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PREFACE

This paper presents a survery of results related to quasi-
differential calculus. First we discuss different classes of
directionally differentiable functions (convex functions,
maximum functions and quasidifferentiable functions). Several
generalizations of the concept of a subdifferential are con-

sidered, and the place and role of quasidifferentiable func-
tions are outlined.
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NONSMOOTHNESS AND QUASIDIFFERENTIABILITY

V.F. Demyanov
L.N. Polyakova
A.M. Rubinov

1. Introduction

This is not the place to go into the motivations and origins
of nondifferentiability (although these are very important and
interesting): for the purpose of this paper it is only neces-
sary to realize that although a nondifferentiable function can
often be approximated by a differentiable one, this substitution
is usually unacceptable from an optimization viewpoint since
some very important properties of the function are lost (see
Example 2.1 below). We must therefore find some new analytical
tool to apply to the problem.

Define a finite-valued function f on an open set Q C En
If function f is directionally differentiable, i.e., if the

following limit exists:

of (x) . 1
= _ - f Y € , .
3 0Lllrg 3 [f (x+ag) (x)] v g En (1.1)
then
f(x+tag) = £(x) + o —ggéﬁl- +o0(a)

Many important properties of the function can be described

using the directional derivative. To solve optimization problems



we must be able to (i) check necessary conditions for an
extremum; (ii) find steepest-descent or -ascent directions;
(iii) construct numerical methods.

In general, we cannot solve these auxiliary problems for
an arbitrary function f: we must have some additional infor-
mation.

In classical differential calculus it is assumed that

0f (x)/90g can be represented in the form

of (x)

39 (£'(x),9) ,

where f'(x) € En and (a,b) is the scalar product of vectors a
and b . The function f is said to be differentiable at x and
the vector f'(x) is called the gradient of f at x . Differen-
tiable functions form a well-known and important class of func-
tions.

The next cases that we shall consider are convex functions
and maximum functions. It turns out that for these functions

the directional derivative has the form

—2§é§1-= max (v,qg) , (1.2)
vEaf (x)

where 3f(x) is a convex compact set called the subdifferential

of £ at x . Each of these two classes of functions forms a con-

vex cone and therefore their calculus is very limited (only two

operations are allowed: addition, and multiplication by a

positive number).



The importance of egn. (1.2) has led to many attempts to
extend the concept of a subdifferential to other classes of
nondifferentiable functions (see, e.g., [1,15,16,18,22,23,28,
32]).

One very natural and simple generalization was suggested
by the authors of the present paper in 1979 [7,13]. We shall
say that a function f is guasidifferentiable at x if it is
directionally differentiable at x and if there exists a pair

of compact convex sets 9f(x) C En and 0f (x) C E such that

_§§i51.= max (v,g) + min (w,g) . (1.3)
g vEIf (x) wEQ f (x)

The pair Df (x) = [3f(x) , df(x)] is called a quastdifferential
of £ at x

It has been shown that quasidifferentiable functions form
a linear space closed with respect to all algebraic operations
and, even more importantly, to the operations of taking point-
wise maxima and minima. This has led to the development of
quasidifferential calculus, and many important and interesting
properties of these functions have been discovered (including
a chain rule, an implicit function theorem, and so on).

One very important property of these functions is that if

f is directionally differentiable and its directional derivative

0f (x)/dg at x is a continuous function of direction g (every
directionally differentiable Lipschitzian function has this
property), then 9f (x)/0g can be approximated to within any

prescribed accuracy by a function of form (1.3).



Thus, the quasidifferential is an ideal tool for studying
the first-order properties of functions.

A more general approach, involving an extension of quasi-
differential calculus, has been presented by Rubinov and
Yagubov [29). They proved that if 4f(x)/dg is continuous in

g then it can be represented in the form

of (x)

5g - inf {}X > 0|g € AU} + sup {X < 0|g € AV}, (1.4)

where U and V are what are known as star-shaped sets. If U
and V are convex sets then egn. (1.4) can be rewritten in the
form (1.3).

Thus, if f is directionally differentiable it is natural
to use this construction (the directional derivative) to study
optimization problems. However, if f is not directionally
differentiable some other tool must be found. One approach
is to generalize the notion of the directional derivative (1.1).
We shall mention only the following two generalizations:

1. The Hadamard upper derivative of f at x in the direction

g, defined as

aHf(x)f 1
'T—— = lim - [f (X+ag' ) - f (X) ] *
g ' o
g =g
a-~+0

In the case of a Lipschitzian function this becomes:

aHf(x)f

- 1
lim —[f(x+ag) - f(x)] . (1.5)
9g a=+0 ¢



2. The Clarke upper derivative of £ at x in the direction g ,

defined as

0 .. f(x)?
Clag ) xﬁ ';T[f(x'wg) - £(x')] . (1.6)
a-+0

Other generalizations and extensions are given in [18,22,28].
Equation (1.5) is a natural generalization of (1.1) and, in the
case of a directionally differentiable function, the Hadamard
upper derivative (1.5) coincides with the directional derivative
(1.1). However, this is not the case for the Clarke upper
derivative (1.6). The reason for this is that (1.6) describes
not the local properties of f at x but some "cumulative" pro-
perties of f in a neighborhood of x . It seems to the authors
that for optimization purposes it is better to use the Hadamard
derivative (and this idea has been exploited by B.N. Pschenichnyi
(23]).

The Hadamard and Clarke upper derivatives are used to study
minimization problems: for maximization problems it is neces-
sary to invoke the Hadamard and Clarke lower derivatives. These
are defined analogously to (1.5) and (1.6) with the operation lim
replaced by 1lim. We shall discuss both these generalizations later in
the paper: for now, note only that if the Hadamard upper derivative
is continuous (which is always the case if f is Lipschitzian),
then it can be approximated by a function of the form (1.3), so
that quasidifferential calculus can be used here as well.

In Section 2 we discuss directional differentiability.
Section 3 is concerned with convex functions and maximum func-

tions, as well as with the Clarke subdifferential and Pschenichnyi



upper convex and lower concave approximations. Quasidif-
ferentiable functions are treated in Section 4.

This should be seen as a survey paper: we hope that it
will provide a general introduction to the subject of this
Study and enable readers to make use of the results in their

own research.

2. Directional differenttability

Let S C E_ be an open set and f be defined and finite-
valued on S ., Fix x € S and g € En . The function f is said
to be differentiable at x in the direction g if the following

finite limit exists:

BFG) _ giig) = 1im L _
39 fx(g) = ijib 3 [f (x+ag) f(x)] . (2.1)

(It is naturally assumed that x+og € S ; since S is open this
is the case for all o € [O,uo(g)] , where uo(g) > 0) . The
limit (2.1) is called the (first-order) directional derivative
of £ at x in the direction g

If £ is differentiable in every direction g € E it is said
to be directionally differentiable at x .

If £ is directionally differentiable at x and Lipschitzian
in some neighborhood of x , then

lim %[f(x+ag(a)) - f(x)] = 2E)

a—-+0 99
g(a)—~g

i.e., in this case it is sufficient to consider only "line"

directions.



It is clear from (2.1) that if f is directionally dif-

ferentiable then

—2£151-+ o(a)

= + ’
f (x+ag) f (x) a 33

i.e., the directional derivative provides a first-order ap-
proximation of £ in a neighborhood of x
Let f be directionally differentiable at x , x € § . A

direction g(x) is known as a steepest-descent direction of f

at x if
of (x) inf of (x)
99 (x) g€s dg
where S = {x € E_ | Igh=1} .

A direction g'(x) is called a steepest-ascent direction

of £ at x 1if

0f (%) _ o 3f(x)
L}
ag' (x) gESn o9

Directions of steepest descent or ascent need not neces-
sarily exist and if they do, they are not necessarily unique.
It is clear that for a point x*GEn to be a minimum point

of £ it is necessary that

A (x)

> c .
og 2 0 Vg En

An analogous necessary condition for a maximum is



*

*
PEx ) o Vge E_ -

ag

However, these necessary conditions are in general difficult
to verify; they are also trivial reformulations of the de-
finitions of a minimum and a maximum. We therefore have to make
use of certain specific properties of the function under con-
sideration.

One very important class is that of differentiable func-

tions. In this case

af (x)

35 (f' (x),9) , (2.2)

where f'(x) is the gradient of f at x .
Applying the conceptof a gradient, for example, to the

optimization problem, it is possible to:

1. Compute the directional derivative.

2. Derive the following necessary condition for a minimum or
a maximum: for a differentiable function f to attain its
local minimum (or maximum) value at x* € S it is necessary

that
*
f'(x) =0 . (2.3)

The point x at which condition (2.3) is satisfied is called
a stationary point of £
3. Find directions of steepest descent and ascent as follows:

If f'(xo) # 0 then the direction



f'(xo)
glxy) = - ————— (2.4)
ﬂf'(xO)H

is the direction of steepest descent of f at Xg » and the

direction
]
' B f (xo)
fe (xO) I
is the direction of steepest ascent of f at Xq - In this

case the directions of steepest descent and ascent both

exist and are unique.

4. Construct numerical methods for finding an extremum.

The concept of a gradient (a derivative in the one-dimensional
case) has had a profound impact on the development of science.
It is impossible to overestimate its importance and influence.
From being an art, mathematics became a technical science.

However, differential calculus is only applicable if the
functions studied are smooth (i.e., differentiable). For most
practical problems tackled in the past (and for many presently
under study) it has been sufficient to consider only smooth
functions. Nevertheless, an increasing number of problems
arising in engineering and technology are of an essentially
non-smooth nature. There are two very popular ways to avoid
nondifferentiability. First, one tries to replace a non-smooth
problem by a smooth one. For example, the problem of minimizing

the function

f(x) = max ¢i(X) '
i€x
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where the ¢i's are smooth non-negative functions, I=1:N and

x € E is often replaced by the minimization of
=2 a,¢.
F (x) a ¢, (x)
where the a; are positive coefficients. The function F is

smooth but it now describes quite a different problem.

The second possibility is to consider the function

_ p\1/p
Fp(x) = (?[(¢i(X)] )

1

instead of £ . It is well-known that Fp(x) f(x) V X .

p~+
Note that in many cases the computational process by which

Fp(x) is minimized becomes unstable. Some very important pro-
perties of the original function can thus be lost in the pur-

suit of smoothness.

We can illustrate this using a very simple example.

Example 2.1. Let x=(x(1), x(z)) €E, ; f(x)=|x(1)| —|x(2)| ,
x0=(0,0) . The function f is not differentiable at points
where x(1)=0 or x(2)=0 Take a direction g =(g(1),g(2))

The function f is directionally differentiable with directional

derivative

of (x.)
-0 - lim Ti[f(xo+ag) - f(xo)] = ig(1)' - |9(2)’ .

99 a-+0
It is clear that there are two steepest-descent directions of
f at Xy g1=(0,1) and g1=(0,-1) . There are also two steepest-

ascent directions: gz=(1,0), gé=(-1,0) .
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Let us try to smooth the function £ . Take € > 0 and
consider the following functions:
x) = )2 - /222

(1)

F
“1e

/Qx(1)+e)2 - /Qx(2)+€)2

=

(2) 25(x)

(3) fi.(x) = /Qx(1))2+€ /?x(2)+s)2

It is clear that

£, (x) ==>£(x) Vie1:3.
-0

Find the gradients of these functions at Xg ¢

3, _ (x) L (1) L2

X ! j
#(x(1))2+e /(x(z))2+e

af, (x,)
—1e "0 _ (0,0) Ve>o
oX
afZE(x) _ x(1)+e X(2)+€

0x ——— ’ ;
/Qx(1)+e)2 /(x(2)+6)2

of . (x,)
2¢ 70
= (=1,1) YVe>o
afBE(x) - —x(1) . x(2)+e .
ax ’ !’
V(x(1))2+e /(x(2)+e)2
af3g(xo)

o = (0,1) Ves>o.
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We can then make the following deductions:

For f1€ R is a stationary point.
For f : the steepest-descent direction at x, is g =(ZZ:,—£Z;-)
2¢ 0 3 2 2
. . . ‘o V2 V2
and the steepest-ascent direction is g3—(— 5 —5—) .
For f3€ : the steepest-descent direction at X is gu=(0,—1)

and the steepest-ascent direction is gu=(0,1)

Thus, all three smoothing functions provide incomplete or
even misleading information about stationarity or directions
of steepest descent and ascent. The reason is that these
smoothing functions are zeroth-order approximations while
steepest-ascent and -descent directions reflect first-order
properties of the function.

Since it appears that we cannot avoid nondifferentiability,
we should rather study the properties of special classes of
non-smooth functions with the aim of developing analytical tools

to handle these problems.

3. The subdifferential and its generalizations

3.1. Maximum functions. Let
f(x) = max ¢ (x,y) , (3.1)
yE€G

where ¢(x,y) is continuous in x and y on S x G and continuously
differentiable in x on S ; G is a compact set.

The function f described above is not necessarily continuously
differentiable. However, it is directionally differentiable on

S and
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of (x)
— = max (¢'(le) ,g) ’ (3.2)
99 YER (%) X

where R(x)={y € G | ¢(x,y)=£f(x)} .
The set R(x) is closed and bounded. We can rewrite (1.2)

in the form

of (x)

= max (v,g) . (3.3)
99 vEH £ (x)
where
of (x) = co{¢;(x,y) | v € R(x)} . (3.4)

It is not difficult to see that the set 90f(x) described by
(3.4) can be used for several purposes [2,6]:
1. To compute the directional derivative (see (3.3)).
2. To derive the following necessary condition for an un-
constrained minimum: for x* € S to be a local minimum

point of £ defined by (3.1) it is necessary that
*
0 € 0af(x ) . (3.5)

*
A point x € S at which (3.5) is satisfied is called a
stationary point of f (note that S is an open set).

3. If X is not a stationary point then the direction

v(xo)
g(XO) = - —
"v(xo)"
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where V(XO) € af(xo) ' ﬂv(xo)ﬂ = min vl , is a steepest-
v€af(x0)

descent direction of f at x This direction is unique.

0 -

If we find v,(x,) € af(xo) such that ﬂv1(x )= max ivi

0 veaf(xo)

V1 (%p)
and if Iv1(x0)ﬂ > 0 , then the direction g, (x,) —_—
"v1(x0)l
is a steepest-ascent direction of f at x, . Note that this

0

direction is not necessarily unique.
The set 0f (x) can also be used to construct numerical
methods for minimizing f on En or on a bounded set (see, e.g.,

[61).

3.2. Convex functions. Let § C E be a convex open set and

f be a convex function defined on § , i.e.,
£ (ax,+ (1-a)x,) < af (x)+(1-a)f(x,) Y a€ (0,11 , V¥ x ,x.E5 .

Any finite-valued convex function is necessarily continuous and

directionally differentiable on § , and

% = max (v,q) , (3.6)
9 vEIE (x)

where
9f(x) = {v € E_ | £(z)-f(x) = (v,z=x) VY z €8s} . (3.7)
The set 0f(x) is non-empty, convex and compact, and is called

the subdifferential of £ at x . The subdifferential plays

exactly the same role as the set 9f defined by (3.4) for a
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maximum function (except that condition (3.5) in the convex
case is sufficient as well as necessary). For this reason

we shall refer to the set 0f(x) defined by (3.4) as the sub-
differential of the maximum function f described by (3.1).
Note that if ¢ is also convex in X for any y € G then the set
df (x) defined by (3.4) coincides with the set 0f (x) defined by
(3.7) (assuming that f is a maximum function of form (3.1)).

Convex functions have been studied and used very widely:
their fundamental properties were discovered and exploited
by Fenchel [14], Moreau [21], and Rockafellar [27].

Thus we can define the subdifferential mapping 0f for two
very important classes of nondifferentiable functions. We
may view the concept of a subdifferential as a generalization
of the concept of a gradient (for continuously differentiable
functions). If f is differentiable at x (where f is either a
maximum function or a convex one), then df(x) = {f'(x)}

The properties of convex and maximum functions (and es-
pecially egns. (3.3) and (3.6)) seem to have had a mesmerizing
effect on many mathematicians. They have tried to generalize
the concept of a subdifferential to other classes of nondif-
ferentiable functions, while trying to somehow preserve egn.
(3.3) [1,15,16,17,18,22,23,28,32].

We shall consider here only two of these generalizations

which are particularly relevant to the subject of this Study.

3.3. The Clarke subdifferential. Let a function f be Lip-
schitzian on § . By T(f) we shall denote the subset of S on
which f is differentiable. It is well-known that Lipschitzian

functions are differentiable almost everywhere.
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For x € Q@ , consider the set

ale(x) = co aSh f(x) ,

where

dg, f(x) = {vE E_ | 7 {x ) : x €T(), x -x, f'(x)=v}.

k

The set 8Shf(x) was introduced by Shor in [31] and the set aclf(x)
by Clarke in [1]. The latter set will be referred to here as

the Clarke subdifferential of £ at x . It has been shown that
aclf(x) is a non-empty convex compact set.

Clarke also introduced the Clarke upper derivative of f at

X in the direction g € En

aclf(x)f

- T 3m l ' _ '
35 = lim (x[f(x +ag) f(x")1 . (3.8)

X'--x
a-=+0
The most important result related to the Clarke upper derivative
is the following:
aclf(x)1

= =  max (v,9) . (3.9)
g vEd £ (x)

*
It is possible to show that for a point x € S to be a minimum

point of £ it is necessary that

0 € aclf(x*) . (3.10)
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*
We shall call any point x at which (3.10) is satisfied a
Clarke stattonary point. If X is not such a stationary point

then the direction

v(xo)
g(xo) = - “
v(xo)“
where
Hv(xo)ﬂ = min il
veaclf(xo)

is a direction of descent of f at Xq (but not necessarily a
direction of steepest descent).

There are also some very interesting numerical algorithms
for minimizing a Lipschitzian function f based on the Clarke

subdifferential [19].

Let
d0 . f(x)i
Cl - : 1 ] - '
g = x}iz ?r[f(x +ag) f(x')] . (3.11)

This value is called the Clarke lower derivative of £ at x in

the direction g . It is possible to show that
aclf(x)i
—ag—-— = min (v,9)
VGale(x)

* ¥
and that for x to be a maximum point of f it is necessary

* %
that (3.10) be satisfied at x , i.e., the necessary conditions

for a minimum and a maximum coincide.
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Thus, the role played by the Clarke subdifferential with res-
pect to Lipschitzian functions is analogous to that played by
the subdifferential for convex and maximum functions.

These results are very attractive from the aesthetic point
of view. However, this approach nevertheless has some de-
ficiencies from the optimization standpoint, the main reason
for which being the fact that the Clarke upper (lower) direc-
tional derivative does not necessarily coincide with the
directional derivative (if the latter exists).

Let us consider once again the function f described in
Example 2.1:

(1)

£(x) = [x | - |x)

(x(1),x(2)) € E

4

5 x0=(0,0) .

It is not difficult to check that
aclf(xo) = CO{(1I1)1 (17‘1) , (-1,1) (-17-1)} ’

i.e., 0 € aclf(xo) , where (xO) is a Clarke stationary point
but is neither a minimum nor a maximum of f .

The Clarke subdifferential reflects some "cumulative"
properties of the function in a neighborhood of a point. For

example, if

3C1f(x)
a9

then the direction g is not only a descent direction of f at
X : 1t is also a descent direction of f at every X' in some

neighborhood of x .
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The Clarke subdifferential enables us to discover some
very important properties of the function. However, the Clarke
directional derivatives (upper and lower) defined by (3.8) and
(3.11) are only very rough approximations of the directional
derivative (if it exists).

In our opinion the Clarke subdifferential is not an ap-
propriate tool for solving problems where directional derivatives
are used (such as, for example, optimization problems). Never-
theless, the concept of the Clarke subdifferential is very
important and can be very powerful in other areas of non-smooth
analysis.

Note also that the calculus based on the Clarke subdif-
ferential is incomplete (since the main relations are for-
mulated as inclusions, not equalities) and this makes it un-

suitable for computational use.

3.4. The Pschenichnyi upper convex and lower concave ap-
proximations. Consider first the Hadamard upper derivative
F (@) = Tim -[f(x+ag) - £(x)] , (3.12)
a++0

where f is a Lipschitzian function and x is fixed. 1In the
case where f is directionally differentiable, Fx(g) coincides
with its directional derivative.

The function Fx(g) provides a better local approximation
than the Clarke upper directional derivative. However, Fx(g)
is not a convex function and therefore it cannot be approximated
by a maximum function of linear functions. Pschenichnyi [23]
suggested that it should be approximated by a family of convex

functions.
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Let f be Lipschitzian on § and directionally differentiable
at a fixed point x € § . Note that the directional derivative
of (x)/0g = f;(g) is both continuous in g (because f is Lip-

schitzian) and positively homogeneous, i.e.,
v = v
£y (Ag) = Af(9) Var=20.

A function p is said to be an upper convex approximation
(u.c.a.) of £ at x if p is sublinear (i.e., convex and positively
homogeneous) and if p(g) 2 f!(g) V g€ E, - If pis an

u.c.a. of £ at x' then

f(x+ag) < £(x) + aop(g) + O g(oc) ’ (3.13)
4
where
°x,g () o .
@ a-++0

Since p is sublinear there exists a unique convex compact set

op C E such that p(g) = max (v,qg) .
vEdp

A function g is said to be a lower concave approximation
(l.c.a.) of £ at x if g is superlinear (i.e., concave and
positively homogeneous) and if gq(g) < f;(g) Ygc€ En . Since
g is superlinear there exists a unique convex compact set

3q € En such that q(g) = min (w,q)
wEdq

Note that an upper convex approximation is not necessarily
unique, and therefore a single u.c.a. cannot provide a satis-

factory approximation of the function.
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The notion of an exhaustive family of upper convex ap-
proximations was introduced in [8], where it was defined as
follows:

Let A be an arbitrary set. A family {pxlx € A} , where
Py is an u.c.a. of f at x , is called an exhaustive family of

u.c.a's for £ at x if

. 3f (x)
J.nf p (g) e —
AEN A 99

VgeEe_ , (3.14)
n
i.e., if
= 3 i c .
f (x+ag) = £(x) +a inf p,(g) + oX,g(a) Vg E_
AEA
Analogously, a family {qA[A € A} , where q, is a l.c.a. of

f at x , is called an exhaustive family of lower concave ap-
proximations for f at x if

0f (x)

sup q, (g) = ——— VYV g€E
\EA A 89 n

i.e., if

= e i
f (x+ag) = f£(x) + a sup g (g) + o () Vgeer
The existence of an exhaustive family of u.c.a.'s (or
l.c.a.'s) implies that f;(g) may be represented in the equi-
valent forms

Bf(x) _ inf max (v,q) sup min (w,q) (3.15)

99 \EN vE3P, (AGA wedq, ]

(of course, A is not the same for a family of u.c.a.'s and

that of l.c.a.'s).
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It is possible to show that exhaustive families of u.c.a.'s
and l.c.a.'s exist for every directionally differentiable func-
tion whose directional derivative is continuous as a function
of direction (see [8] for an illustration of the construction
of a family of l.c.a.'s).

The concepts of upper convex approximation and lower con-
cave approximation can be applied with some success to the
solution of extremal problems. The following properties are of
particular use: if x* is a minimum point of £ on S (recall
that S is an open set) then for every u.c.a. p(g) it is neces-
sary that 0 € dp

If {p,|x € A} is an exhaustive family of u.c.a.'s of f at

*
X then we have the following necessary condition for a minimum:
0 € 3p, Y xen. (3.16)

If {p, X € A} is an exhaustive family of u.c.a.'s of f at

X and (3.16) is not satisfied, find
sup min llvl = "VX .
AEA végpx 0
v>\0
The direction g(xo) = - —F———— is then a direction of steepest
v, |
XO

descent of f at Xg -
Thus, if we have an exhaustive family of upper convex ap-
proximations we can:
1. Compute the directional derivative (see (3.14)).

2. State a necessary condition for a minimum (see (3.16)).

3. Find a steepest-descent direction.
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Analogous results can be obtained for maximization problems
by using an exhaustive family of l.c.a.'s.

Thus, the essence of this approach is to reduce the op-
timization problem to one of constructing the required families
of u.c.a.'s (or l.c.a.'s).

In what follows we describe a class of functions for which
families of upper convex approximations and lower concave ap-

proximations can be constructed with relative ease.

4. Quasidifferentiable functions

4.1. Definitions and properties. Let £ be a finite-valued
function defined on an open set S C E - The function f is
said to be quasidifferentiable at x € § if it is directionally
differentiable at x and if there exist convex compact sets

af (x) C En and Sf(x) C En such that

~3§i‘)—= £1(9) = max (v,g) + min (w,q) Y g€E . (4.1
g vEIf (x) wEa f (x) :
The pair of sets Df (x) = [3f(x) , af(x)] is called a quasidif-

ferential of f at x ; sets 8f(x) and 3f (x) are described as a
subdifferential and a superdifferential, respectively, of f at
x . It is clear that a quasidifferential at a point is not
unique.

If the set of quasidifferentials of f at x contains an
element of type Df(x)=[df(x),0] , then the function f is said
to be subdifferentiable at x . If there exists a quasidif-
ferential of the form Df(x)=[0,5f(x)] , then this function is

said to be superdifferentiable at point x .
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Some examples of quasidifferentiable functions are given
below.
1, If f is continuously differentiable on S then it is quasi-
differentiable at every point x€S , and the pair of sets
Df (x)=[f'(x),0] (where f'(x) is the gradient of f at x) is a
quasidifferential of £ at x . It is clear that the pair
Df (x)=[0,f'(x)] is also a quasidifferential of f at x . Thus,
if a function f is smooth at x it is also both subdifferentiable
and superdifferentiable at x
2. From (3.4) and (3.6) it is clear that both maximum functions
(defined by (3.1)) and convex functions are quasidifferentiable
at x € § , and that Df (x)=[df (x),0] , where Qf(x)=af(x) (defined
by (3.4) or (3.7), respectively) is a quasidifferential of £
at x . In other words, both maximum functions and convex func-
tions are subdifferentiable.
3. In a similar way it can be seen that if £ is concave on a
convex open set S (i.e., f1=—f is convex), then f is quasi-
differentiable on S , with quasidifferential Df (x)=[0,3f (x)] .
Here 3f (x)={w € E |£(2)-£(x) < (w,z-x) ¥ z € E_} is the super-
differential of the concave function f at x .

Let D=[A,B] be a pair of sets, where A C En , B C En . We

define multiplication by a real number A as follows:

[AA,AB] if A 2 O

AD

(4.2)

[AB,AA] if X < 0

B, CE . We

Let D1=[A1,B1] ' D2=[A2,B2] , wWhere A1, A2’ B1, 2 n

define addition of sets in the following way:
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D, + D, = [A,B] (4.3)

where A=A_+A. , B=B,+B It follows from (4.1)-(4.3) that

1772 172 ¢

1. 1If functions f1""'fN are quasidifferentiable at x then the
N
function £ = Z cifi (where cy € E1) is also quasidifferentiable
i=1
at x and
N
Df(x) = Z c.Df. (x) . (4.4)
j=q 11

2. 1If functions f1 and f2 are quasidifferentiable at x then

the function f=f.-f

175, is also quasidifferentiable at x and

Df (x) = f1(x)Df2(x) + fz(x)Df1(x) . (4.5)

3. If functions f1 and f2 are continuous and quasidifferentiable
at a point x and fz(x)#o then the function f=f1/f2 is quasidif-

ferentiable at x and

Df (x) = ——————[fz(x)Df1(x) - f1(x)Df2(x)] . (4.6)

It is clear that (4.4)-(4.6) represent generalizations of
well-known relations from classical differential calculus.
However, quasidifferentiable functions also have the following
very important additional properties (see [7,8,29]):

4. Let functions fi , 1€I=1:N , be quasidifferentiable at

X € S . Then the function

f(x) = max f. (x)
ier *
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is quasidifferentiable at x and Df (x)=[4df (x) , 5f(x)] , Wwhere

f (x) = cofdf, (x) - = Bf (x)|k € R(x)}
i€R(x)
ifk
af(x) = I 2f, (%) (4.7)
kER (%)

R(x) = {i € I|fi(x) = f(x)} .

5. If functions fi , 1€I=1:N , are quasidifferentiable at x€S

then the function f (x) = min fi(x) is quasidifferentiable at x
i€r

and Df (x)=[3f (x) , 5f(x)] , where

of (x) = z ka(x)
k€0 (x)
3 (x) = cofdf, (x) - T A (x)[k € Q(x)) (4.8)
i€Q(x)
i#k

Q(x) ={i € I|fi(x) = f(x)}

Thus, the class of quasidifferentiable functions is a linear
space closed with respect to all algebraic operations and, even
more importantly, to the operations of taking pointwise maxima

and minima.

4.,2. Necessary conditions for an unconstrained extremum. It
is easy to state necessary conditions for extrema of quasidif-
ferentiable functions. We shall limit ourselves to consideratiorn
of the unconstrained case; other cases are discussed in detail

in [5,25].
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Let f be quasidifferentiable on En .

* » .
Theorem 4.1 (see [24]). For a point x € E to be a minimum

point of £ on E_ i1t 18 necessary that

- * *
- 3f(x ) CAf(x ) . (4.9)

* ok } )
Theorem 4.2. For a point x € E_to be a maximum point of £

on En it 1s necessary that
* % - * ¥
- 3f(x ) Caf(x ) . (4.10)

A point x* € En at which condition (4.9) is satisfied is
called an inf-stationary point of function f on E . A point
x"T€E_ at which condition (4.10) is satisfied is called a
sup-stationary point of £ on E

Assume that x, is not an inf-stationary point (i.e., con-

0
dition (4.9) does not hold). Find w,€0f(x,) and v €3f (x)
such that
max min lv+wl = min “V+w0"==Hv0+w0H .
weaf(xo) vegf(xo) VEQf(xo)

Voo

It turns out that the direction 9g = - is a steepest-
"v0+w0"

descent direction of f at the point x This direction may not

0

be unique.

Analogously, if a point x, is not a sup-stationary point of

0
f on E  then we find vy € 3f (%) and w, € 5f(x0) such that

max min Tv+wl = min Hv1+wﬂ = Hv1+w1H
vEdE (x,) WEDE (x) wEIE (%)
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vy,

|v1+w1||

The direction g, = is a steepest-ascent direction of

f at Xy -

The problem of verifying the necessary conditions for a
minimum is thus reduced to that of finding the Hausdorff devia-
tion of the set —gf(xo) from the set Qf(xo) . Similarly, the
verification of the necessary conditions for a maximum is equi-
valent to finding the Hausdorff deviation of the set Qf(xo)
from the set —5f(x0) . If the necessary condition for a maximum

or for a minimum holds at a point x then the corresponding

0’
Hausdorff deviation is zero. Otherwise the deviation is
positive and its absolute value is equal to the rate of steepest
ascent (or descent) at point Xy -
Thus the concept of a guasidifferential is an extension of
the idea of a gradient. The main formulae of quasidifferential
calculus represent generalizations of relations from classical
differential calculus (see (4.4)-(4.6)). A new and important
additional operation is allowed in quasidifferential calculus--
that of taking pointwise maxima or minima. This brings
into play a host of new nondifferentiable functions obtained by
combining ordinary "differentiable operations" with the taking
of pointwise maxima and minima. A chain rule for quasidifferen-
tiable functions has been discovered and was proved in [8-10],
while implicit function and inverse theorems were established
in [3,9]. The relation between the quasidifferential and the
Clarke subdifferential has also been studied (see [4}): it
appears that for a rather wide class of quasidifferentiable

functions there exists a very simple relationship between the

Clarke subdifferential and the quasidifferential.
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The next step is to develop numerical methods for finding
extreme points of quasidifferentiable functions. First of all,
we should recognize that there may be several directions of
steepest descent (or ascent, if we are looking for a maximum).
This property requires a new approach to the construction of
algorithms. In the convex case, for example, the greatest dif-
ferences between many algorithms lie in (i) the rule used to
find a descent direction and (ii) the step-size rule. 1In the
quasidifferentiable case, however, it is necessary to consider
several directions at each step. Some promising results in this

area are given in [12,26].

4.3, The place and role of quasidifferentiable functions in

non-smooth optimization. It follows from (4.1) that

of (x)

g = £1(g) = min [ max (v+w,g)]

weaf (x) vedf (x)

It is clear that for every w€5f(x) the function

pw(g) = max (v,qg)
vE [w+d £ (x) ]

is an upper convex approximation of f at x and the set of func-
tions {pwlwegf(x)} is an exhaustive family of upper convex ap-
proximations of f at x .

Analogously, for every vEdf (x) the function

q,(g) = min (W,g)
wE [v+of (x)]
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is a lower concave approximation of f at x and the set of
functions {qvlvegf(x)} represents an exhaustive family of lower
concave approximations of f at x .

Thus quasidifferentiable functions represent one class of
functions for which it is possible to construct exhaustive
families of upper convex and lower concave approximations.

Note that the most important properties for optimization
purposes are those of the directional derivative, because they
can be used to check necessary conditions for an extremum and
to find directions of steepest descent or ascent. If the
directional derivative f;(g) is a continuous function (as is
always the case for a Lipschitzian, directionally differentiable
function), then f;(g) can be approximated by the difference of
two convex, positively homogeneous functions. This means that
the function f can be approximated to within any given accuracy
(of f;(g)) by a quasidifferentiable function, thus ensuring
that properties of f which are important from the computational
standpoint (e.g., the number of steepest-descent and -asg¢ent
directions, etc.) can be derived. The quasidifferential there-
fore seems to be quite adequate for studying the first-order
properties of the function.

Of course, there are many functions which are not quasidif-
ferentiable (see, e.g., [11]), but for the purposes outlined
above it is sufficient to consider only those which are.

The main problem is how to approximate f;(g) by a quasi-
differentiable function, and this is discussed in some detail
in papers by Rubinov and Yagubov [29], Shapiro [30] and Melzer

[20].
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5. Concluding remarks

This paper  considers only the finite-dimensional case,
although most of the results can be extended to infinite-
dimensional spaces (see, e.g., [9]).

Second-order approximation problems seem to present an
impbrtant and promising area of research, but at present only

a few results have been obtained in this field.
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