tate  

equation coefficient a = 0.9, bounds for random noise b = 0.1. With these  values 

the optimal control parameters are zl = 0.1, zz = 0; t he  value of the  objective 

function obtained after 10,000 observations was 4.52. It was discovered during 

preliminary runs  tha t  for zl r 0.3, z2 r 0.1 the system becomes unstable and 

therefore these values were taken as  upper bounds for t he  variables. 

We se t  t he  initial point equal to the upper bounds zp = 0.3, z: = 0.1; the 

value of the objective function a t  this point (based on 3000 observations) was 

422.56. We chose automatic s tep size regulation (option I ) ,  i.e., the  s tep size 

changes a re  based upon performance function (22). The s tep direction was 

specified a s  71 114, i.e., taking a forward finite-difference approximation of the 

gradient of t h e  random objective function f (z,o) with all observations of the 

function needed for one gradient evaluation made a t  the same value of the 

noise; with a fixed finite difference s tep and the  finite-difference evaluation per- 

formed a t  t he  cu r r en t  point; without averaging; using no previous information 

and normalizing the  resulting step direction. The parameters  of the algorithm 

were as  follows: 

step In finite difference approximation 0.0001 

Initial step size 0.1 

multiplier 
(for diminishing the  s tep size) 

frequency of step size change 
(actually the frequency with which 
the  s tep size is reviewed) 



lower bound on function decrease  
( t h e  lowest value of performance 
function (22) which does not  lead 
to  a decrease  in t h e  s t e p  size) 

size of memory 
(for evaluating (22)) 

least  value of s t e p  size 
(stopping cr i ter ion)  

The resu l t s  of t h e  calcula t ions  a r e  given in Table 9. 

TABLE 9 tnformation displayed during iterations 1-120 (control law problem, automatic 
s tep size regulation) 

Iter. Performance Estimate Observation Step size 2 I %2 

no. measure ? of F(zs)  of 1 (zs ,as)  

1 0. 8.141 8.141 0.100 0.232 0.027 
2 18.570 6.284 4.427 0.100 0.149 0. 
3 12.23 1 5.695 4.5 17 0.100 0.054 0. 
4 7.093 6.013 6.968 0.100 0.097 0. 
5 6.727 5.450 3.199 0.100 0. C75 0. 
10 3.428 5.056 4.C84 0.100 0.073 0. 
15 2.416 4.759 4.254 0.100 0.103 0.C99 
20 0.42 1 4.733 4.2 1rl 0.100 0.029 0. 
30 0.119 4.651 5.326 0.100 0.052 0. 
40 0.058 4.615 4.896 0.100 0.050 0. 
50 -0.012 4.631 5.1~3 0.085 0.071 0. 
70 0.00 1 4.668 5.131 0.072 0.112 0. 
90 0.005 4.665 4.943 0.061 0.076 0.059 
100 0.042 4.621 3.481 0.052 0.076 0. 
120 0.033 4.601 4.872 0.044 0.094 0. 

We stopped after  i tera t ion 120 to  es t imate  t h e  value of t h e  objective function. 

which was calcula ted t o  be 4.54 a f te r  3000 observations a n d  is fairly close to the  

optimal value. Subsequent  i tera t ions  improved t h e  solution only marginally 

(see Table 10). 

This example once  again demons t ra tes  t h e  character is t ic  behavior of sto- 

chas t i c  optimization algorithms: t h e  neighborhood of t h e  optimal solution is 

r eached  reasonably rapidly; oscillations t h e n  o c c u r  in th i s  neighborhood and  

t h e  c u r r e n t  approximation t o  t h e  optimal solution improves slowly. 

The n a t u r e  of s tochast ic  quasigradient  algorithms allows easy extension of 

model (28)-(30) to  multivariable a n d  nonl inear  systems. 



TABLE 10 Information displayed during iterations 150-1500 (control law problem, au- 
tomatic s tep  size regulation) 

Iter. Performance Estimate 
no. measure % of F(zS)  

Observation 
of / (zS ,us) 

3.776 
4.234 
5.224 
4.413 
4.478 
4.958 
4.973 
4.544 
3.571 
4.437 
4.789 
3.704 
4.120 
4.633 
5.070 
4.860 
4.621 

Step size 2 1 
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