NOT FOR QUOTATION
WITHOUT PERMISSION
OF THE AUTHOR

STOCHASTIC QUASIGRADIENT METHODS
AND THEIR IMPLEMENTATION

Yuri Ermoliev
Alexei Gaivoronski

July 1984
WP-84-55

Working Papers are interim reports on work of the International
Institute for Applied Systems Analysis and have received only
limited review. Views or opinions expressed herein do not
necessarily represent those of the Institute or of its National
Member Organizations.

INTERNATIONAL INSTITUTE FOR APPLIED SYSTEMS ANALYSIS
2381 Laxenburg, Austria

PREFACE

This paper discusses various stochastic quasigradient methods and
considers their computer implementation. It is based on experience
gained both at the V. Glushkov Institute of Cybernetics in Kiev and at
IIASA.

The paper falls naturally into three parts. The first is concerned
with problem definition and various ways of choosing the step size and
step direction. A detailed description of an interactive stochastic optimi-
zation package (STO) available at IIASA forms the second part. Finally,
the use of this package is demonstrated by application to three test prob-
lems that have arisen during the course of IIASA work they include a
facility location problem and a water management problem.

This work was carried out within the Adaptation and Optimization
Project of the System and Decision Sciences Program.

ANDRZEJ WIERZBICKI
Chairman
System and Decision Sciences

- iii -

ABSTRACT

A number of stochastic quasigradient methods are discussed from
the point of view of implementation. The discussion revolves around the
interactive package of stochastic optimization routines {STO) recently
developed by the Adaptation and Optimization group at IIASA. (This pack-
age is based on the stochastic and nondifferentiable optimization pack-
age (NDO) developed at the V. Glushkov Institute of Cybernetics in Kiev.)
The ITASA implementation is described and its use illustrated by applica-
tion to three problems which have arisen in various I1IASA projects.

STOCHASTIC QUASIGRADIENT METHODS AND THEIR
IMPLEMENTATION

Yuri Frmoliev and Alexei Gaivoronski

1. INTRODUCTION

This paper discusses various stochastic quasigradient methods (see [1,2])
and considers their computer implementation. It is based on experience

gained both at the V. Glushkov Institute of Cybernetics in Kiev and at ITASA.

We are concerned here mainly with questions of implementation, such as
the best way to choose step directions and step sizes, and therefore little atten-
tion will be paid to theoretical aspects such as convergence theorems and their

proofs. Readers interested in the theoretical side are referred to [1,2].

The paper is divided into five sections. After introducing the main problem
in Section 1, we discuss the various ways of choosing the step size and step
direction in Sections 2 and 3. A detailed description of an interactive stochas-
tic optimization package (STO) currently available at IIASA is given in Section 4.
This package represents one possible implementation of the methods described
in the previous sections. Finally, Section 5 deals with the solution of some test
problems using this package. These problems were brought to our attention by
other IJASA projects and collaborating institutions and include a facility loca-
tion problem, a water resources management problem, and the problem of
choosing the parameters in a closed loop control law for a stochastic dynamical

system with delay.

We are mainly concerned with the problem

min {F(z):z € X} , F(z)=E, f(z.0) . (1)

where z represents the variables to be chosen optimally, X is a set of con-
straints, and o is a random variable belonging to some probabilistic space

(Q,.B.P). Here B is a Borel field and P is a probabilistic measure.

There are currently two main approaches to this problem. In the first, we

take the mathematical expectation in (1), which leads to multidimensional

-2.

integration and involves the use of various approximation schemes [3-6]. This
reduces problem (1) to a special kind of nonlinear programming problem which
allows the application of deterministic optimization techniques. In this paper
we concentrate on the second approach, in which we consider a very limited
number of observations of random function f(z,w) at each iteration in order to
determine the direction of the next step. The resulting errors are smoothed
out until the optimization process terminates (which happens when the step

size becomes sufficiently small). This approach was pioneered in [7,8].

We assume that set X is defined in such a way that the projection operation
z - ﬂ‘x(l‘) is comparatively inexpensive from a computational point of view,

where n'X(:z:) = arg mi}r} lz —z!l. For instance, if X is defined by linear con-
zZ€

straints, then projection is reduced to a quadratic programming problem
which, although challenging if large scale, can nevertheless be solved in a finite
number of iterations. In this case it is possible to implement a stochastic

quasigradient algorithm of the following type:

z5* = my(zS - pgvs) . (2)

Here z°3

is the current approximation of the optimal solution, p; is the step
size, and v® is a random step direction. This step direction may, for instance,
be a statistical estimate of the gradient (or subgradient in the nondifferentiable

case) of function F{z): then v® = ¢ such that

E(¢ | z1.z%...2%) = F (z5) + a5 | (3)

where a® decreases as the number of iterations increases, and the vector vS is
called a stochastic quasigradient of function F(z). Usually ps *0ass » = and

s+1 _ 25| 5 0 from (2). This suggests that we should take z°¥ as the

therefore [z
initial point for the solution of the projection problem at iteration number s +1,
thus reducing considerably the computational eflort needed to solve the qua-
dratic programming problem at each step s =1,2,.... Algorithm (2)—(3) can
also cope with problems with more general constraints formulated in terms of

mathematical expectations

E,fz.w)=0, i=1m

by making use of penalty functions or the Lagrangian (for details see [1,2]).

-3-

The principal peculiarity of such methods is their nonmonotonicity, which
may sometimes show itself in highly oscillatory behavior. In this case it is
difficult to judge whether the algorithm has already approached a neighborhood
of the optimal point or not, since exact values of the objective function are not
available. The best way of dealing with such difficulties seems to be to use an
interactive procedure to choose the step sizes and step directions, especially if
it does not take much time to make one observation. More reasons for adopting
an interactive approach and details of the implementation are given in the fol-

lowing sections.

Another characteristic of the algorithms described here is their pattern of
convergence. Because of the probabilistic nature of the problem, their asymp-
totic rate of convergence is extremely slow and may be represented by

Iz~ 251~ = (4)
Here z° is the optimal point to which sequence z° converges and k is the
number of observations of random parameters o, which in many cases is pro-
portional to the number of iterations. In deterministic optimization a super-
linear asymptotic convergence rate is generally expected; a rate such as (4)
would be considered as nonconvergence. But no algorithm can do asymptoti-
cally any better than this for stochastic problem (1) in the presence of nonde-
generate random disturbances, and therefore the aim is to reach some neigh-
borhood of the solution rather than to find the precise value of the solution

itself. Algorithm (2)—(3) is quite good enough for this purpose.

2. CHOICE OF STEP DIRECTION

In this section we shall discuss different ways of choosing the step direc-
tion in algorithm (2) and some closely related algorithms. We shall first discuss
methods which are based on observations made at the current point zS or in its
immediate vicinity. More general ways are then presented which take into

account observations made at previous points.

2.1. Gradients of random function f (z,)

The simplest case arises when it is possible to obtain gradients {(or subgra-
dients in the nondifferentiable case) of function f (z,w) at fixed values of z and

@. In this case we can simply take

-4 -

£ = fo(z5.2%) (5)

where »° is an observation of random parameter » made at step number s. If
both the observation of random parameters and the evaluation of gradients are
computationally inexpensive then it is possible to take the average of some

specified number N of gradient observations:
1N ,
$s~= 7\/_2 [(z5.0v%) (6)

1=1

These observations can be selected in two ways. The first is to choose the w!*$
according to their probability distribution. If we do not know the form of the
distribution function (as, for example, in Monte-Carlo simulation models) this is
the only option. However, in this case the influence of low-probability high-cost
events may not be properly taken into account. In addition, the asymptotic
error of the gradient estimate ¢° is approximately proportional to 1/ VN. The
second approach may be used when we know the distribution of the random
parameters w. In this case many other estimates can be derived; the use of
pseudo-random numbers* in particular may lead to an asymptotic error approx-
imately proportional to log (N)/ N, which is considerably less than in the purely
random case. However, more theoretical research and more computational
experience are necessary before we can assess the true value of this approach.
The main question here is whether the increase in the speed of convergence is
sufficient to compensate for the additional computational effort required for

more exact estimations of the #,(z%).

Unfortunately, our theoretical knowledge concerning the asymptotic
behavior of processes of type (2) tells us little about the optimal number of
samples, even for relatively well-studied cases. For instance, what would be the
optimal number N of observations for the case in which function F(z) is
differentiable and there are no constraints? In this case we can establish both
asymptotic normality and the value of the asymptotic variance. If, additionally,
ps ~ C/s then the total number of observations required to obtain a given
asymptotic variance is the same for all N <'s. If sp; » =< then the wait-and-see

approach ts asymptotically superior as long as N < s.

*A concept which arose from the use of quasi-Monte-Cario techniques in multidimensional
integration [9].

-5-

However, there is strong evidence that in constrained and/or
nondifferentiable cases the value of N should be chosen adaptively. A very sim-
ple example provides some insight into the problem. Suppose that z € R,
X =[a=), Fz) =z, f(z%.0%) =1 + %, where the o®, s =1,2,...., are indepen-
dent random variables with zero mean. The obvious solution of this problem is

=a. Suppose for simplicity that p, =p. This will not alter our argument
greatly because p; usually changes very slowly for large s. In this case method

(2).(5) will be of the form:
zs+1 =5 —,0<1 + c')s) +Ts ,

T¢ =max {0, a —z% + p(1 + %)}

Method (2),(8) requires us to choose a step size N times greater than p; other-
wise its performance would be inferior to that of method (2),(5) (unless the ini-
tial point is in the immediate vicinity of the minimum). Method (2),(6) then

becomes

N .
z5*1 = 2% —Np(1+lﬁz W) + 9,
1 =1

0

N
o =max {0,a —z% + Np(1+ =) wbS))

t=1

In order to compare the two methods we shall let s in the last equation denote

the number of observations rather than the number of iterations and renumber

s

the observations w**. The process

c 0 k—1 . k-1
v =yl -p Y L+ od)+ Uy . (7
1=0 1 =0
0 ifi #IN forl = 1,2,...or a <y* —p(1 + wt)

Xi = a-y* +p(1+ wt) otherwise

has the property that y”":zs and therefore it is sufficient to compare

y® with z* for k = [N, where

k-1 ok
xk=z°—p‘2 1+t + Y 7 (8)

+=0 1=

Suppose that z0 =% # a. Then if ¢! = min {k: z¥ = a| represents the time at

which process z¥ first encounters the optimal point and tz1 =min {L: le =a)

-8 -

represents the time of the corresponding encounter of process z*¥ with the
optimal point, it is clear that t!<t! because from (7) and (8) we have that
y* =zF for k <t]}. This means that algorithm (2),(5) will get from some
remote initial point to the vicinity of the optimal point faster then algorithm
(2).(6) with N > 1. Now let us take z0 =4%®=a. Then (7) and (8) imply that
Xeg =0 for & <N while 7, may differ from zero. Therefore in this case
z¥>y¥ =21 and the performance of algorithm (2),(6) with N > 1 becomes
superior to that of algorithm (2),(5) after reaching the vicinity of the optimal
point. This simple example demonstrates several important properties of con-
strained stochastic optimization problems, although more work is necessary
before we can make any firm theoretical recommendations concerning the
choice of the number of samples N. Above all, an appropriate definition of the
rate of convergence is needed: recent results by Kushner [10] may be useful in

this regard.

A rather general adaptive way of changing the number N would be to begin
with a small value of N for the first few iterations (¥ = 1, for example), and
increase N if additional tests show that the current point is in the vicinity of
the optimum. The following averaging procedure has been shown to be useful

in tests of this type:

v5+1:(1_as)vs ragf, O=ag=<1 (9)

where {5 is defined by (5) or (6). It can be shown (see [1,2]) that
llus —Fz(zs)H -» 0 under rather general conditions, which include p,/ ag - 0.
The decision as to whether to change N may then be based on the value of
T =lzs - my(z® - v5)l. One possibility is to estimate £ and its empirical vari-

ance at the sarne time:
1 X ; 2
af = = [fa(z5.005) - €]
=1

and choose N such that o§ < gr,. where the value of g8 is set before beginning
the iterations. In practice it is sufficient to consider a constant
ag =a ~ 0.01-0.05, where the greater the randomness, the smaller the value of
a. Our empirical recommendation for the initial wvalue of N is

o ‘
09 ~0.1 max lz, - z,l.
N X, F1 T T

-7 -

This method can be used to increase the number of samples per iteration
automatically. Another possibility is to alter the value of N interactively; this
is one of the options implemented in the interactive package ST(Q, which has
recently been developed at 1IASA. Numerical experiments conducted with this
package show that in problems where f_(z ,») has a high variance, choosing a
value of N greater than one can bring about considerable improvements in per-

formance.

The method described above uses increasingly precise estimates of the
gradient, and therefore shares some of the features of the approximation tech-
niques developed in [3-8] for solving stochastic programming problems. All of
the remarks made here concerning sampling are also valid for the other
methods of choosing £ described below.

However, it is not always possible to use observations of the gradient
f.(z.0) of the random function to compute a stochastic guasigradient. In
many cases the analytic expression of f, (z,w) is not known, and even if it is, it
may be difficult to create a subroutine to evaluate it, especially for large-scale
problems. In this case it is necessary to use a method which relies only on

observations of f(z,w).

2.2. Finite-difference approximations

If function F(z) is differentiable, one possibility is to use forward finite

differences:

f(z% +6ge,, wisJ) - f(z5. 0f5) .
é L

N

£=3

i=1

(10)

or central finite differences:

n f(z%+65e; wf) —f (25 ~bge; 0f,)

gs:gl 25 LT (11)

where the g; are unit basis vectors from A™. The most important question here
is the value of §,. In order to ensure convergence with probability one it is
sufficient to take any sequence §g such that 2,_-":1 piz/ 6{?‘ < =, If it is possible to
take wf, =of; then any 6, » 0 will do. However, the method may reach the
vicinity of the optimal point much faster if §; is chosen adaptively. On the first

few iterations §¢ should be large, decreasing as the current point approaches

-8-

the optimal point. The main reason for this is that taking a large step §; when
the current point is far from the solution may smooth out the randomness to
some extent, and may also overcome some of the problems (such as curved val-
leys) caused by the erratic behavior of the deterministic function F(z). One
possible way of implementing such a strategy in an unconstrained case is given

below.

(1) Take a large initial value of &, such as §g ~ 0.1 max ”:z:1 - zzn.
z,z6X

(i) Proceed with iterations (2), where ¢ is determined using (10) or {(11).

While doing this, compute an estimate of the gradient v* from (9).

(iii) Take

é if v® = 8,6,

s+1 7 Bs0s otherwise ’

(]

where the values of 8; and 8, should be chosen before beginning the itera-

tive process.

It can be shown that this process converges when c.)is'l = c.)is‘z. although it will
also produce a good approximation to the solution even if this requirement is
not met. Estimate (9) is not the only possibility — in fact, any of the estimates

of algorithm performance given in Section 3 would do.

Another strategy is to relate changes in the finite-difference approximation
step to changes in the step size. This is especially advisable if the step size is
also chosen adaptively (see Section 3). In the simplest case one may fix 8,;>0
before starting and choose 64 = 8,0, which, although contrary to theoretical
recommendations, will nevertheless bring the current point reasonably close to
the optimal point. To obtain a more precise solution it is necessary to reduce
f; during the course of the iterations. This may be done either automatically
or interactively; both of these options are currently available in the stochastic

optimization package STO.

Finite-difference algorithms (10) and (11) have one major disadvantage,
and this is that the stochastic quasigradient variance increases as d§g
decreases. This means that finite-difference algorithms converge more slowly
than algorithms which use gradients (5). There are two ways of overcoming this

problem. Firstly, if it is possible to make observations of function f(z,w) for

-9-

various values of z and fixed o, it is a good idea to take the same values of w for
the differences (i.e., w?, = »7,) when §; is small because this reduces the vari-
ance of the estimates quite considerably. Another way of avoiding this increase
in the variance is to increase the number of samples used to obtain £ when
approaching the optimal point, i.e., to use finite-difference analogues of (6). If
there exists a ¥y > 0 such that Nsd;2 >y, where N is the number of samples

taken at step number s, then the variance of £ remains bounded.

It is sometimes useful to normalize the §°, especially when the variance is

large.

Another disadvantage of the finite-difference approach is that it requires
n + 1 evaluations of the objective function for forward differences and 2n for
central differences, where n is the dimension of vector z. This may not be
acceptable in large-scale problems and in cases where function evaluation is
computationally expensive. In this situation a stochastic quasigradient can be

computed using some analogue of random search techniques.

2.3. Analogues of random search methods

When it is not feasible to compute n + 1 values of the objective function at
each iteration, the following approach (which has some things in common with
the random search techniques developed for deterministic optimization prob-
lems) may be used:

M, s . sy — s s
) B (12)

Here the h; are vectors distributed uniformly on the unit sphere, M is the
number of random points and §; is the step taken in the random search. The
choice of Ms is determined by the computational facilities available, although it
is advisable to increase M; as dg decreases. This method of choosing ¢* has
much in common with finite-difference schemes, and the statements made

above about the choice of d¢ in the finite-difference case also hold for (12).

2.4. Smoothing the objective function

Methods of choosing £ which rely on finite-difference or random search
techniques are only appropriate when the objective function F(z) is

differentiable. The use of similar procedures in the nondifferentiable case

-10 -

would require some smoothing of the objective function. Suppose that the
function F{z) is not differentiable but satisfies the Lipschitz condition, and con-

sider the function
Flz,r) = fF(z +y)dH(y.r) . (13)

where H(y.r) is a probability measure with support in a ball of radius r cen-
tered at zero. We shall assume for simplicity that H(y,r) has nonzero density
inside this ball. The function F(z,r) is differentiable and F(z,r) » F(z) uni-
formly over every compact set as 7 » 0. It is now possible to minimize the
nonsmooth function F{(z) by computing stochastic quasigradients for smooth
functions F(z.r) and find the optimal solution of the initial problem by letting
r - 0. This idea was proposed in [11] and studied further in [12]. It is not actu-
ally necessary to calculate the integral in {13) — it is sufficient to compute £5
using equations (10)—(12), but at point z¥ + y¥° rather than point z°¥, where y°
is a random variable distributed according to H{y,r;). In this case (10)
becomes:

J(z% +y° +ose;. 0F) — (=" +y°, ofp)

- & e, 14
£=3 2 1 (14)

S

The most commonly used distribution H{y,r) is uniform distribution on an n-
dimensional cube of side 7. If we want to have convergence with probability one
we should choose rg such that é;/7y » 0 and (rg =7341)/ ps = 0. In practical
computations it is also advisable to choose the smoothing parameter rg in a
similar way to dg, using one of the adaptive procedures discussed above.
Smoothing also has beneficial side effects in that it improves the behavior of
the deterministic function F(z). In the case where F{(z) may be written as the
sum of two functions, one with a distinct global minimum and the other with
highly oscillatory behavior, smoothing may help to overcome the influence of
the oscillations, which may otherwise lead the process to local minima far from
the global one. Thus it can sometimes be useful to smooth the objective func-
tion even if we can obtain a gradient f_(z,0). In this case we should take a
large value for the smoothing parameter r, on the first few iterations, decreas-
ing it as we approach the optimal point. The points at which 7; should be
decreased may be determined using the values of additional estimates, such as
those described below in Section 3 or given by (9). Everything said about the

choice of the finite-diflerence parameter 4§, is also valid for the choice of the

-11 -

smoothing parameter, including the connection between the step size and the
smoothing pararﬁeter and the possibility of interactive control of r,. The only
difference is that a decrease in r; does not lead to an increase in the variance
of ¢* and that it is preferable to have 63 < r,. This is also reflected in the sto-

chastic optimization software developed at I1ASA

All of the methods discussed so far use only the information available at
the current point or in its immediate vicinity. We shall now discuss some more
general ways of choosing the step direction which take into account the infor-

mation obtained at previous points.

2.5. Averaging over preceding iterations

The definition of a stochastic quasigradient given in (3) allows us to use
information obtained at previous points as the iterations proceed; this informa-
tion may sometimes lead to faster convergence to the vicinity of the .optimal
point. One possible way of using such information is to average the stochastic
quasigradients obtained in preceding iterations via a procedure such as (9).
The vS obtained in this way may then be used in method (2). This is another
way of smoothing out randomness and neutralizing such characteristics of
deterministic behavior as curved valleys and oscillations. Methods of this type
may be viewed as stochastic analogues of conjugate gradient methods and were
first proposed in [13]. We can choose ¢ according to any of (5), (8), (10), (11),
(12), or (14). Since v® » F(z%) under rather general conditions (see [1,2]),
method (9) can be considered as an alternative to method (8) for deriving pre-
cise estimates of gradient F,(z). This method has an advantage over (8) in that
it provides a natural way of using rough estimates of F:(zs) on the first few
iterations and then gradually increasing the accuracy as the current point
approaches the optimal point. In this case (9) can be incorporated in the adap-
tive procedures used to choose the smoothing parameter and the step in the

finite-difference approximation.

However, it is not necessary to always take ag =+ 0, because we have conver-
gence for any O<ag <1. Sometimes it is even advantageous to take

ag = a = constant, because in this case more emphasis is placed on information

3
obtained in recent iterations. In general, the greater the randomness, the
smaller the value of a that should be taken. Another averaging technique is

given by

-12 -

LS S (15)

S i=s~-M,+1

where M, is the size of the memory, which may be fixed.

2.8. Using second-order information

There is strong evidence that in some cases setting
v o= A (16)

may bring about considerable improvements in performance. Here £ can be
chosen in any of the ways discussed above. Matrix 4; should be positive definite
and take into account both the second-order behavior of function F(z) and the
structure of the random part of the problemn. One possible way of obtaining
second-order information is to use analogues of quasi-Newton methods to
update matrix A;. To implement this approach, which was proposed by Wets in
[3]. it is necessary to havellg& - £, (z5)ll - 0.

3. CHOICE OF STEP SIZE

The simplest way of choosing the step-size sequence in (2) is to do it before
starting the iterative process. Convergence theory suggests that any series

with the properties:

ps >0, Y opg ==, ¥ pl<a= (17)
s=1 s =1
can be used as a sequence of step sizes. In addition, it may be necessary to
take into account relations between the step size and such things as the
smoothing parameter or the step in a finite-difference approximation. Rela-
tions of this type have been briefly described in the preceding sections. In most
cases the choice p; ~ C/ s, which obviously satisfies (17), provides the best pos-
sible asymptotic rate of convergence. However, since we are mainly concerned
with reaching the vicinity of the solution, rule (17) is of limited use because a
wide variety of sequences can be modified to satisfy it. The other disadvantage
of choosing the step-size sequence in advance is that this approach does not
make any use of the valuable information which accumulates during solution.
These “programmed” methods thus perform relatively badly in the majority of

cases.

-13 -

The best strategy therefore seems to be to choose the step size using an
interactive method. It is assumed that the user can monitor the progress cf
the optimization process and can intervene to change the value of the step size
or other parameters. This decision should be based on the behavior of the esti-
mates f’(zs) of the current value of the objective function. The estimates may
be very rough and are generally calculated using only one observation per

iteration, as in the following example:

Fo=13 rited) (18)
=1

It appears that although the observations f(z%,0%) may vary greatly, the #*
display much more regular behavior. Monitoring the behavior of some com-
ponents of the vector z¥ in addition to the 7% also seems to be useful. One pos-
sible implementation of the interactive approach may proceed along the follow-

ing lines:
(i) The user first chooses the value of the step size and keeps it constant for a
number of iterations (usually 10—20). During this period the values of the
estimate F° and some of the components of the vector z® are displayed,

possibly with some additional information.

{(ii) The user decides on a new value for the step size using the available infor-

mation. Three different cases may occur:

— The current step size is too large. In this case both the values of the
estimate 7S and the values of the monitored components of ¥ exhibit

random jumps. It is necessary to decrease the step size.

~ The current step size is just right. In this case the estimates decrease
steadily and some of the monitored components of the current vector
z% also exhibit regular behavior (steadily decrease or increase). This
means that the user may keep the step size constant until oscillations
occur in the estimate f€ and/or in the components of the current

vector z%.

— The current step size is too small. In this case the estimate F¥ will
begin to change slowly, or simply fluctuate, after the first few itera-
tions, while the change in z¥ is negligible. It is necessary to increase

the step size.

-14 -

(iii) Continue with the iterations, periodically performing step (ii), until
changes in the step size no longer result in any distinct trend in either the
function estimate or the current vector z®, which will oscillate around
some point. This will indicate that the current point is close to the solu-

tion.

This method of choosing the step size requires an experienced user, but we
have found that the necessary skills are quickly developed by trial and error.
The main reasons for adopting an interactive approach may be summarized as

follows:

- Interactive methods make the best use of the information which accumu-

lates during the optimization process.

— Because the precise value of the objective function is not available, it is
impossible to use the rules for changing the step size developed in deter-

ministic optimization (e.g., line searches).

— Stochastic eflects make it extremely difficult to define formally when the
step size is "too big” or too small”; theoretical research has not thrown

any light on this problem.

The main disadvantage of the interactive approach is that much of the
user’'s time is wasted if it takes the computer a long time to make one observa-
tion f(z®,0%). For this reason a great effort has been made to develop
automatic adaptive ways of choosing the step size, in which the value of the
step size is chosen on the basis of information obtained at all or some of the
previous points z?, i = 1,s. Methods of this type are considered in [14-20)]. The
approach described in the following sections involves the estimate of some
measures of algorithm performance which we denote by ®*(z%,u%), where z°

represents the whole sequence izl.zz

v...z%} and uS the set of parameters used
in the estimate. In general, algorithm performance measures are attempts to
formalize the notions of "oscillatory behavior” and "regular behavior” used in
interactive step-size regulation, and possess one or more of the following pro-

perties:

— the algorithm performance measure is quite large when the algorithm
exhibits distinct regular behavior, i.e., when the estimates of the function
value decrease or the components of the current vector z¥ show a distinct

trend;

-15 -

— the algorithm performance measure becomes small and even changes its
sign if the estimates of the current function value stop improving or if the

current point starts to oscillate chaotically;

— the algorithm performance measure 1s large far from the solution and

small in the immediate vicinity of the optimal point.

Automatic adaptive methods for choosing the step size begin with some reason-
ably large value of the step size, which 1s kept constant as long as the value of
the algorithm performance measure remains high, and then decreases when
the performance measure becomes less than some prescribed value. The
behavior of the algorithm usually becomes regular again after a decrease in the
step size, and the value of the performance measure increases; after a number
of iterations oscillations set in and the value of the performance measure once
again decreases. This is a sign that it is time to decrease the step size. A
rather general convergence result concerning such adaptive piecewise-linear
methods of changing the step size is given in [18]. However, in many cases it is
difficult to determine how close the current point is to the optimal point using
only one such measure — a more reliable decision can be made using several of
the measures described below. Unfortunately, it is not possible to come to any
general conclusions as to which performance measure is the "best"” for all sto-
chastic optimization problems. Moreover, both the values of the parameters
used to estimate the performance measure and the value of the performance
measure at which the step size should be decreased are different for different
problems. Therefore if we fix these parameters once and for all we may achieve
the same poor performance as if we had chosen the whole sequence of step
sizes prior to the optimization process. Thus, it is necessary to tune the
parameters of automatic adaptive methods to different classes of problems, and
the interactive approach can be very useful here. An experienced user would
have little difficulty in using the values of the performance measures to deter-
mine the correct points at which to change the step size, and in learning what
type of performance measure behavior requires an increase or a decrease in
the step size. The interactive approach is of particular use if one iteration is
not very time-consuming and there are a number of similar problems to be
solved. In this case the user can identify the most valuable measures of perfor-
mance in the first few runs, fix their parameters and incorporate this
knowledge in automatic adaptive step-size selection methods for the remaining

problems.

- 18 -

Although interactive methods usually provide the quickest means of reach-
ing the solution, they cannot always be implemented, and in this case
automatic adaptive methods prove to be very useful. The stochastic optimiza-
tion package STO developed at IIASA and the Kiev stochastic and
nondifferentiable optimization package NDO both give the user the choice
between automatic adaptive methods and interactive methods of determining
the step size. Below we describe some particular measures of algorithm perfor-

mance and methods of choosing the step size.

The main indicators used to evaluate the performance of an algorithm are
estimates of such things as the value of the objective function and its gradient.
The averaging procedure (9) may be used to estimate the value of the gradient,
as described earlier in this paper. The main advantage of this procedure is that
it allows us to obtain estimates of the mean values of the random variables
without extensive sampling at each iteration, since a very limited number of
observations (usually only one) is made at each iteration. This estimate,
although poor at the beginning, becomes more and more accurate as the itera-
tions proceed. One example of such an estimate is (18), which is a special case

of the more general formula
FS¥Y = (1 =y)FS +y,f(25.05) . (19)

Any observation u% with the property

E(u® 12122, .25) = F(z5) + d (20)

s

can be used instead of f(z%,»°) in (19), where ¢, » 0. For example, (8) would
do. In order to get lirns_m| F® —F(z5)| =0 it is necessary to have ps/ 7s = 0.
However, estimate (18) assigns all observations of function values the same
weight. This sometimes leads to considerable bias in the estimate for all the
iterations the user can afford to run. Therefore for practical purposes it is
sometimes more useful to adopt procedures of the type described in Section 2
for the estimation of gradients. These include estimate (19) with fixed Ys =7
where y ~ 0.01-0.05, and the method in which the average is taken over the

preceding M, iterations:

f‘=Ml— i f(zt.ot) (21)

S 1=5s M, +1

-17 -

Although these estimates do not converge asymptotically to F{z%), they place
more emphasis on observations made at recent points. All of the estimates Fs
may also be used in an interactive mode to determine the step size, as
described above. In addition, the values of the parameters used to determine
the step size may also be chosen interactively. For example, the values of

parameters b, and b, in

b,
b2+s

Ps =

can be made to depend on the behavior of .

We shall now describe some automatic adaptive rules for choosing the step
size. The important point as regards implementation is how to choose the ini-
tial value of the step size p;. We suggest that the value of a stochastic quasigra-
dient 50 should first be computed at the initial point, and that the initial value

of the step size should then be chosen such that

where | ~ 10—-20 and D is a rough estimate of the size of the domain in which we
believe the optimal solution to be located. This means that it is possible to
reach the vicinity of each point in this domain within the first 20 iterations or

SO.

3.1. Ratio of function estimate to the path length

Before beginning the iterations we choose the initial step size p,, two posi-
tive constants a; and aj, a sequence M and an integer M. After every M itera-

tions we revise the value of the step size in the following way:

(i) Compute the quantity

P e

ol(z5,u%) = TG

(22)
Here the u¥ are the averaging parameters used in the estimation of both Fs
and M, . while z° is again the whole sequence of points preceding z¥. The quan-
tity
s-1 . .
g(s.My) = % lzi+t —zil (23)

i=s—M,

-18 -

is the length of the path taken by the algorithm during the preceding #; itera-

tions. The function @1(2—:’,11.5) is another example of a measure which can be

used to assess algorithm performance.

(ii) Take a new value of the step size:

a,py if 8Y(Z°.u¥) < ay

Ps+1 ™ Ps otherwise (24)

In this method the step size is changed at most once every # iterations. This is
essential because function ®! changes slowly, and if its value is less than a, at
iteration number s it is likely that the same will be true at iteration number
s+1. Therefore # should lie in the range 5—20. This procedure can be modified
in various ways, such as continuing for M iterations with a fixed step size, then
starting to compare values until inequality (24) is satisfied whereupon the step
size is reduced. We then wait another #f iterations and repeat the procedure.
Recommended values of a; and ay lie within the ranges 0.5-0.9 and 0.005-0.1,
respectively. The number ¥; may be chosen to be constant and equal to .1t
we have a number of similar problems it is very useful to make the first run in
a semi-automatic mode, i.e., to intervene in the optimization process to
improve the values of parameters a; , az, M — the new values can then be used

in a fully automatic mode to solve the remaining problems.

This algorithm is by no means convergent in the traditional sense, but it
outperformed traditional choices like C/ s in numerical experiments because it
normally reaches the vicinity of the optimal point more quickly. However, it is
possible to safeguard convergence by considering a second sequence (/s,
where C is small, and switching to this sequence if the step size recommended

by (24) falls below a certain value. This step size regulation was introduced in

[15].

3.2. Use of gradient estimates

Take 2 = G° instead of 1(Z%,u%) in (24), where G° is one of the gradient
estimates discussed above, and the u® represent all the parameters used,

including averaging parameters and the frequency of changes in the step size.

-19 -

3.3. Ratio of progress and path

M _ s represents the progress made by the algorithm

The quantity lz®~
between iteration number s — M, and iteration number s. If we keep the step
size constant, the algorithm begans to oscillate chaotically after reaching some
neighborhood of the optimal point. The smaller the value of the step size, the
smaller the neighborhood at which this occurs, and thus the total path between

iterations s and s - M; begins to grow compared with the distance between

points z" ~ u, and z%. This means that the function

s -4, — 5|

S
(2% ut) = —5

S flzi+t g
i=s—-H,

(25)

can be used as a performance measure in equation (24).

3.4. Analogues of line search techniques

The decision as to whether (and how) to change the step size may be based
on the values of the scalar product of adjacent step directions. If we have
(&£71,6) >0, then this may be a sign that regular behavior prevails over sto-
chastic behavior, the function is decreasing in the step direction and the step
size should be increased. Due to stochastic effects the function will very often
increase rather than decrease, but in the long run the number of bad choices
will be less than the number of correct decisions. Analogously, if this inequal-
ity does not hold then the step size should be decreased. The rule for changing

the step size is thus basically as follows:

py if —a, < (L) < qq
Ps+ = agpg if (£7LE) >y (26)
ageg if (E76) < -q,

where the values of ay, a3, aj (recommended values a; ~0.4-08, 1<ap=<13
and 0.7 < a3 < 1) should be chosen before starting the iterations. It is also
advisable to have upper and lower bounds on the step size to avoid divergence.
Sometimes it is convenient to normalize the vectors of step directions, i.e.,
“E‘ | = 1. The lower bound may decrease as the iterations proceed. This method

may also be applied to the choice of a vector step size, treating some (or all)

-20-

variables or groups of variables separately. A number of different methods
based on the use of scalar products of adjacent step directions to control the
step size have been developed by Uriasiev [19], Pflug [18], and Ruszczynski and
Syski [20].

4. TIASA IMPLEMENTATION

The interactive stochastic optimization package implemented at IIASA
(STO) is based on the same ideas as the package for stochastic and
nondifferentiable optimization developed in Kiev (NDO). It allows the user to
choose between interactive and automatic modes and makes available the sto-
chastic quasigradient methods described in Sections 2 and 3. In the interactive
mode the program offers the user the opportunity to change the step parame-
ters and the methods by which the step size and step direction are chosen dur-
ing the course of the iterations. The user can also stop the iterative process
and obtain a more precise estimate of the value of the objective function before

continuing. The package is written in FORTRAN-77.
Before initiating the optimization process the user has to:

(i) Provide a subroutine UF which calculates the value of function f(z.,w) for
fixed z and w and, optionally, a subroutine UG which computes the gra-
dient f,(z.w) of this function; the function evaluation subroutine should

be of the form:

FUNCTION UF(N,X)

DIMENSION X(N)
Calculation of f (z,w)

RETURN

END

Here N is the dimension of the vector of variables X. (Note that the imple-
mentation on the IIASA VAX actually requires the subroutine to be entered
in lower-case letters rather than capitals.) A description of the subroutine

which calculates a quasigradient is given later in this paper.

(ii) Compile these subroutines with the source code to obtain an executable

module.

-21 -

(iii) Provide at least one of the following additional data files:
~ algorithm control file (used only in the non-interactive option)
— parameter file (used only in the interactive option)
— initial data file {(should always be present)
All of these files are described in some detail later in the paper.

The optimization process can then begin. The program first asks the user
a series of questions regarding the required mode (interactive or automatic),
method of step size regulation, choice of step direction, etc. These guestions
appear on the monitor and should be answered from the keyboard or by refer-

ence to a data file. We shall represent the dialogue as follows:
Question? Answer

with the user’s response given in italics. The first question is
Interactive mode? reply yes or no yes/no

To choose the interactive option the user should type in yes {(or y); to select the
automatic option he should answer no {(or n). In the latter case the program
would ask no further questions, but would read all the necessary information
from the algorithm control file {(which is usually numbered 2 — under UNIX con-
ventions its name is fort.2). The iterative process would then begin, terminat-
ing after 10,000 iterations if no other stopping criterion is fulfilled. The algo-
rithm control file must contain answers to all of the following questions except
those concerned either with dialogue during the iterations or with the parame-
ter file (such questions are marked with an asterisk * below). This file is given a
name only for ease of reference — the important thing for the user is its

number.

Assume now that the user has chosen the interactive option by answering

yes to the first question. The program then asks
parameter file? (number) .

The user should respond either with the number of the file of default parame-
ters or with the number of the file in which the current values of the algorithm
parameters are stored. The file of default parameters is provided with the pro-
gram and has the name fort.12 (under UNIX conventions); thus, to refer the
program to the default file the user should answer 12. The purpose of this file is
to help the user to set the values of algorithm parameters in the ensuing dialo-

gue and also to store such improved values as may be discovered by the user

-22 -

through trial and error. If the user assigns the algorithm parameters any
values other than those in the default file, the new values become the default

values in subsequent runs of the program. This file is optional.
The program then asks
read parameter file? reply yes or no yes/no .

The answer yes implies that the file specified in the previous gquestion
exists, and that default parameter values are stored in this file. In this case,
when asking the user about parameter values, the program will read the default
option in the parameter file and reproduce it on the screen together with the
question. If the user accepts this default value he should respond with 0 (zero);
otherwise he should enter his own value, which will become the new default

value,

The answer no means that no default values are available at the moment.
In this case the program will form a new default file {labeled with the number
given as an answer to the previous guestion); its contents will be based on the
user's answers to future questions. This new default file, once formed, can be

used in subsequent runs.
The next question is
number of variables? (number)

to which the user should respond with the dimension of the vector of variables

z. He is then asked
Initial data file? (number)

and should reply with the number of the initial data file. This file should con-

tain the following elements (in exactly this order):

— The initial point, which should be a sequence of numbers separated by

commas or other delimiters.

— Any additional data required by subroutines UF or UG if such data

exists and the user chooses to put it in the initial data file {optional).
— Information about the constraints {described in more detail below)
The program then asks
step size regulation? is

Here is is a positive integer from the set }1,2,3,4,8,7], where the diflerent
values of is correspond to different ways of choosing the step size. (The integer

5 is reserved for an option currently under development.)

-23 -

is Deflinition
1 Adaptive automatic step size regulation (24) based on algorithm perfor-

mance function (22) and function estimate (18).

2 Manual step size regulation based on algorithm performance function
(22) and function estimate (18).

3 Adaptive automatic step size regulation (24) using algorithm perfor-
mance measure {22) and a function estimate based on a finite number of
previous observations (21).

4 Manual step size regulation based on the same estimates of algorithm
performance as for is = 3.

6 Automatic step size regulation using algorithm performance measure
(24) and function estimate (19) with fixed ;.

7 Manual step size regulation based on the same estimates of algorithm
performance as for is = 6.

The difference between adaptive automatic and manual step size regulation
(see is = 1,2) is that in the first case the step size is chosen automatically,
although the user may terminate the iterations at specified points and con-
tinue with another step size regulation, while in the second case the user
changes the value of the step size himself. Both step size regulations are based

on the same estimates of function value and algorithm performance.
The next question is
step direction? (5 figures) id2 id21id3 id4 id5

The user has to respond with five figures which specify various ways of choosing
the step direction, e.g., 11111. We shall refer to these figures as id1, id2, id3,
id4 and id5. The subroutine which estimates the step direction makes some
number of initial observations Ei" at each step; these are then averaged in
some way to obtain the vector ¢*, and the final step direction v¥ is calculated

using both ¢5 and values of v fori <s.

The value of id 1 specifies the nature of the initial observations ?s
id] Definition

1 A direct observation of a stochastic quasigradient is available for E’: S and
the user has to specify a subroutine UG to calculate it:
SUBROUTINE UG(N,X,G)
DIMENSION X(N),G(N)
Calculation of a stochastic quasigradient
RETURN
END
where G(N) is an observation of a stochastic quasigradient.

2 Central finite-difference approximation of the gradient as in {11).

- 24 -

3 The Ei's are calculated using random search techniques (12).
4 Forward finite-difference approxxmatlon of the initial observations 5
in (10).

5 Central finite-difference approximation of the gradient as m (11). Al
observations of the function used in one observation of £'S are made
with the same values of random parameters w.

8 The £ are calculated using random search technigues (12). All obser-
vations of the function used in one observation of $‘ ‘% are made with the
same values of random parameters w.

7 Forward finite-difference approximation of the initial observations E_"'"’ as
in {(10). All observations of the.function used in one observation of ¢+
are made with the same values of random parameters w.

Note that for id1 = 5,6,7 all observations of the function used in one observation
of _éi" are made with the same values of random parameters w. In this case the
user should write a function UF which supports this feature as follows:
FUNCTION UF(N,X)
DIMENSION X(N)
COMMON/OMEG/LO,MO
If LO=1 and MO=1 then obtain new values
of random factors w and set MO=0.
Make an observation of the function at point z.
RETURN
END

The second figure id2 determines the point at which observations are made:
id2 Definition
The initial direction is calculated at the current point z%

2 The initial direction is calculated at a point chosen randomly from
among those in the neighborhood of the current point z%

The value of id3 defines the way in which the step in a finite-difference or ran-

dom search approximation of ?"s is chosen:
id3 Definition

1 The apprommatlon step is fixed. The observations of the ob]ectlve func-
tion at point z¥ originally used to obtain gradient observations £ are
not used to update the estimate of the function employed for step size
regulation.

-25 -

2 The ratio 8¢/ pg of the step in the finite-difference approximation to the
step size of the algorithm is fixed (see {10)—(12)). The observations of
the objective function at point ¥ originally used to obtain gradient
observations £* are not used to update the estimate of the function
employed for step size regulation.

3 The approximation step is fixed. The observations described for id3 = 1,2
above are used to update the current estimate of the objective function.

The ratio 84/ pg of the step in the finite difference approximation to the
step size of the algorithm is fixed (see (10)—(12)). The observations
described for id3 = 1,2 above are used to update the current estimate of
the objective function.

The fourth figure id4 defines the type of averaging used to obtain £* from obser-
vations £-.

id4 Definition

1 No averaging, £ = £, 4 = L.

2 Number of samples > 1.

The value of id5 specifies the way in which the final step direction v® is
obtained from previous values of ¥¥ and from £5.
id5 Definition
1 No previous information is used. The final vector ¢¥¥ is simply set equal
to £5.
(9) is used.

A positive number n 5 is provided by the user. Set
k{(s) =max {k:kny+ 1 <s{ Then the final direction v® is computed
from (15), where M; =s —k(s)ng + L.

4 No previous information is used. The final vector ¢v% is set equal to £
and is normalized.

(9) is used. The final vector ¥¥ is normalized.

A positive number n4 is provided by the user. Let
k(s) =max {k:kny+ 1 <s}. Then the final direction v* is computed
from (15), where M; =s —k(s)n4 + 1. The final vector v* is normalized.

The program then asks about the type of constraints present in the problem:
constraints? (number)

The answer (in the present implementation) must be 1,2,3 or 4. These values

define the type of constraints present and correspond to the following options:

-286 -

There are no constraints at all.

2 There are upper and lower bounds on the variables. The values of these
bounds should be given at the end of the initial data file in the form of
strings of numbers separated by commas or other delimiters. The string
containing the upper bounds should come first.

3 Thereis one constraint '™, a,z, < b. The coefficients a; should be
given at the end of the initial data file. The string containing the
coeflicients of linear form comes first and then, on a separate line, the
right-hand side.

4 There are general linear constraints b) < Az < b ,. In this case the pro-
gram computes a projection on these constraints at each iteration, using
the quadratic programming package SOL/QPSOL [21]. The previous point
z%71is used as the initial approximation to the solution at iteration
number s. The precision of projection also varies, being rough during
the first few iterations and improving as the process proceeds. All of
these facilities are intended to reduce the amount of computation
required at each iteration.
The following information should appear at the end of the initial data file
(in exactly this order):
e upper bounds on variables z
e lower bounds on variables =
» upper bounds b, on general linear constraints
lower bounds b; on general linear constraints
number of nonzero elements in matrix A4
numbers of nonzero elements in the columns of matrix A
nonzero elements of matrix A in increasing order of column number
row numbers of nonzero elements, in the same order as the elements
themselves

The next question is
termination condition? (number)

There is currently only one possible answer, which is 1. This means that the
iterations terminate when the step size becomes smaller than some value

specified by the user. Additional options are under development.

The program then asks the user whether the interactive mode is required

during the iterations:
interactive mode during iterations? reply yes or no yes/no .

Note that the answer to this question should not be included in the algorithm
control file for the completely non-interactive option (as indicated by the aster-
isk). If the user replies yes (or y), the program will allow the user to change
the parameters of the algorithm and even the algorithm itself during the
course of the iterations. If the answer is na (or n) the program will not com-
municate with the user during the iterations but will instead ask the following

two questions:

-27 -

number of iterations? (number)

This is the number of iterations thal should be performed before the process
terminates (if it has not already been terminated by some other condition). It
is necessary to put an answer to this question in the algorithm control file for

the completely non-interactive option.
extra output? reply yes or no yes/nao

This is the program's way of asking the user whether information about the
iterations should be saved. Note that these two questions do not appear if the
user has chosen to run the program in the interactive mode during the itera-

tions.

Now comes a group of questions about step direction parameters. These
questions depend on the values of id1, id2, id3, id4 and id5 given previously (see

the discussion of answers to the question step direction?).

If id1 = 4,5 then the question

number of random directions? (number)
appears. The required answer is My from (12).

Ifid;2 = 2 the user is asked

relation between step size and neighborhood? (number)

The answer is the ratio of the step size to the size of the neighborhood (of the
current point) from which the observation point is chosen (i.e., 74/ pg in the

discussion of (13)).
Ifid3 = 1,3 and idl # 1 the program asks
step in finite difference approximation? (number)

The required answer is the value of step §; in the finite-difference or random
search approximation (10)—(12) of the gradient observation. In this case 0y is

fixed. However, if id3 = 2,4 the question
relation between step in flnite difference approximation and step size? ('n.umber)

appears. The answer is the ratio g/ pg of the finite-difference approximation

step to the algorithm step size.
If id4 = 2 the program asks
number of samples? (number)

This is the number of samples taken at one point to obtain the averaged esti-

mate (see, for instance, N in (8)).

-28 -

The question

discount rate? (number)
appears if id5 = 2,5. The required answer is the (fixed) value of ag from (9).
However, if id5 = 3,6 the program asks

number of averaging steps? (number)
The user should respond with the value of ng (see earlier discussion of id5
options).

We now have a group of questions concerning the values of step size param-

eters. Which guestions appear depends on the way in which the step size is

being chosen (see earlier discussion of the question step size regulation?).

If the user has chosen automatic step size regulation (is = 1,3,6) he will be

asked the following four questions:

Initial step size? (number)
This is py.
multiplier? (number)

The required answer is dl from (24).
frequency of step size changes? (number)
The user should give the value of # (see discussion of (24)).
lower bound on function decreasa? (number)
This is ag from (24).
However, if the user has chosen to regulate the step size interactively
(is =2,4,7) he will only be asked
value of step size? (number)

The following questions appear only if there are general linear constraints, i.e.,

if the answer to the question constraints? is 4:

_number of general linear constraints? (number)

correspondence between step size and accuracy of projection? (number)

The answer to the first question is obvious but the second requires some expla-
nation. In order to keep the amount of computation to a minimum, the accu-
racy 7y of projection is linked to the value of the step size: 74 = ¢p;. This leads
to only rough projection during the first few iterations (when the step size is

large) and more precise projection as the current point approaches the optimal

-29 -

point. The required answer to the last question is the value of ¢; recommended

values lie in the range 0-1.

Another group of questions is concerned with the estimates of the objec-

tive function and also affects the choice of step size:
size of memory? (number)

The answer is My from (22), which in this implementation is fixed. If the step

size regulation is defined by is = 6,7 the program asks
multiplier for function averaging? (number)

The user should give the value of 7, in (19), which is fixed.

With the answers to these questions the algorithm control file for the non-
interactive option is complete. The rest of this section describes the ways in
which the algorithm parameters and the algorithm itself may be modified dur-
ing the course of the iterations. This may be done only if the answer to the
question Interactive mode during iterations? reply yes or no was yes. In this case
the program will now perform the first iteration and produce a string of infor-
mation something like this:

1 0. 7505.826 7505.826 0. 1.000 100.458 109.575

Here the first number is the number of the current iteration, the second is the
value of some algorithm performance measure (see (22), (25) for examples of
such functions), the third is the estimate of the value of the objective function
at the current point (see (18), (19), (21) for examples of such estimates), the
fourth is an observation of f(zS,0%), the fifth currently has no meaning and
always contains 0, the sixth is the step size, and the rest are values of variables
z7 (the default is that only the values of the first two such variables are
displayed). After this string the following question will appear:

continue? reply ''space’,step,dir,var,estim,go,yes or no .

This gives the user the opportunity to continue without any change, to alter the
frequency of communication, to change the step size or step direction parame-
ters, to display variables other than the first two, to stop at the current point
and obtain a precise estimate of the value of the objective function, to switch
from interactive to automatic mode, or to terminate the iterations and con-
tinue the solution with another algorithm. We shall now describe all of these

options in some detail.

-30 -

"space” If the user hits the space bar nothing will change and the program
will perform another 10 iterations. The information about the pro-
cess is displayed after ead¢h iteration; after the 10-th iteration the
user is once again given the opportunity to make changes (the
guestion continue? reply "space'’,step... appears).

step This means that the user wants to change the step size parame-
ters (but not the step size regulation itself) and all the related
gquestions will be repeated. Default or previous values of the step
parameters will appear on the screen together with the questions.

dir This means that the user wants to change the step direction
parameters (but not the way in which the step direction is chosen)
and the questions concerned with this will be repeated. Default or
previous values of the direction parameters will appear on the
screen together with the questions.

var In this case the quantity and/or the selection of variables

displayed on the screen may be changed. The following questions
will appear:

number of printed variables? (number)
i.e., if the user wants to print out the values of four variables
rather than the default two, he answers 4.

printed variables? (number, number,....)
Here the user specifies which particular variables he wants
displayed by giving the numbers of the chosen variables separated
by commas.
Questions concerning the frequency of communication will also
appear here (see description of response yes below).

estim In this case the program will stop at the current point and esti-
mate the value of the objective function. The following questions
will appear:

number of observations? (number)
i.e., the number of observations to be made, and
message frequency? (number)

i.e., the number of observations after which the current estimate
is displayed. The user is also asked for the point at which the esti-
mate should be made:

what point? reply current, new or exit current /new /erit
If the answer is new the program asks the question:

where to find new point? reply screen or file screen/file
If the user wants to enter the new point from the keyboard he
should reply screen (or s). He should then type the desired point
on a new line, separating the components by commas. If, however,
the new point is stored in some flle the response should be file
(or f) and the user is then asked

file number? (number)
The answer is obviously the number of the file containing the new
point. This new point is taken as the starting point for future
iterations if the user answers yes to the following question:

replace current point by new? reply yes or no yes /no

go

yes

no

-31-

which appears when the estimation of the objective function at
the new point has been completed. This facility makes it possible
to exchange the current point for an arbitrary point chosen by the
user and also to make precise estimations at arbitrary points.
Finally, if the answer to the question what point? reply current, new
or exit is exil the estimation procedure will end and the iterations
will continue.

This means that the user does not want to continue in the interac-
tive mode; he wants the process to proceed automatically. This is
useful once the algorithm parameters have been established and
also in the case when one iteration is very time-consuming. The
user is then asked

number of iteratlons? (number) *
i.e., the total number of iterations before termination. After this
the program has no more communication with the user and ter-
minates after the specified number of iterations.

In this case the frequency of communication can be changed. The
following questions appear:

output frequency? (number) .
This is the number of iterations after which information about the
process is displayed on the screen (the default value is 1, i.e., a
string of information is printed after every iteration).

dialogue frequency? (number) *
This is the number of process information strings (see above)
printed before the user is asked the question continue? reply
space,step,dir,var,estim,yes or no. The default is 10, i.e., the useris
given ten strings of information about the process before he is
asked whether he wishes to make any changes.

This means that the user wishes either to terminate the iterations
or change the method. The program asks:

continue? reply "space’,yes or no "space" /yes./no .
Here hitting the space bar means that the user wishes to proceed
with the iterations using the same method, maybe returning to
the initial point (see below); yes means he wishes to change the
way in which the step size and/or step direction are chosen (the
program will ask further questions about this — see below); no
means that he wishes to terminate the iterations completely
(some self-explanatory questions will then appear). If the user
answers "space” or yes the program will ask

return to initial values? reply yes or no yes./no *
and the user should give the appropriate response.

The very first appearance of the question continue? reply space,step,dir,

var,estim,yes or no is followed by the question

least value of step size? (number) .

The answer is the least permissible value of the step size. If the current step

size is less than this value then the iterations will terminate. In other cases

the process terminates after 10,000 iterations with a question about whether to

continue or not.

-32 -

Everything that appears on the screen during the interactive dialogue
automatically also goes to file number 15 (fort.15 in UNIX). This makes it possi-

ble to study the process after it has terminated.

This section provides some idea of the capabilities of the package of sto-
chastic optimization subroutines STO available at 1IASA. The implementation
described here is the first version, and development of the second continues.
This revised version will include methods for solving certain special problems,
in particular problems with recourse, and new methods for step size regulation

will be introduced.
5. SOME NUMERICAL EXPERIMENTS

5.1. PFacility location problem

We first consider a simple model of facility location in a stochastic environ-
ment. Suppose that we have to determine the amounts z; of materials, facili-
ties, etc., required at points i = 1,n in order to meet a demand w; - The demand
1s random, and all we know 1S its distribution function
P{w, < ©,....0, <@,} = H(@). The actual value w = (v,....w,) of the demand is
not known when the decision concerning the z = (zl.....zn) has to be made.
Assume that we have made a decision z about the distribution of facilities and
then found that the actual demand is w. We have to pay for both oversupply and
shortfalls, i.e., the penalty charged at the i-th location is wf(oi —-z;) if o; 2z
and yi(z; — w;) if w; < z;, where the functions y(y) and ¥}(y) are nondecreas-
ing. In the simplest case these functions are linear and the total penalty for
fixed z and o is), max fa;(w; - z;). b;(z; —w;)}, where a; >0, b, >0,
i = 1,n. In most cases it is reasonable to select z in such a way that the aver-

age penalty is at a minimum, i.e., to minimize the following function:
13
F(z) =E,f (z.0) = B, 3, max {a(o; - ;). by(z —o;)} =
i1=1
n
f 2 max fa;(w; — ;). b;(z; —©;)dH(w) (27)
i=1
This approach can easily be generalized to deal with more complex facility loca-

tion models (see [1,15,22]). The numerical experiment presented here is basi-

cally an application of the facility location model described above to the

-33 -

problem of high school location in Turin, Italy (see [15,22]). In this example n
is the number of districts in the city (23 in this case), t; is the number of stu-
dents who want to attend schools in district i, and z; is the capacity of schools
in district 1. It is assumed that a student living in district ¢ will choose a

school in district j with probability Pij» where

e MY

i e —ACtj

Jj=1

p'lj =

and c;; is proportional to the distance between districts ¢ and j. The values of
cyj are taken from [15]. as are the values of the parameters (A =0.15 and
a; =b; = 1.0 for all i). The demand w; is assessed by assigning individual stu-
dents to a school in a particular district on the basis of probabilities p;;, thus
simulating the student's choice of school. In order to reduce the amount of
computation the number of students was scaled. Table 1 gives the resulting

solution (the number of places that should be provided), together with the total

number of students actually attending schools in each district.

TABLE 1 The scluticn of the problem of high school location in Turin, Italy [15,22]

District 1 2 3 4 5 6 7 8
Number of 14.0 13.0 15.0 11.0 14.0 14.0 11.0 12.0
students
Sclution 17.9 13.0 18.9 19.0 16.0 13.9 10.8 10.2
District 9 10 11 12 13 14 15 16
Number of 12.0 23.0 26.0 23.0 22.0 18.0 14.0 15.0
students
Solution 13.0 19.8 26.0 20.0 16.6 15.7 14.0 13.0
District 17 18 19 20 21 22 23
Number of 14.0 14.0 10.0 10.0 5.0 8.0 21.0
students
Solution 13.0 15.7 10.0 10.1 5.0 10.3 17.0

All real data was divided by a scaling factor of 100. We also have the constraint
z:i"':lzi = M, where M is the total number of students in the city divided by 100
(339 in this case). Once » has been obtained it is quite easy to calculate a sto-
chastic quasigradient. We can use vector £ = (¢, ¢3,....£5) in method (2),

where

1 3 3
. —a; if o>z
£7 =1,

-34 -

Here] is the demand in district i (calculated by simulating the students’
behavior) at iteration number s, and zj is the i-th component of the solution at
this iteration. The initial point was obtained by assuming that each student
goes to school in his native district. After extensive averaging, the value of the
objective function at this point was found to be 74.2 — the optimal value is 55.8.
We shall first present results obtained using the interactive option for changing
the step size, i.e., results obtained by giving the answer 2 to the question step
size regulation? The step direction was specified as 11111, i.e, a direct observa-
tion of a stochastic quasigradient is available, this observation is made at the
current point, the approximation step is fixed, there is no averaging, and no
previous information is used. The size of the memory available for calculating
the performance measure (22) was set at 10. Table 2 reproduces the informa-
tion displayed on the monitor during the first 30 iterations.

TABLE 2 [nformation displayed during the first 30 iterations (facility location problem,
interactive step size regulation)

Iter. Performance Estimate Observation Step size z, Zog
na. measure P8 of F(z%) of f(z%.0°)
2 —0.335 73.696 75.304 1.000 13.435 19.435
3 ~0.172 73.739 73.826 1.000 14.565 18.565
4 —-0.029 72.500 68.783 1.000 15.783 17.783
5 0.200 68.243 51.217 1.000 16.826 16.826
6 0.201 67.275 62.435 1.000 17.522 17.522
7 0.196 66.435 61.391 1.000 18.391 16.391
8 0.172 66.326 65.565 1.000 19.435 15.435
9 0.108 87.952 80.957 1.000 18.391 16.391
10 0.082 68.539 73.826 1.000 17.609 17.609
12 0.119 68.609 84.609 1.000 19.522 19.522
14 0.017 67.491 55.304 1.000 19.696 17.696
16 0.010 66.011 59.565 1.000 19.435 19.435
18 0.064 65.174 52.348 1.000 19.348 19.348
20 0.066 64.287 64.435 1.000 19.522 17.522
22 0.097 64.221 56.174 1.000 19.609 15.609
24 0.076 63.181 51.043 1.000 17.609 15.609
26 0.062 63.271 60.870 1.000 19.870 15.870
28 0.025 63.221 64.696 1.000 18.696 17.696
30 0.036 63.032 42.522 1.000 17.696 17.696

The observations of f(z%,0%) given in Table 1 do not provide any clues as to
whether the algorithm is improving the values of the objective function F(zS)
or not. At first sight these observations appear to oscillate randomly between
40 and 80. By contrast, the estimates #° of the function F(z3) display much
more stable behavior, generally decreasing during the first 22 iterations from

73 to 64 and then stabilizing around the values 63-64 with some small

~35 -

oscillations. Looking at the behavior of the two selected variables, we see that
their values show a steady increase or decrease until iteration number 8 for z,
and iteration number 5 for zo4. In later iterations both variables exhibit oscil-
latory behavior. The value of the performance measure during the first 4 itera-
tions is negative, due to the instability of the initial estimates. It then begins
to increase and reaches approximately 0.2, reflecting the regular behavior of
the estimate F’s After this it decreases in an oscillatory fashion to the range

0.03—0.08. All of this indicates that it is time to decrease the step size.

TABLE 3 I[nformation displayed during iterations 31-59 (facility location precblem, in-
teractive step size regulation)

Iter. Performance Estimate Observaticn Step size T, Zo3
no. measure F® of F(z®) of f (z%.0%)

a1 0.045 62.379 42.783 0.500 18.087 17.087
33 0.025 62.295 62.783 0.500 18.281 16.261
35 0.052 61.652 52.609 0.500 19.391 16.391
37 0.063 61.565 46.957 0.500 19.348 16.348
39 0.079 61.318 52.261 0.500 19.261 17.261
41 0.050 61.211 68.174 0.500 19.174 16.174
43 0.051 60.815 51.304 0.500 18.261 16.261
45 0.070 60.452 57.913 0.500 17.304 16.304
47 0.059 60.279 45.652 0.500 17.348 15.348
48 0.035 60.277 64.957 0.500 18.391 15.391
31 0.043 60.104 61.739 0.500 18.652 14.652
53 0.017 60.133 64.696 0.500 18.565 14.565
55 0.017 60.240 67.043 0.500 18.652 14.652
57 —-0.030 60.819 65.565 0.500 18.565 15.565
59 -0.052 61.189 85.391 0.500 18.609 16.609

After changing the step size, the estimates of F{z%) decreased steadily dur-
ing iterations 31-51, and then started to increase during iterations 52—-58 (see
Table 3). The performance measure first increased, reaching a level of
0.05~0.07 between iterations 35 and 47 before dropping back to negative values.

It is necessary to decrease the step size once again.

We decided to stop after iteration number 80 (see Table 4) and estimate the
value of the objective function at the current point. The average after the first
500 observations was 56.53, which shows that we are fairly close to the optimal
solution. Note that this estimate is considerably lower than the value of ES
(61.0) given in the table. This is due to the fact that the estimate #¥ is calcu-
lated from (18) including only one additional observation f({(z%,0o%) per itera-
tion, and it therefore includes observations made at early points which are
clearly far from the optimum. Nevertheless, this estimate is still useful in

determining the value of the step size because it reflects the general behavior

- 36 -

TABLE 4 [nfermation displayed during iterations 62—80 (facility location problem, in-
teractive step size regulation)

Iter. Performance Estimate Observation Step size z, Zog
no. measure F® of F(z®) of f(z%.0%)

62 —-0.098 61.971 92.557 0.200 17.632 17.052
66 —0.067 61.684 46.713 0.200 18.104 17.504
70 0.013 61.383 61.026 0.200 18.226 16.826
74 0.087 61.167 55.739 0.200 17.861 16.461
78 0.061 60.832 58.104 0.200 18.296 16.896
80 0.020 61.001 78.557 0.200 18.348 17.348

of the algorithm. Subsequent iterations improved the value of the objective

function only marginally (see Table 5).

TABLE 5 [nformation displayed during iterations 90—3070 (facility location problem, in-
teractive step size regulation)

[ter. Performance Estimate Observation Step size Z, ZTog
no. Mmeasure F® of F(z®%) of f(z%,0°%)

90 0.063 60.601 54.087 0.200 17.930 17.730
100 0.143 59.876 45.739 0.100 18.287 17.687
120 0.022 59.579 57.670 0.100 18.330 17.530
140 0.061 58.890 45.374 0.100 18.626 17.826
160 -0.011 59.161 56.278 0.100 19.226 17.626
180 0.319 58.761 44.744 0.020 19.379 17.299
200 0.008 58.608 49.144 0.020 19.237 17.277
300 0.317 57.847 43.322 0.020 18.946 17.148
400 —0.368 57.627 81.986 0.005 18.909 17.129
500 0.270 57.584 63.554 0.005 18.869 17.099
800 —-0.83¢C 57.012 58.455 0.001 18.967 17.017

1100 3.773 57.071 66.512 0.0003 18.980 17.000
1570 1.521 56.858 79.613 0.0001 18.983 16.998
2070 0.916 56.629 46.567 0.0001 18.975 16.998
2570 -0.874 56.603 71.741 0.0001 18.978 17.001
3070 0.118 56.425 55.729 0.0001 18.982 17.000

Our final estimate of the objective

optimal solution.

function was 56.0, which is close to the

The same results can be obtained by automatic regulation of the step size.

In this case we give the answer] to the question step size regulation?, i.e., adap-

tive automatic step size regulation (24) using function estimate {18). We also

set

initial step size

muitiplier

frequency of step size change

lower bound on function decrease

size of memory

1.0
0.7
15
0.02
15

-97 -
(see the description of the step size parameters in Section 4). The results are

presented in Table 6.

TABLE 6 Information displayed during iteraticns 2-1200 (facility location problem,
adaptive automatic step size regulation)

Iter. Performance Estimate Observaticn Step size T, Zog
no. measure F® of F(z%) of f(2%,0%)

2 3.663 77.826 60.261 1.000 10.739 20.739
4 1.590 72.522 57.739 1.000 12.739 18.739
8 1.091 69.232 54.522 1.000 14.826 20.826
8 0.892 65.457 48.174 1.000 14.826 18.826
10 0.736 63.609 56.087 1.000 16.913 18.913
15 0.453 84.880 65.652 1.000 18.130 18.130
20 0.071 64.435 58.522 1.000 17.522 19.522
30 0.023 64.304 49.652 1.000 19.783 15.783
50 0.007 61.951 49.391 1.000 17.609 15.609
70 0.017 61.563 68.696 0.700 15.104 15.104
100 0.017 60.593 90.195 0.490 18.665 18.245
150 0.017 60.248 65.349 0.240 20.166 16.855
200 0.054 59.526 48.282 0.082 19.657 17.223
300 0.C36 59.277 50.012 0.028 19.131 17.248
400 -0.035 58.495 58.695 0.020 19.074 16.999
500 —-0.100 58.440 63.486 0.010 18.303 16.986
600 0.143 57.936 36.450 0.007 18.913 16.984
700 0.446 57.683 47.760 0.003 18.955 16.998
800 —0.024 57.387 43.263 0.003 18.945 16.995
900 0.412 57.116 50.086 0.002 18.975 16.958
1000 0.430 57.006 43.503 0.001 18.947 16.969
1100 —0.063 56.726 76.801 0.001 18.969 16.997
1200 0.165 56.623 65.457 0.001 18.989 16.994

The value of the objective function at the final point (average of 4000
observations) is 56.2, which is close to the optimal value. The behavior of the
algorithm was virtually the same as in the interactive case: quite a reasonable
approximation of the optimal solution was obtained after 100—150 iterations,

with little improvement being observed thereafter.

5.2. Control of water resources

This example is taken from work by A. Prekopa and T. Szantai. An extended
description of the problem together with a solution obtained by reduction to a
special type of nonlinear programming problem is given in [23]. Here we shall
show how the problem can be solved using stochastic quasigradient methods.
The basic aim is to control the level of water in Lake Balaton {a large, shallow
lake in western Hungary). A certain volume of water o, flows into the lake from
rivers, rainfall, etc., in time period i. This inflow varies randomly from one

period to another, but it is possible to derive its probabilistic distribution from

-38 -

previous observations. The control parameter is the amount z; of water
released from the lake into the River Danube in each time period; the objective
is to maximize the probability of the water level lying within specified bounds.
It turns out that a reasonable control policy can be determined by considering
only two consecutive periods of time, which in this example are measured in
months. After appropriate transformations we arrive at the following problem

(for details see [23]):

max P {Z(z,.z5)}
ITiZz

O<sz, =R

Oszzs}? .

where the set Z(z,.z,) is defined as follows:
Z(zzp) = Hwpwg)ia <0, -z, <b,, @p<wy—T, ~Zp<byl

Here a;, b; are respectively the lower and upper bounds on the "generalized
water level: in this particular example we took a; =a, = —205, b, = b, =95,
R =200. The random water inputs w, and w, have a joint normal distribution
H(wywp) with expectations E(w,) = —28.07, E(w,) = -59.43 and covariance

matrix

3636.12 4660.51
4660.51 10121.36

Let x(z;.z3.0;.0;) denote the indicator function of the set Z(z.x5). i.e.,

1 if (wy,09) € Z(zy.25)
Xz pzgop0p) = 0 otherwise

The problem then becomes

max fX(Ipzz-Q],Uz)dH(Qp‘-’z)

zeX
and can be solved using stochastic quasigradient methods. We took (95.95) as
the initial point; the value of the objective function at this point was 0.32.
According to [23], the optimal solution is (2,0), with an objective function value

of 0.857. We decided to solve the problem using a finite-difflerence

-39 -

approximation of a stochastic quasigradient. Below we demonstrate how our
interactive software package STO may be used to solve this problern, specifying
interactive step size regulation (option 2) and step direction 21124, (i.e., taking
a central finite-difference approximation of the gradient, calculating the step
direction at the current point, with a fixed approximation step, a number of
samples greater than 1, no previous information, and such that the step direc-

tion vector has unit norm).

The parameters were set at the following values:

step in finite difference approximation 10.0
number of samples 5
value of step size 10.0
size of memory 20

The results are given in Table 7.

TABLE 7 I[rformation displayed during iterations 1-110 (water management problem,
interactive step size regulation)

[ter. Perfermance Estimate Observation Step size z, Zs
no. measure £ of F(z%) of f(z%.&%)
1 0. 0. 0. 10.000 102.071 102.071
2 1.000 0. 0. 10.000 102.071 102.071
4 0.025 0.250 1.000 10.000 106.543 93.127
6 0.011 0.333 c. 10.000 113.614 110.198
8 0.007 0.375 C. 10.000 106.543 113.127
10 0.006 0.400 0. 10.000 106.543 93.127
15 0.003 0.333 0. 10.000 83.944 101.254
20 0.002 0.350 0. 10.000 68.397 90.630
30 0.001 0.467 0. 10.000 18.240 93.229
40 0.000 0.475 1.000 10.000 48.678 63.727
50 0.000 0.500 1.000 10.000 41.277 29.097
60 0.000 0.567 1.000 10.000 0. 43.004
70 0.000 0.571 1.000 10.000 1.056 30.405
80 0.000 0.588 1.000 10.000 1.386 14.142
80 0.000 0.600 1.000 10.000 0. 24.142
100 0.000 0.610 1.000 10.000 7.071 20.000
110 0.000 0.609 1.000 10.000 10.000 0.

After iteration 110 we stopped and estimated the value of the function at
the current point on the basis of 4000 observations — we obtained a value of
0.843, which is close to the optimal value. Subsequent iterations improved the

value of the objective function only marginally (see Table 8).

After iteration 200 we changed the step in the finite-difference approxima-
tion to 1.0. The value of the objective function at the final point was 0.85, i.e.,

we had reached the optimal value. However, the values of the controls were far

- 40 -

TABLE B I[nformation displayed during iteraticns 120—-8090 (water management prob-
lem, interactive step size regulation)

Iter. Perfoermance Estimate Observation Step size x, Zg
ne. measure F® of F(z%) of f(2%,a%)
120 0.000 0.625 1.000 10.0C0 10.000 17.071
150 0.000 0.873 1.000 1.000 0.106 1.707
200 0.001 0.720 0. 1.000 2.707 6.309
390 0.005 0.792 1.000 0.100 3.071 7.835
590 —0.001 0.797 0. 0.100 1.787 8.110
1090 0.000 0.829 1.000 0.100 3.463 6.392
2090 0.000 0.845 1.000 0.100 0.383 5.538
3090 -0.005 0.852 0. 0.010 0.161 4.895
4090 —0.004 0.854 1.000 0.005 0.071 5.049
5090 0.004 0.856 1.000 0.005 0.c64 4.955
6090 -0.002 0.855 1.000 0.005 0.106 4.980
7090 0.007 0.856 1.000 0.001 0.018 4.970
8090 0.005 0.855 1.000 0.001 0.020 4.985

from the solution due to the flatness of the function around the optimum.

5.3. Determining the parameters in a closed loop control law for stochastic

dynamical systems with delay

We have so far considered only static optimization problems. However, all
of the techniques described above can also be applied to many classes of
dynamical stochastic optimization problems. The example that we shall con-
sider was suggested by A. Wierzbicki and is the problem of finding the optimal
control parameters in a closed loop control law for a linear dynamical system
disturbed by random noise. The state equations include response delay and

may be written as follows:

Ziap =02 byt t =0T (28)

zg=1, u_; =0, i =0k ,
where t is a discrete time, z; 1s the state of the dynamical system at time ¢, u,;
is the value of the control at time ¢, and w; is the random noise at time ¢. In
this particular example the w; were taken to be distributed uniformly over the
interval [-b.6] and such that ; and w; are uncorrelated for i # j. However,
neither this particular type of distribution nor these correlation properties are

prerequisites for the use of the methods described in the preceding sections.

The controls u; were chosen according to the following closed loop control law:

w = zy(-z —zp D2 (29)

=0

- 41 -

where the decision parameters are z; 2 0 and z, = 0.

The objective is to minimize the deviation of the state of the system from
zerc. We may therefore state the problem as follows: minimize the objective

function

F(z,.z5) = EUZT z2 (30)
t=1

with respect to the control law parameters z; and z,, subject to constraints
(28) and (29) and non-negativity constraints on z,, z,. We solved the problem
with the following parameter values: time horizon T = 100, delay k& =5, state
equation coefficient a = 0.9, bounds for random noise b = 0.1. With these values
the optimal control parameters are z; = 0.1, z5 = 0; the value of the objective
function obtained after 10,000 observations was 4.52. It was discovered during
preliminary runs that for z, = 0.3, z, = 0.1 the system becomes unstable and

therefore these values were taken as upper bounds for the variables.

We set the initial point equal to the upper bounds z? = 0.3, zg = 0.1; the
value of the objective function at this point (based on 3000 observations) was
422.56. We chose automatic step size regulation (option 1), i.e., the step size
changes are based upon performance function (22). The step direction was
specified as 71114, i.e., taking a forward finite-difference approximation of the
gradient of the random objective function f(z,w) with all observations of the
function needed for one gradient evaluation made at the same value of the
noise; with a fixed finite difference step and the finite-difference evaluation per-
formed at the current point; without averaging; using no previous information
and normalizing the resulting step direction. The parameters of the algorithm

were as follows:

step In finite difference approximation 0.0001
Initial step size 0.1
multiplier 0.85

(for diminishing the step size)

frequency of step size change 15
(actually the frequency with which
the step size is reviewed)

lower bound on function decrease
(the lowest value of performance
function (22) which does not lead

to a decrease in the step size)

size of memory

(for evaluating (22))

least value of step size

(stopping criterion)

The results of the calculations are given in Table 9.

- 42 -

0.09

15

0.000001

TABLE 9 Information displayed during iterations 1-120 (control law problem, automatic

step size regulation)

Iter. Performance _Estimate Observation Step size z, Zg
no. measure F® of F(z®) of f(z%.o%)
1 0. 8.141 8.141 0.100 0.232 0.027
2 18.570 6.284 4.427 0.100 0.149 0
3 12.231 5.695 4517 0.100 0.054 0
4 7.093 6.013 6.968 g.100 0.097 0
5 6.727 5.450 3.199 0.100 0.075 0
10 3.428 5.056 4.084 0.100 0.073 0.
15 2.416 4.759 4.254 0.100 0.103 0.Cc99
20 0.421 4.733 4214 0.100 0.029 0.
30 0.119 4.651 5.326 0.100 0.052 0
40 0.058 4.615 4.896 0.100 0.050 0
50 -0.012 4.631 5.143 0.085 0.071 0
70 0.001 4.668 5.131 0.072 0.112 0.
90 0.005 4.665 4.943 0.061 0.078 0.059
100 0.042 4.621 3.481 0.052 0.076 0
120 0.033 4.601 4.872 0.044 0.094 0

We stopped after iteration 120 to estimate the value of the objective function,

which was calculated to be 4.54 after 3000 observations and is fairly close to the

optimal value. Subsequent iterations improved the solution only marginally

(see Table 10).

This example once again demonstrates the characteristic behavior of sto-

chastic optimization algorithms: the neighborhood of the optimal solution is

reached reasonably rapidly; oscillations then occur in this neighborhood and

the current approximation to the optimal solution improves slowly.

The nature of stochastic quasigradient algorithms allows easy extension of

model (28)—(30) to multivariable and nonlinear systems.

-43 -

TABLE 10 Informaticon displayed during iteraticns 150—1500 (control taw problem, au-
tomatic step size regulation)

[ter. Performance Estimate Observation Step size z, z;
no. measure F® of F(z%) of f(z%,0%)

1580 0.044 4.517 3.776 0.032 0.102 0.c00
170 0.084 4.485 4.234 0.023 0.101 0.
200 —-0.015 4.473 5.224 0.017 0.101 0.
240 0.087 4.473 4.413 0.012 0.087 0.009
300 -0.155 4.503 4.478 0.006 0.095 0.
340 0.036 4.491 4.958 0.005 0.090 C.
400 0.089 4.501 4.973 0.002 0.093 0.000
440 -0.299 4.512 4.544 0.001 0.092 0.003
500 -0.131 4.512 3.571 0.001 0.098 0.
540 —0.416 4.502 4.437 0.001 0.101 0.
600 0.225 4.515 4.789 0.001 0.102 0.
640 0.710 4.508 3.704 0.001 0.101 0.
700 0.046 4.501 4.120 0.001 0.101 0.
800 0.079 4.517 4.633 0.000 0.100 0.000
3900 —1.183 4.533 5.070 0.000 0.099 0.000
1000 2.700 4.534 4.860 0.000 0.099 0.000
15C0 29.344 4.504 4.621 0.000 0.099 0.C00

REFERENCES

1. Yu. Ermoliev. Methods of Stochastic Programming (in Russian). Nauka,
Moscow, 1976.

2. Yu. Ermoliev. Stochastic quasigradient methods and their applications to
systems optimization. Stochastics, 9 (1983) 1-38.

3. R. J.-B. Wets. Stochastic programming: solution techniques and approxima-
tion schemes. [n Mathematical Programming. The State of the Art.
Springer-Verlag, 1983.

4. L. Nazareth and R. J-B. Wets. Algorithms for stochastic programs: the case
of nonstochastic tenders. Working Paper WP-83-5, International Institute
for Applied Systems Analysis, Laxenburg, Austria, 1983.

5. P. Kall. Stachastic Linear Programming. Springer-Verlag, Berlin, 19786.

8. A. Prekopa. On probabilistic constrained programming. In H. Kuhn (Ed.),
Proceedings of the Princeton Symposium on Mathematical Programming,
pp. 113—138. Princeton University Press, Princeton, 1970.

7. H. Robbins and S. Monroe. A stochastic approximation method. 4nn. Math.
Stat., 22 (1951) 400—-407.

8. J. Kiefer and J. Wolfowitz. Stochastic approximation of the maximum of a
regression function. Ann. Math. Stat., 23 (1952) 462—466.

9. B. Fox and H. Niedereiter. Lectures on quasi-Monte-Carlo methods given at
[TASA, 1983.

10. H. Kushner. Asymptotic behavior of stochastic approximation and large
deviations. Lecture given at IIASA, 1983,

11. Yu. Ermoliev and E. Nurminski. Limit extremum probiems. Aibernetika, 4
(1973) 130~132.

12. A Gupal. Stochastic Methods for Solution of Nonsmooth Optimization Prob-

lerns. Naukova Dumka, Kiev, 1979.

13.

14.

15.

16.

17.

18.

19.
20.

21.

22.

23.

- 44 -

A. Gupal and A Basenov. Stochastic analogue of conjugate gradient
methods. Aibernetika, 1 (1972) 79—83.

H. Kesten. Accelerated stochastic approximation. Ann. Hath. Statist., 29
(1958) 41-58.

Yu. Ermoliev, G. Leonardi and J. Vira. The stochastic quasigradient method
applied to a facility location problem. Working Paper WP-81-14, Interna-
tional Institute for Applied Systems Analysis, Laxenburg, Austria, 1981.

G. PAlug. On the determination of the step size in stochastic quasigradient
methods. Collaborative Paper CP-83-25, International Institute for Applied
Systems Analysis, Laxenburg, Austria, 1983.

V. Fabian. Stochastic approximation method. Czechoslovakian Mathemati-
cal Journal, 10 (1960) 191-200.

N. Chepurnoi. Dissertation. V. Glushkov Institute of Cybernetics, Kiev,
1882.

S. Uriasiev. Dissertation. V. Glushkov Institute of Cybernetics, Kiev, 1982.

A. Ruszczynski and W. Syski. A method of aggregate stochastic subgra-
dients with on-line stepsize rules for convex stochastic optimization prob-
lems. Mathematical Programming Study, forthcoming.

P. Gill, W. Murray, M. Saunders, and M. Wright. User's guide for SOL/QPSOL:
a FORTRAN package for quadratic programming. Technical Report SOL 83-
7, Systems Optimization Laboratory, Stanford University, 1983.

Yu. Ermoliev and G. Leonardi. Some proposals for stochastic facility loca-
tion models. Working Paper WP-80-176, International Institute for Applied
Systems Analysis, Laxenburg, Austria, 1980.

A. Prekopa and T. Szantai. On optimal regulation of a storage level with
application to the water level regulation of a lake. FAuropean Journal of
Operations Research, 3 (1979) 175—189.

