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FOREWORD

Contribution to the Metropolitan Study: 11

The project "Nested Dynamics of Metropolitan Processes
and Policies" started as a collaborative study in 1983. The
Series of contributions is a means of conveying information
between the collaborators in the network of the project.

This paper demonstrates the existence and uniqueness of
a simultaneous equilibrium of household's choices of
commuting networks and residential locations. The analysis
contributes to the Metropolitan Study by considering the
interaction between several markets and behavior of

subsystems. It also contains a preliminary discussion of
the stability properties of the equilibrium solution.

Ake E. Andersson
Leader
Regional Issues Project

September 1984
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ABSTRACT

The combined "user" equilibrium of travel networks and residential
location markets is shown to exist and to be unique in the expected allocation
of households to residential locations and to the routes and 1links of the
network, in the vacancies and rents of residential locations and in the con-
gested travel time and cost of each network 1ink. The formulation combines a
multinomial logit model of households' location and route choices derived from
utility maximization, a binary logit model of house owners' offer decisions
derived from profit maximization and the standard model of network congestion.
A travel disutility measure (consistent with utility maximization) replaces
the standard "generalized cost function". The proof utilizes a non-
linear programming formulation which reproduces the simultaneous equilibrium
conditions of the behavioral formulation. The stability of the unique equili-
brium position is briefly discussed, a computational algorithm is proposed and
hints for generalized formulations are provided.
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THE COMBINED EQUILIBRIUM OF
TRAVEL NETWORKS AND RESIDENTIAL
LOCATION MARKETS

Alex Anas

1. Introduction

This paper concerns the simultaneous formulation and solution of two
equilibrium problems each of which has attracted a great deal of attention.

The first of these problems is the equilibrium assignment of commuters
to the links of a congestible link-node travel network. This problem has
attracted the attention of transportation planners at least since 1952 and is
of central importance in the formulation of "traffic assignment models", a
key step in practical transportation planning procedures.

The second problem is the equilibrium assignment of households to geo-
graphic housing submarkets. This problem has attracted the attention of urban
economists at least since the early sixties. It is of central importance in
the formulation of "residential location models" which are crucial to housing
market analysis and also to transportation planning, since the locations of
families is a first step in any calculation of travel demands.

Although each of these two equilibrium problems has been studied rather
extensively, there is no treatment in the literature of their simultaneous
solution.

In treating the problem of travel network equilibrium, it is normally
assumed that residential and employment locations are predetermined and that

the number of trips (or flows) originating at a workplace and destined to a



home location are known and fixed for all pairs of the origin-destination
matrix. These flows are obtained from the trip generation, trip distribution
and mode split procedures which normally precede the network assignment problem.
In the network equilibrium problem, the flows are assigned among the routes
available for travel between each origin to destination pair. Routes consist
of a sequence of links on the network, and a 1ink'is normally shared by several
routes connecting various origin-destination pairs.

A function of average travel time and cost (dubbed "generalized cost")
incurred in traveling along a 1ink is assumed to be an increasing function of
the number of trips simultaneously traveling on that 1ink. The network problem
is then to find the equilibrium flow and generalized cost on each link (and,
by summation, on each route). Two equilibrium concepts have been developed and
applied.

The first equilibrium concept may be labelled "deterministic user equili-
brim". It was stated by Wardrop (1952) and analyzed in the formulation of the
network problem by Beckmann et al. (1956). This equilibration principle assumes
that each trip takes the least costly route between the origin and destination
points, and that all travelers perceive costs identically. Consequently, all
routes connecting an origin-destination pair and carrying some traffic at equi-
Tibrium have equal costs at equilibrium, and all competing routes which remain
unused have higher costs. These conditions are also known as those of "user
optimal equi]ibriumf because they incorporate the notion that each traveler is
in equilibrium and, once at equilibrium cannot improve his cost by changing
route. Beckmann et al. showed that Wardrop's user optimal equilibrium conditions

can be obtained as the unique solution of an optimization problem.
The second equilibrium concept may be called "stochastic equilibrium" and

1s developed in a formulation by Dial (1971) and more recently by Daganzo and




Sheffi (1977). Underlying the stochastic equilibrium formulation is that not
all travelers perceive the same travel cost structure. Thus, while each travel-
er may still behave as a deterministic cost minimizer, a population of such
travelers who are identical in all aspects will disperse over the available
routes because of unobserved (to the analyst) probabilistic variations in their
perceived travel costs. At equilibrium, each of the available routes between

an origin-destination pair will carry some traffic, even though the observed
component of these route costs can vary greatly among them. At equilibrium,

the expected number of travelers (expected demand) choosing each route will
create those congested costs which give rise to precisely the same expected
number of travelers. Probabilistic network assignment has had substantial appeal
because the preceding steps in transportation planning, for example, trip dis-
tribution and mode split were already conceived in probabilistic terms and sys-
tematicaliy formulated as such by Wilson (1970). The stochastic assignment
models thus made possible the application of the trip dispersion concept at all
levels of the transportation planning process.

More recently, Florian et al. (1975, 1978) and Evans (1976) developed
models which combined Wilson-type trip distribution with stochastic user equi-
Tibrium. Boyce (1980) and Boyce et al. (1981, 1983) extended the scope of these
combined models to 1incorporate the choice of route, mode, destination and
1ocation]. A major characteristic of these combined models (those dealing with
destination and location choices) is that they do not consider the geographic
distribution of the housing stock and the equilibrium assignment of households
to residential locations via the adjustment of housing prices (or rents). To
gain a better understanding of this equilibrium assignment we turn to the second
equilibrium problem: the assignment of households to residential location sub-

markets.




In treating the second problem, it is normally assumed that network
travel times and costs are fixed and that they enter the utility functions of
households alongside with housing prices and housing and location attributes.
Housing prices, however, are not fixed. In the short run, during which the
housing stock distribution remains unchanged, prices adjust to balance the
expected number of households wishing to locate in each housing submarket with
the expected number of sale ad rental of dwellings in that submarket. This
assignment determines equilibrium prices as well as vacancies in each submarket.
At equilibrium, each household Tocates in the submarket which maximizes the
household's utility and each dwelling goes to the highest profit use (occupied
or vacant). In the long run, the housing stock can change and land prices ad-
just to match the expected demand for housing with the expected supply of it
in each zone.

Location models faithful to the above principles have been examined since
the pioneering work of Alonso (1964) and the linear programming model by
Herbert and Stevens (1960). The latter model deals with the allocation problem
deterministically but a probabilistic version of it, incorporating dispersion
in residential locations, was proposed by Senior and Wilson (1974). A dis-
equilibrium model which incorporated dispersion was proposed by Anas (1973),
and a model by Los (1979) proposed another»disequi]ibrium formulation incorpor-
ating the concept of bid rent in a model with a travel network. More recently,
McFadden (1978) examined the demand for residential location using multinomial
logit and related generalized extreme value models. Anas (1982, 1983) developed
a large scale econometric model of the residential location market in the Chicags
SMSA, employing logit and nested logit models for household and house owner
behavior, showing how equilibrium rent distributions can be computed given exo-

genous changes in the travel time and travel cost structurez.




The present paper extends Anas's model by incorporating route choice
simultaneously with location choice. Housing rent, travel time and travel cost
appear in the utility function simultaneously and the concept of generalized
cost is discarded in favor of an endogenously determined travel disutility
measure. The model employs probabilistic network assignment whereby the equil-
ibrium link travel times and costs are determined simultaneously with the
equilibrium location rents and the physical allocation of households to the
network and the housing stock.

This paper achieves an overdue closure by providing a rigorous mathemati-
cal treatment of a problem which up to the present time received only ad hoc
treatment. There have been several practical attempts, reported in the liter-
ature, to combine a network equilibrium model with a Tocation model taking
land (or housing stock) constraints into account. A1l of these attempts are
in the tradition established by Lowry (1964). Most notably Putman (1974)
attempted to combine Goldner's (1964) PLUM model with a network assignment
model. A similar attempt is the work of Peskin (1977). In a series of articles,
Berechman (1980, 1981) examined the structure of such “integrated" models but
did not propose a consistent improved formulation. The central deficiency
with all of these attempts, as well as with Berechman's investigation, is that
the equations do not incorporate location prices. Thus, equilibrium is achieved
by artificially forcing demands to match supplies by means of arbitrary ad-
justment factors or unrealistic reallocations of excess demands as in the
original Lowry model. The current paper shows how these deficiencies can be
eliminated.

The assumptions and notation are described in section 2, the combined
equilibrium is formulated in section 3, existence and uniqueness of equilibrium
are discussed and proved in sections 4 and 5, alternative computational algor-

ithms are proposed in section 6 and several extended formulations are discussed



in the final section which also outlines a future research agenda for the
further development of combined models.

2. Assumptions and Notation

Most of my assumptions are standard in the contexts of the residential
market and travel network problems. A few simplifying assumptions are
inessential and do not affect the basic conclusions. Their relaxation will
be discussed in the final section.

The assumptions are as follows:

Al: Each household has one working member who makes one commuting trip
(inessential).

A2: There is only one mode of travel for commuting and this is a congestible
network (for example, a highway network). The assumption of a single
mode is inessential.

A3: Workplaces and dwellings are aggregated into mutually exclusive geo-
graphic zones, hereafter called "zone of residence". Each zone is
assumed to be internally homogeneous. For example, all dwellings
located in a zone are assumed to be jdentical (inessential).

A4:  The travel network consists of a number of links and nodes. A node is
a point where two or more links meet. Zones of work and residence are
identified with the nodes of the network and all trips originating in
such zones are loaded onto or unloaded from the network at these nodes.
Travel within zones is assumed to be free of congestion and is neglected.
Given any pair of work-residence zones there is a finite (and realistic-
ally, "small") number of routes for travel between the two zones. Each

route is a sequence of 1inks to be traversed in that order. Links are

normally shared by more than one route and each 1ink belongs to at least

one route (standard).




AS:

Ab6:

A7:

A11 travel is assumed to begin simultaneously in a rush-hour type of
behavior. Due to congestion, the travel cost and travel time along a
1ink are functions of the number of commuters traveling on that link
(standard).

A11 households (commuters) are assumed to be homogeneous in preferences
except for random disturbance terms (inessential). Their utility is a
function of travel time, travel cost, the rent for housing and other
attributes of the route of travel and the zone of residence. Given the
zone of work, each household chooses a zone of residence (where a dwell-
ing is selected) and a route of travel from the zone of work to the zone
of residence. These choices are made simultaneously and by maximizing
utility over all available zones of residence and associated routes of
travel.

The owner of each dwelling (or landlord) decides whéther the dwelling
should be let (or sold) or kept vacant. This offer decision depends on
the rent, the differential costs of maintenance for occupied and vacant
dwellings and other factors,

Our notation is as follows:

N1 : number of households (= commuters) employed at i,

S. : number of dwellings at j,

J

Ri': the set of routes, feasible for travel, connecting zone of work i
J° and zone of residence J. The feasibility rule can be used to
exclude overly circuitous routes, routes which repeat the use of
the same link and others which would not be used in reality.
However, each link on the network must belong to at least one
feasible route.

slijp: a set of Kroenecker deltas such that with 2 denoting a 1ink and
Rij denoting a route, Glijo=] if QspeRij, and Slijp=0 otherwise.
f, : the number of trips on network link 2.

t_ ¢ travel time on link 2.




CQ: travel cost on 1ink %.

ggffg): link congestion function for 1ink %, measuring 1ink travel
time as a function of travel volume.

hz(f ): link congestion function for link &, measuring 1ink travel cost
as a function of 1ink travel volume.

r. : residential rent in zone of residence j.

J
p; . : probability that a commuter employed at i will choose residence at
1)o A
Jj and route of travelp ERij'
q. probability that a dwelling owner at j will keep his dwelling unit
jo
vacant.
qj]' probability that a dwelling owner at j will offer his dwelling for

occupancy.

XiioF the expected number of trips from zone of work i to zone of resi-
J9° dence Jj and via route pERij‘

yjo: expected number of vacancies at zone of residence j.
yj]: expected number of occupied units at zone of residence j.
uijo: the fixed part of the utility of a household (employed at i, residing

at j and choosing route peR..), which depends on fixed factors other

than rent, travel time and {favel cost.

Vjo: the maintenance cost of a vacant dwelling in zone of residence j.

vj: € Maintenance cost 6f an occupied dwellingin zone of residence J.

€53, ¢ the part of a household's utility which is treated as a random vari-
J “able and varies across households for each (i,j,p) due to unobserve:

attributes.

Nig* the part of the cost of a vacant dwelling which is random and varies
J across dwellings.

the part of the cost of an occupied dwelling which is random and
varies across dwellings.

ﬂj]:

“’Yr’Yc<0: the marginal disutilities of rent, travel time and travel cost
respectively.

B>0: the marginal profitability of rent.
Us s the total utility of choosing zone of residence j and route of trave
3P 5 for a household employed at i.

njo: the total profit of a vacant dwelling in zone j.

"j]: the total profit of an occupied dwelling in zone j.




3. The Combined Equilibrium Problem

We first discuss the utility and profit maximizing submodels and then
formulate the combined travel network and residential location equilibrium
problem as a simultaneous equations problem,

3.1 Utility maximization: choice of residential location and travel route

Suppose the utility function is given by

u‘ijp = ar-j + YTZEGHJOTE+ Ycialijpcl + u‘ijp + E'ijp . (1)
Then,
p-ijp = Prob [uijp> ukITIS' V(k,m,s) * (19.]99)] . (2)

If we assume that the eijpls are identically and independently distributed
according to the extreme value distribution then (2) becomes the multinomial
logit model,
' § o 8
exp{arj * Y B85 et e ey gpCe t ”ijo}

= ’ (3)

| . + U,
DoLooexplan 4y I8 T 4y D600 * Uyl
m seRim '3 2

Pijo

and the expected number choosing zone of residence j and route p is,

X150 = N Pigo - (4)
Of course, £ I P:. = 1.
J oeRij 1Jp

Since a, v_, v, and the uijp's are constants, equation (3) can hereafter

be denoted as Pijo

decreasing function of the rent of its own zone but a strictly increasing

= pijp(F} T, ¢). Each choice probability is a strictly

function of the rent of other (substitute) zones. In particular,
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Py 1 - SER_'piks) <0 fork=j

= J
ap'ijp/ark = (5)

=p

ije : Piks ~ 0 fork#J,
s€Rik

where s ¢ Rik'

3.2 Profit maximization: the decision to let a dwelling

Let a landlord's profits for a vacant and occupied dwelling respectively

be given as,

"j0 © Vjo T Mjo (6)

T Brj -Vt N5 - (7)
Then,

%0 * Prob [“jo > wj1] (8)
and,

957 =1 - a5, - (9)

Assuming that njo

ing to the extreme value distribution, we derive the binary logit probabilities,

and nj] are identically and independently distributed accord-

exp {-vjo}
Q0 * : : (10)
exp {Brj - Vj]} + exp {°vjo}
exp {Brj - le}
a = _ , (1)
exp {Brj - vjl} + exp {°vjo}
and the expected choices are,

.. =S.q. 12
Y50 = S3%o0 (12)
.y =S.q. 1
Yi1 = $595 (13)
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The probability of occupancy is an increasing function of the rent, In
particular,
>0 (14)

an] /al"j = BQ--|CI

j17jo

3.3 Network congestion

The flow on any link £ is computed as,

I 6 X, (15)
€

and the travel time and cost of the link are,
T, = g,(f)y) (16)

and

Cp = hz(fl)' (17)

Some comments about the properties of these functions are needed. The assump-
tion that travel time increases as a function of travel volume, i.e. Bgl(fl)/
afl > 0, is of course valid, but it is reasonable to assume further that

azgl(fl)/afi > 0, and that lim gz(fz) = = where K, is the physical capacity
E*Kl
of 1link 2. The travel cost function is known empirically to exhibit a minimum.

This occurs because as traffic volume falls away from the physical capacity
Kl, travel speed increases and this improves fuel consumption efficiency
initially.
In practical applications of network models, analysts commonly deal not
with travel time and travel cost separately but with a weighted combination of
the two, dubbed "generalized cost™. The generalized cost function is assumed
to have the shape indicated in figure 1(c) with the concept of a "design capacity?®,
Dz’ replacing the physical capacity, Kg. For example in the well known Bureau
of Public Roads function b =1.15 and d = 4.0 with a,and D, link-specific

parameters.
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The problem with generalized cost measures is that the weighting of time
and cost is not objective, as presumed, but subjective and occurs in the utility
function. Thus, instead of generalized cost functions one should refer direct-
ly to the "disutility of travel function" which is constructed by weighting
the gz(-) and hz(') functions with their respective utility coefficients. The
rest of this paper will rely on this more sensible procedure. Thus, the dis-

utility of travel on link 2 is,

8, = dY-ch,(fR,) - Ychz(fz) >0, (18)
Since hz(') is not everywhere increasing, (18) need not be everywhere increasing
either. If not, this introduces a nonconvexity which may lead to the presence
of multiple equilibria in the network equilibrium problem. To avoid this
possibility, it is sufficient to assume that the disutility function is every-
where strictly increasing because the strictly increasing 92(') dominates the
hz(')‘ Thus, to obtain all the proofs of this paper I will assume that,

3g,(+) 3h ()

-y

C
L af!,

-y >0 . (19)
T oaf

Of course, this assumption is technically no more restrictive than the assump-
tion of increasing generalized cost functions commonly employed in the liter-
ature.

3.4 Combined equilibrium

Let there be j =1 . . . J zones of residence and £=1 ., . ., L Tinks on
the travel network, then the combined equilibrium problem can be written as a
system of J + L simultaneous equations in as many unknowns which are: the
vector of zonal rents r = [r1,r2,...,rd] and the vector of link disutilities

A = [A1, Bys ves AL]. Once these disutilities are obtained, T1ink flows can
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be obtained from (18) and 1ink times and costs computed from the gz(-) and
hz(°) functions.

The combined equilibrium conditions are:

LN, I pijp(r, a) - qujl(rj) =03 j=1...9 (20)
i peR;
1]
Boty, 9 (F) +y ho(f) =05 2=1...L (21)
where,
fzé DN T T Sy poo (Fy B)
i J DGRij J J

Equations (20) state that the expected number of households choosing
zone j are equal to the expected number of occupied dwellings in zone j. This
is the condition of residential equilibrium. It is proven in Anas (1982)
that given fixed values for the travel time and travel cost vectors, T and c,
équation (20) can be solved for a globally stable unique equilibrium rent
vector r. One existence and uniqueness proof can be obtained by showing that
the Jacobian matrix of (20) has a negative dominant diagonal. However, since
we will prove existence and uniqueness for the combined problem we will not
dwell on the details of this proof.

Equation (21), given the rent vector r, represents the traditional net-
work equilibrium problem. The uniqueness and stability of this problem
hinges on the assumption of an increasing travel disutility (19). For a
paper focusing on the existence, uniqueness and stability of traffic equilibria

see Smith (1979).
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4. Existence: A Graphical Illustration

Establishing existence of an equilibrium for the combined problem is
straightforward. The proofs of the next section establish both existence and
uniqueness. Therefore, the purpose of this section is not only to demonstrate
existence but to provide the useful graphical illustration of the solution
to the combined equilibrium problem.

First, we consider the residential equilibrium solution given arbitrary
values for the vectors of link times and costs, T and ¢ and thus for the
link disutilities, A. From (5), the expected demand for zone j is everywhere
a downward sloping function of rent, rj. Furthermore, given fixed and arbitrary
values of the rents of zones other than j, the expected demand for zone j can
be made to get arbitrarily close to zero by increasing the rent, rj. This
establishes the fact that the expected demand function is always asymptotic to
the rent axis. Similarly, from (14) the eipected supply of dwellings in zone
J is a strictly increasing function of the zone's rent. Furthermore, as the
zonal rent, rj, approaches infinity the expected supply approaches the exist-
ing supply since qu approaches unity. This establishes that the expected
supply function is asymptotic to the vertical line at Sj (see figure 2). It
follows then that the expected supply and expected demand functions intersect
only once in the intervals (O,Sj) for each zone j. Such an intersection
occurs regardless of the values of & (or T, c) and the rents of the other
zones.

Note that there is nothing 1in the specification of the choice probabil-
ity functions to prevent negative zone rents from occuring. A negative rent
will occur in a zone if the expected demand function intersects the horizontal
axis at some point z which falls between zero and Sj and the supply function
intersects the same axis in (z, Sj)' Then the two functions will intersect

each other below the horizontal axis.
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The possibility of negative rents may appear troublesome but, of course,
this is not the case. First, the possibility of negative rents is theoreti-
cally valid in a short run model with the housing stock in place and with
vacancies possible. If the cost of maintaining vacant units is sufficiently
higher than the cost of maintaining occupied units, then landlords will find
it preferrable to subsidize occupancy (for example, by providing services and
privileges to tenants greater in value than a nominal rent) rather than keep
dwellings vacant. Of course, it is easy to rule out negative rents by making
some simple changes in the specification of demand side choice probabilities.
For example, suppose that "5 in the utility function (1) is replaced through-
out by rj' : log rj. Then each zonal demand function is asymptotic to the
horizontal axis from above, and negative rents are not possible regardless
of the precise specification of the supply side choice probabilities (as long
as these increase with rent).

The existence of an equilibrium for the network problem can be seen
by examining demand and supply for eachA1ink on the network as a function of
travel disutility (18). When this disutility is zero, then regardless of the
values of r, and times and costs on other 1inks, there is a finite volume of
traffic on 1ink 2. As the disutility approaches infinity the flow diminishes
asymptotically toward zero (see figure 3).

The above arguments prove that there is a unique intersection point
for each network 1ink and each residential zone regardless of the values of
the unknowns for other zones and 1inks. Thus, at least one equilibrium point

exists for the entire system of zones and 1inks.



5. Uniqueness:
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A Nonlinear Programming Formulation

In this section I will deri
(21) as the solution of a nonline
ming problem incorporates the con
we also obtain a macrobehavioral
in section 3, was derived from ut
time, the programming formulation

equilibrium so‘lution.3

The programming problem is
Minimize S
{x'ijp’ .Yj~|s _on, fl

given a, Yoo Yo < 0, 8> 0}
subject to:

I I X.: =N, =0 i

s 1Jp 1

J QERij

Z X-- - y- = 0 ; j
ije 31
i peRij
. + Y., =-S.=03;]-=

Yjo *¥p =33 =033 =1

1 1

—f =2 L §,..X:.

J
X 20 al (i,j )
1J‘p »JaP ), .YJ-~|

ve the nonlinear simultaneous equations (20) -
ar programming problem. Since this program-
cept of entropy introduced by Wilson (1967)
interpretation of the combined model which,
ility and profit maximization. At the same

allows us to prove the uniqueness of the

as follows:
f Y f
A Vg % c 2
= —1I 7 g,(s)ds + —=ZI J "h,(s)ds
azo 2 C!zo 2
- %-z Iz xijp1og xijp + %-Z Iz xijp”iia
ij peRij i peRij v
+lZy.logy. +1—Zv.y. +.1—Zy.’|ogy.
g ;731 j1 "8 5 "31731 "8 S 7jo jc
J J J
+ l-z V. Y- (22)
g ; Jjo’jo
J
=1 ..., (23)
=1 ..., (24)
. Jy (25)
=0; 2=1 . L (26)
> > . >
=0, Yio * 0 all j and fl =0all 2. (27)
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In forming the Lagrangian of the above problem, we assign Lagrangian
multipliers o, to (23), rs to (24), Aj to (25) and &, to (26). Forming the
Lagrangian, differentiating with respect to xij ’ yj1, yjo and f,, setting

the resulting equations to zero and rearranging terms we get the following

conditions necessary for an interior solution:

Xjjp = €XP (-1 + aoi) exp (arj - isziijz + “ijp)’ (28)
Y1 = exp (-1 - ij) exp (Brj - vj1), (29)
Yio = €xp (-1 - BAj) exp (-vjo), (30)
b, = = 9,(F) -y h (f). (31)

Differentiating with respect to the Lagrange multpliers we recover the
constraints (23) - (26). Substituting (28) into (23) we eliminate the aci's

and we recover the household expected choice relative frequencies

fido (2 p, ) olory - Baigpte Uig) . (32)
N I I
1 K seRy, PN 10 piks® e ks

Substituting (29) and (30) into (25) we eliminate Aj and we recover the supply

side expected choice relative frequencies,

exp(Ery - vyy) : (33)

Y.
L -
s (= qj])

Br. - v. -V.
; exp( rs vJ1) + exp( VJO)
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Yo (s q. )« —P o) : (34)
SJ exP(Brj"Vj‘I) + exp('vjo)

Substituting (32) and (33) into (24) we recover the residential market
equilibrium equations (20), and substituting (32) into (26), and f2 from (26)
into (31) we obtain the network equilibrium equations (21). The Lagrangian
multipliers of (24) appear as the zone rents, rj, and the multipliers of (26)
as the link disutilities, B,

Existence and uniqueness proofs can now be formulated:

Theorem 1: An equilibrium solution to (20), (21) exists if and only if

nAa

I N. =L S. .
i 1o 9

Proof: Suppose I Ni >z Sj . Then, from (25), yj] > Sj for at least some j
* i J
and yjo < 0 for that j. Such a solution is not feasible and thus there is no

solution to the optimization problem (22) subject to (23) - (27). However,

if L Ni ss Sj a nonempty, closed and bounded feasible set exists and thus
; .

an optimal solution which reproduces the equilibrium equations (20) and (21)

exists. Theorem proved.

Theorem 2: An equilibrium solution to (20), (21) is unique under the assump-
tion of an increasing travel disutility function (19).

Proof: The optimization problem (22) subject to (23) - (27) is a programming
problem with an objective function which is strictly convex in the variables
.{xijp’ yj], yjo’ fz} . This strictly convex objective function is defined
only for non-negative values of these variables. The feasible set de-
fined by equations (23) - (27) is convex and bounded. It follows that
there is a unique interior solution: the expected allocation of households to

zones, routes and links and the expected allocation of dwellings to vacancies
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are unique. To see the uniqueness of the zonal rents, rj, we can write (24)
as,

T y S (r.)
Xe: = 5.q.,(r;).
5 “Rij ije JUaTY s

From (14), the right hand side increases monotonically with rj. Thus, a unique

*

*
. and a, computed

* *

solution rj exists. From (18), since f2 is unique, Tz , C
*

from this f, are also unique because gg(-) and h£(°) are single valued.

Therefore, the entire solution of allocations, rents and travel times and costs
* * * * * * * . . d
{xijp , yj] , yjo . f2 . rj s Ty » Cy } is unique. Theorem proved.

No results regarding the local or global stability of the unique combined

equilibrium position are provided in this paper. The stability of traffic
equilibria (i.e. equations (21), given r) has been proven (see Smith (1979)).
Similarly Anas (1982) proves the global stability of residential location equil-
ibria (i.e. equations (20), given 4).

6. Implementation: Estimation and a Proposed Algorithm

The implementation of the model requires two steps: (a) estimation using
maximum 1ikelihood and (b) an algorithm for obtaining the equilibrium solution
given the estimated coefficients.

Estimations of the demand side choice model (3) and the supply side choice
model (10), (11) are separate because these two models do not have any coeffi-
cients in common.

Estimation of the demand side model consists of finding a, Yoo Yo and any
coefficients included in u1jp. This quantity would normally be specified as
>

T
n=1

K

. = N 7 .
Uisp k£1 K% 5ok v,{109 exp(an)} (35)
where the w's are attributes describing zone and neighborhood characteristics

including zonal average dwelling characteristics and also attributes of the
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route other than time and cost. The quantity {<} is a precomputed inclusive
value measuring the expected utility of choosing a dwelling within zone j as a

function of the composite intrazonal utility z. . The conditional probability

jn
of choosing dwelling n having chosen the zone j can then be given as,
>3
P40 © exp(zjn)/mil exp(zjm) . (36)

The intrazonal utility zjn should be a function of intrazonal, dwelling speci-
fic deviations in rent, time, cost and w's from the zonal mean values. For
consistency with utility maximization 0 < Yq 2 1. The combined equations

(3) and (36) yield the joint probability p; known as the

ijon = PijoPn|ije

nested logit model.

If aggregate choices of zone and route are observed as nijp’ the log-

likelihood function to be maximized is,

~Likelih = . ce .
Log-Likelihood = £ I & ninLog Pijo (37)
ijJ peRi.
J
If disaggregate choices are observed so that e?j3= 1 if commuter h chooses
(j») from workplace i and Q?j = 0 otherwise, then the log-likelihood function
is,
. . _ h h
Log-Likelihood = r I ¢ ¢ 854 109 ps:  » (38)
hijopeR,, 'I° 1Je

1]

where p?jp is equation (3) evaluated using the values of the attributes for
commuter h. In each case we maximize the 1ikelihood function with respect to
By Y5 Yer YPs eees Yo Y given observations on rent, time, cost, the w's
and the inclusive value.

Estimation of the supply side model follows similar lines. In aggregate
estimation we observe the number of vacant and occupied dwellings in each zone

(mj] and mjo) and we maximize
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Log-Likelihood = g (mj]1og 957 + mjo1og qjo) (39)
with respect to 8 given the zonal average values of rj, Vj]’ Vjo'

In disaggregate estimation we maximize,

. \ k k
- =Z (6§ 8
Log-Likelihood : (8] Tog q,y + ¢ log g, ) (40)
where if dwelling k is vacant then 52 =1, 5: =0 and if it is occupied then
ko k _ ,
00 = 0 and 51 = 1, In this case we must observe "er Vi1 and ko * For

empirical estimates see chapter 4 in Anas (1982).

A computational algorithm to solve the combined equilibrium problem is
easy to construct, Efficient algorithms which solve large network equilibrium
problems exist. Anas (1982) has developed and tested a very efficient algo-
rithm for solving the residential location equilibrium problem (equations (20))
and has implemented this algorithm to the Chicago SMSA where 1690 equations or
zones were used (see chapter 5).

Interfacing Anas's algorithm with a network equilibrium algorithm would
work as follows:

Step 1: Given the observed and ¢ use Anas's algorithm to find the

70
first estimate of the rent vector Fq.

Step 2: Given 7 use the network algorithm to find T and .
Step 3: Return to Step 1 and continue until r and T, c converge arbi-

« 3 . ] - J J J
trarily closely to their equilibrium values r , t , C

Other convergence
¢criteria defined on the flows and occupancy levels can also be used.

7. Extensions

Many extensions of the model can be considered. Some hints and brief
discussions are provided here.

First, the theoretical structure is not affected by the Tevel of dis-

aggregation. If the network is very detailed (large number of 1inks and
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routes), residential zones can be made arbitrarily small for compatibility.
Ultimately, it is possible to have each Ni = 1 and each Sj = 1 and represent
each commuter and dwelling separately mapping these to appropriate nodes of
the network, In this case we know from (4) and (12), (13) that xijp = pijp’
» Y31 = Q4- At such a level of detail a microsimulation procedure

J J
may be a more desirable implementation method.

Yjo = 95

Second, the model can be easily extended to include many traveler types
with distinct utility functions, many travel modes (each with a congestible
network) and distinct dwelling types with distinct rents. Existence and unique-
ness can be established when all these extensions are introduced simultaneous-
ly, by modifying the nonlinear programming formulation.

Third, choice of employment location can be introduced by making the
demand for jobs a function of wages and other factors. Wages can be determined
by location by balancing the demand for jobs with the supply of jobs deter-
mined by firms' employment and location decisions.

Fourth, two or more commuters per household can be introduced by classi-
fying families by "workplace situations" (pairs or triples etc. of workplaces)
and properly accounting for their trips over the network.

Fifth, congestion at the intrazonal level can be considered via a nested
logit structure (see (35) and (36)). One can first do an intrazonal traffic
equilibration, compute the inclusive values and enter these into the interzonal
network equilibrium problem. A sequential nonlinear programming formulation
may be used to prove existence and uniqueness. An intrazonal housing market
equilibration could be introduced in a similar way.

It is hoped that these and other extensions will receive attention in

future research.
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FOOTNOTES

This work was supported in part by a visiting professorship grant from Stan-
ford University's program in Infrastructure Planning and Management in the
Department of Civil Engineering.

In these models "destination" may refer to residential location and "location"
may refer to workplace location. Alternatively, "destination" may refer to
shopping destination and "location" to residential location,

This model known as the Chicago Area Transportation/Land Use Analysis System
or CATLAS is dynamic with yearly periods. The residential market clears
within each year and the housing stock adjusts with a one year lag.

In this paper entropy maximization is used only as a mathematical tool to
prove uniqueness. Thus, there will be no discussion of the macrobehavioral
interpretation of entropy. The equivalence between entropy formulations and

Tu1ti;omia1 logit models is by now well known, See my recent article, Anas
1983).
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FIGURE 1: Realistic congested link travel time (a) and travel cost {b)

functions and shape of "generalized cost" function (c) assumed in practice.
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