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PREFACE 

T h i s  paper  i s  concernea  w i t h  heavy v i a b l e  t r a j e c t o r i e s  of a c o n t r o l l e d  

sys tem w i t h  feedbacks  and t h e i r  a p p l i c a t i o n s  t o  a  dynamical  d e c e n t r a l i z e d  

a l l o c a t i o n  mechanism i n  an  exchange economy. 

I n  t h i s  framework, t h e  c o n t r o l s  a r e  t h e  p r i c e s  w h i l e  t h e  s t a t e s  of  

t h e  sys tem a r e  t h e  consumpt2on l e v e l s  of t h e  consumers. The consumption of  

each  consumer e v o l v e s  a c c o r d i n g  t o  a  d i f f e r e n t i a l  e q u a t i o n  c o n t r o l l e d  by t h e  

p r i c e .  V i a b l e  t r a j e c t o r i e s  a r e  t h o s e  which obey t h e  s c a r c i t y  c o n s t r a i n t s :  

t h e  t o t a l  consumpt ionmus t  remain w i t h i n  t h e  s e t  of  a v a i l a b l e  commodities. 

The d i f f e r e n t i a l  e q u a t i o n  y i e l d i n g  heavy v i a b l e  t r a j e c t o r i e s  i s . c o n s t r u r t e d ; .  

p r o v i d i n g  a  model of  how t h e  marke t  may govern t h e  e v o l u t i o n  of  p r i c e s .  

T h i s  r e s e a r c h  was conducted w i t h i n  t h e  framework of  t h e  Dynamics o f  

Macrosystems s t u d y  i n  t h e  System and D e c i s i o n  S c i e n c e s  Program. 

ANDRZEJ WIERZBICKI 

Chairman 

System and Dec i s ion  S c i e n c e s  

Program 
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Abstract 

We define and study the concept of heavy viable trajectories of a controlled system 

with feedbacks in the framework a dynamical decentralized allocation mechanism in 

an exchange economy. 

In this framework, the controls are the prices and the states of the system the 

consumptions of the consumers. Consumptions of each consumer evolve according a 

differential equation controlled by the price. Viable trajectories are the ones 

which obey the scarcity constraints : the sum of the consumptions must remain in 

the set of available commodities. Prices regulating viable trajectories evolve 

according a set-valued feedback map. Heavy viable trajectories are the ones 

associated to prices in the feedback map which evolve as slowly as possible : 

at each instant, the norm of the velocity of the price is minimal among the prices 

regulating a viable trajector-4. 

In this report , we construct the differential equation yielding heavy viable 
trajectories, providing a model of how the market may govern the evolution of 

prices. These results were obtained in collaboration with Halina Frankowska. 



Introduction 

The purpose of this report is to illustrate the concept of heavy viable trajectories 

of a controlled system with feedbacks - studied in Aubin-Frankowska [ I 9 8 4  ] - in 
the framework of an economic model of resource allocation. 

Economic systems, as well as ecological and biological ones, are consuming scarce 

resources and face many constraints. 

Therefore, the state of such systems must evolve in a viability domain defined by 

these sacrcity constraints as well as the other constraints. Trajectories lying 

in the viability domain are called viable. - For instance, if we have to allocate 

a set of available commodities among consumers, the viability domain is the set 

of allocations, i.e., consumptions of consumers the sum of which are available. 

Now, assume that the dynamics governing the evolution of the state are controlled. 

For instance, in economics, prices can be regarded as such regulating controls, 

giving consumers an information about the market that they use in a decentralized 

way to change their consumptions knowing only the state of their own consumptions. 

(They don't need to know neither the choices of the other consumers nor the set 

of available resources). Viability theoryprovides necessary and sufficient 

conditions for the existence of at least one viable trajectory starting from 

any viable initial state. It above all provides the feedback laws (concealed in 

both the dynamics and the viability domain) which relate the regulating controls 

-the prices- to the states of the controlled system of differential equations- the 

allocationsofscarce resources among consumers. These feedback laws are not 

necessarily single-valued - deterministic -. They are most often set-valued maps, 
associating with each allocation a set of prices. We observe that the larger 

these subsets of prices are, the more flexible - and thus, the more robust - the 
regulation of the system will be, by allowing "mistakes" to be done. If we 

accept this mathematical metaphor of allocation of available commodities, we may 

propose that the duty of the market (Adam Smith's invisible hand) or of an 

adequate planning bureau should be to choose at each instant a price according 

to the feedback law. 

In this paper, we make the further assumption that prices evolve with a high 

inertia : the prices will change only when the viability of the system is at 

stake, and then, the slower the better. This is at least the case when the market 



sets prices : the metaphorical existence of the "market" as a decision-maker should 

at least assume that it is lazy. And one could say the same thing about a planning 

bureau ! This motivates the introduction of heavy viable trajectories, associating 

to an allocation a price such that at each instant, the norm of the velocity is 

minimal among all possible prices regulating this trajectory in a viable way. 

We shall provide the differential equations yielding heavy trajectories (which 

are also concealed in the dynamics and the viability domain) andstate some 

existence theorems. 

We observe that as long as the sum of the consumptions lies in the interior of 

the set of available commodities, any regulatory price will work. Therefore, 

along a heavy trajectory, the system maintain the price inherited from the past 

(the regulatory prices remains constant, even though the consumptions may evolve 

quite rapidly). 

When the sum of the consumptions reaches the boundary of the set of available 

resources, two situations may occur : 

(a) If the sum of the velocities "points inward" the set of available commodities, 

then we can still keep the same regulatory price, which pushes the sum of consump- 

tions into the set of commodities. 

(b) If not, the prices will start to evolve as slowly as possible in order to 

pushes the total consumption back into the commodity set. 
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Observe that other strategies are possible, such as "enlarging" the set of available 

commodities instead of acting on prices. But we are far to be able to tackle all 

phenomena at once . 

The differential equations which govern the evolution of heavy viable trajectories 

also reveal a division of the viability domain into "cells"; each cell is the 

subset of allocations which can be regulated by a constant price. 

We end this informal presentation of heavy viable trajectories by mentionning that 

paleontological concepts of biological evolution such as punctuated equilibria 
-- 

proposed by Elredge and Gould are consistent with what we said. 

1 . Description of the decentralized allocation mechanism. 

We consider the decentralized dynamical allocation mechanism proposed in Aubin 

[ 1981 ] b) (see also Aubin-Cellina [ 1984 ] p. 245-256 and Stacchetti [ 1984 1 ) .  

We interpret Y := R' as a commodity space, its dual Y* as the price space. 

The description of the economy begins with 

( 1  1 )  the subset M C Y of available commodities 



The problem is to allocate commodities y E M  among n consumers i=l, ..., n ; 
each consumer chooses a commodity in its consumption set Li . 

The set K C yn of allocations of M is defined by 

* 
Let P C Y denote the set of feasible prices. 

We describe the behavior of each consumer by change functions c. : Li x P + Y . 
1 

The decentralized allocation mechanism is described by a system of n differential 

equations controlled by prices : For all x=(x , , x  ) E K , find T > 0 and 
0 0 

1 
0 
n 

n absolutely continuous functions xi(=) satisfying, 

I i) for almost all t E [O,T ] , xf (t) = ci(xi(t),p(t)) 

r ii) for almost all t E [O,T ] , p(t) E P 

( iii) x. (0) = xo 
1 i 

which are viable in the sense that 

V t E [O,T 1, V i=l,. . . ,n , xi(t) E Li and 1 xi(t) E M 
i= 1 

We observe that this allocation mechanism is decentralized : the actions of each 

consumer depend only upon his consumption and the price. 

When K denotes a convex subset, we recall that the tangent cone TK(x) to K 

at x defined by 

is a closed convex cone. 

We assume that 

i )  the subsets L. and P are closed and convex 
1 

R 
ii) the subset M is closed and convex and M = M - R +  



and that 

1 ( i) the change functions c. are C around L. X P  
1 1 

(1.7) 1 ii) Y x E Li , Y p E P , c. (x,p) E TL (x) 
1 

i 

Assumptions(l.6) imply that 

(see Aubin-Ekeland [ 1984 1 p. 174). 

We then define the feedback map R from K to P by 

We observe that any viable trajectory of the decentralized allocation mechanism 

(1.3) is a solution to the feedback system : Y i=l, ..., n , 

I i) for almost all t E [O,T ] , xf(t) = ci(xi(t),p(t)) 

(1.10) ii) for almost all t E [O,T ] , p(t) E R(x(t)) 

[ iii) x. (0) = x. 
1 1 

0 

(see Aubin [I981 ] b) or Aubin-Cellina [ 1984 1 ,  p. 254). The standard viability 

theorem (see Haddad [I981 1, Aubin-Cellina [I984 1, p. 239-240) provides sufficient 

conditions for the existence of viable trajectories. Under the assumptions of this 

theorem, a necessary and sufficient condition for the existence of viable trajec- 

tories for all x E K is that 
0 

One also shows that assumption (1. 1 1 )  implies the existence of an equilibrium 
- - - 
(xI, ..., x ,p) , a solution to n 



Hence, in the framework of this model, at each instant t , the price p(t) must 

be chosen in the subset R(x(t)) : it evolves according to a set-valued feedback 

rule. 

Then the question arises whether the market - or a planning bureau - can select a 
price p(t) in R(x(t)) . 

We propose to answer this question by singling out heavy viable trajectory which 

seem to be present in the evolution of macrosystems arising in social and biolo- 

gical sciences (which motivated viability theory in the first place). They are 

trajectories which minimize at each time the norm of the velocity of the price. 

The first difficulty which arises is that a solution to (1.3) is only absolutely 

continuous, so that the associated price is only measurable. To use the derivative 

in the distribution sense does not help because the concept of heavy trajectory 

requires the existence of the velocity of the price at almost each time. However, 

a straightforward strategy consists in differentiating the feedback relation 

(I.lO)ii) to reveal a law relating the velocities of the prices and the consumptions. 

For that purpose, we need an adequate concept of derivative of a set-valued map. 

2 . Contingent derivative of a set-valued map. 

When K is a subset of a finite-dimensional space X , we can define many concepts 
of "tangent cones", among which we mention 

a) the contingent cone TK(x) , defined by 

dK (x+hv) 
T~(x) := rv E X I lim inf 

h = 0) h -+ O+ 

b) the tangent cone (introduced by Clarke [I975 1) 

C) the Dubovickii-Miljutin [ 1963 ] cone 



We have the following relations (see Cornet [I981 1, Penot [ 1981 1 ,  Aubin-Ekeland 
[ 1984 1 p. 409) 

i) CK(x) = lim inf TK(y) C TK(x) 
Y + x  
Y E K  

ii) Int CK(x) C DK(x) C Int TK(x) 

The tangent cone is always convex. It coincides with the contingent cone when K 

is a smooth manifold (tangent space) or when K is convex or, more generally, 

when K is soft in the sense that 

(2.5) x + TK(x) is lower semicontinuous . 

Consider now a set-valued map R from X to Y and a point (x,y) of its 

graph. The contingent derivative DR(x,y) is the set-valued map from X to Y 

defined by 

(2.6) w E DR(x,y)(v) * (v,w) E T Graph (R) (x,Y) 

It is equivalent to say that 

(2.7) lim inf d Iw , R(x+~v')-Y = 

h + 0+ 
h 

v'+ v 

1 
The contingent derivative DR(x,y) is a closed process (a map whose graph is 

a closed cone). We say that the map R is soft if its graph is soft. Then 

DR(x,y) is a closed convex process, because its graph is equal to the tangent 

cone to Graph(R) at (x,y). 

We shall say that R is lower semicontinuously differentiable if - 

(2.8) (x,y,v) + DR(x,y)(v) is lower semicontinuous 

We observe that in this case DR(x,y) is a closed convex process because 

property (2.8) implies that (x,y) + TGraph(R) (x,y) is lower semicontinuous, 

and thus, Graph DR(x,y) is a closed convex cone. 

Finally, when K is a closed subset of X , we denote by 

(2.9) m(K) := u E K  I llul = ein Y~II) = nK(0) { v E K  



the subset of elements of K with minimal norm. If F is a continuous set-valued 

map with closed convex images, then m(F(x)) is reduced to a point and 

the single-valued map x + m(F(x)) is continuous. This is no longer the case when 

F is only upper or lower semicontinuous (with closed convex images). However, 

if F is lower semicontinuous with closed images, 
(2.10) 

then x -+ d(O,F(x)) is upper semicontinuous. 

We refer to Aubin [ 1983 ] and Aubin-Ekeland, [ 1984 ] , Chapter 7, Clarke 1 1983 ] 

for a general presentation of nonsmooth analysis relevant to this study. 

3 . Heavv viable traiectories. 

Let us consider the decentralized allocation mechanism (1.3), (1.4). We have seen 

that viable trajectories are solutions to the system (1.10). When the functions 

xi(-) and p(*) are absolutely continuous, we deduce from the "first-order" 

relation (1.10) ii) the "second-order" relation 

for almost all t E [O,T ] , 
(3.1) 

p'(t) E DR(x(t) ,p(t)) (c(x(t) ,p(t)) 

where we set 

Hence we can propose a rigorous definition. 

Definition 3.1 

We shall say that xl(), ...,xn() , p ) )  is a heavy viable trajectory of the 

allocation mechanism (1.3), (1.4) if it is a solution to the system of differential 

inclusions 

1 ii) p' E m(DR(x,p)) (c(x,p))) 

(iii) (x(O),p(O)) = (xOIpO) where x o E K  Po ER(xo) 



which is viable in the sense that 

Remark. Viability cells. 

The inverse of the feedback map R associates with any price p E P the subset 

R-I (p) of allocations which can be regulated by p . The viability cells C(p) 

are the subsets (possibly empty) of R-I (p) defined by 

Starting with an allocation x in a cell c(po) in the direction c. (x 
0 1 0. ,PO) , 

1 

a heavy viable trajectory keeps the constant price Po as long as the allocation 

x(t) remains in the state cell Ci(po) , because in this case the system (3.3) 
can be written 

The price system will start to evolve when the allocation leaves the viability cell 

C(po) . 

The study of the viability problem (3.3), (3.4) runs into the same difficulties 

that viability problems for second-order differential inclusions encounter . 
Therefore, we shall use the method proposed by Cornet-Haddad [I983 ] to overcome 

these difficulties. We are ready to state our main theorem. 

Theorem 3.2 

We posit assumptions (1.6) and (1.7) the "transversality" condition 

1 V (y,z) E Y x Y , 3 n E Tp(p) , 3 v. E T (xi) such that 
1 L: 

and the regularity assumption 



(3.8) the map x E M + TH(x) is soft 

Then the contingent derivative DR(x,P)(v) of the feedback map R is the closed 
n 

convex process from Il TL (xi) to Tp(~) defined by 
i=l i 

Furthermore, let us assume that 

the graphs of the set-valued maps I.(*) and Tp(-) 
(3.10) 1 

I are locally compact 
and that 

(3.11) the feedback map R is lower semicontinuously differentiable 

If both the first order condition 

and the second order condition 

(3.13) f (x,p) E Graph(R) , c(x,p) belongs to the domain of DR(x,~) 

hold true, then for all initial allocation x o E K and all initial price Po 

satisfying either 

:;3.14) po E R(xo) if Graph(TM(*)) is locally comoact 

0 I- 

n n 
(3.15) if not , 

i= 1 I= 1 

there exist T > 0 and a heavy viable trajectory of the decentralized allocation 

mechanism. 
A 



Remark 

For checking assumption (3.15), we can assume that the set-valued map 
TM 

is 

lower semicontinuously differentiable and use standard theorems implying that the 

intersection of lower semicontinuous maps is lower semicontinuous (see Aubin- 

Cellina [1984] p. 49, for instance). 

4 . Example. 

We cannot have an explicit analytical expression of m(DR(x,p) (c(x,p))) except in 

special situations. We assume, for instance, that we don't take into account the 

constraints on prices and consumptions of individual consumers : we take P = Y* 

and Li = Y for all i=l, ..., n . Then, for all x E K , 

n 
(4.1) ~ ( x )  = {p EY* I 1 ci(xi,p) E T ~  

i= 1 [ i= ; I ~i]} 

The surjectivi ty property 

n a 
V (x,~) E Graph(R) , 1 ci(xi,p) is surjective 

i= l 

implies that the transversality property (3.7) is satisfied. Hence, if we assume 

that TM is soft, we can write 

Let us set now 

We assume that the second order condition 



h o l d s  t r u e .  By s e t t i n g  

t h e  e lement  o f  minimal norm o f  D R ( x , p ) ( c ( x , p ) )  can be w r i t t e n  

when IT d e n o t e s  t h e  p r o j e c t i o n  o f  b e s t  approx imat ion  o n t o  t h e  c l o s e d  convex 
V(x,p> 

s u b s e t  V(x,p) . 

The c a s e  o f  a n  exchange economy. 

I n  o r d e r  t o  proceed w i t h  a n a l y t i c a l  e x p r e s s i o n s ,  we make t h e  f u r t h e r  assumpt ions  

(4 .7 )  M = 
2 

w - W+ 

and 

(4 .8)  
1 

c i ( x i , p )  := y i ( x i )  - - n  P  

When y i ( x )  = ~ f ( x )  i s  t h e  g r a d i e n t  of  a  concave d i f f e r e n t i a b l e  u t i l i t y  f u n c t i o n ,  

t h e n  t h e  s u p e r  d i f f e r e n t i a l  o f  t h e  r e s t r i c t i o n  of 
U i  

t o  a  budge t  s e t  

x  1 p ,  r i s  y i ( x )  - p  B+ . Change f u n c t i o n s  of  t h e  form (4 .8)  a r e  

s t e e p e s t  a s c e n t  d i r e c t i o n s  o f  u t i l i t y  f u n c t i o n s  r e s t r i c t e d  t o  budget  s e t s .  

We o b s e r v e  t h a t  

DTM(y , u )  (v) = 

(4 .9)  
{W E Y I wh < 0  whenever - yn - wh and uh = vh = 0 )  

and t h e r e f o r e ,  t h a t  TM i s  lower  semicon t inuous ly  d i f f e r e n t i a b l e .  

We s e t  

and 



They associate to each allocation x and price p the subsets of commodity labels 

for which the first and second order conditions are satisfied respectively. Indeed 

n 
(4.11) = {p ER I p n >  1 yi(xi)h for all h EHl(x) 

i= 1 
and 

a. n 
1 

n ER / nh 2 1 (y:(xi) (yi(xi)- ; P))~ for all h E ~ ~ ( x , p )  
i= 1 1 

Therefore 

The system of differential equations governing the evolution of heavy viable 

allocations of w are 

and 

This differential equation can be interpreted as a metaphor of Adam Smith's 

invisible hand letting the prices evolve in this simple exchange economy. For a 

given commodity h , the price will remain constant when the total consumption 
n n n 
1 x. is less than the supply wh or when 1 xi = w , but 1 < 

h i=l h h i= 1 i= 1 
<ph (yielding a decrease in consumption of the commodity h ) .  The price pn 

n n 
starts to evolve with minimum speed when both 1 xi = w and 1 yi(x.) = p 

i=l h h i= 1 l h  h '  
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