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FOREWORD 

This paper by Tdnu Puu uses a topological model together 
with a structural stability principle as a means to identify 
and characterize long run solutions as regards regional speciali- 
zation, direction of trade, and spatial organization. Within 
this setting not too restrictive assumptions are used to deduce 
results which shed new light on von Thanen's theory of location 
and spatial interaction. 
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AN ATTEMPT AT RESTORING VON TH~INEN 
- A TOPOLOGICAL MODEL 

by 

T6nu Puu 

Assmne a production and exchange economy, extended over a 

region R of the Euclidean plane. We denote the location 

coordinates by x, y. There are n productive activities, 

represented by production functions: 

which depend on the primary inputs capital, labor, and land. 

If we assume the functions to be linearly homogeneous, we can 

divide through by the input of land, to obtain the areal den- 

sities of outputs 

as well defined functions of the areal densities of capital and 

labor used. Formally qi=Qi/Mi,ki=Ki/Mi, and ti=Li/M i ' 

We assume no spatial productivity differences, so that ( 2 )  

apply at all locations. Moreover, the aggregate stocks of 

capital goods and labor force are supposed to be perfectly 

mobile. 



Considering a long-run equilibrium, we disregard the relo- 

cation costs of these stocks. Accordingly we have removed 

all the reasons for specialization and trade employed by tradi- 

tional economists. Considering productivity differences and/or 

relocation costs for inputs would only reinforce the points we 

are going to make. The single immobile input is land, but its 

quality is the same everywhere, and its usefulness only varies 

with its centrality of location. This variation in the useful- 

ness of land will be reflected in the spatial variation of land 

rent. Capital rent and wage rate will, due to the assumption 

of costless relocation, become spatial invariants. 

Supposing that a given production activity is established 

at a location, the optimal capital and labor densities will be 

determined by the conditions 

and 

By pi we denote the local price of the commodity, whereas r is 

capital rent and w wage rate. The latter two are, as we have 

noted, spatial invariants. Accordingly, (3)-(4) determine ki 

and ti, and, due to (2), qi everywhere once pi is known. 

The question is which of the n different activities to 

establish at any given location. To answer this we first 

derive a set of relations that must hold among the commodity 

prices, provided the commodities are produced. Profits per 

unit land area from the production of the i:th commodity are 

From (3)-(4) we recall that ki and Ri are completely determined 

by pi. Accordingly, T~ as well is determined by pi. Now, the 

total profits of the landlord from combining the various acti- 

vities are 



where m are the fractions of land used for the various activi- i 
ties. As a.(p.) are independent of mi, we note that (6) is 

1 1  

linear in the latter. Assuming that the fraction of land dis- 

posable for production is m, we get 

as a linear constraint. 

Maximizing (6) subject to (7) has the obvious solution: 

Put m.=m for that activity for which a is maximal and m.=O 
1  i 1  

for the rest. If several of the ai attain this maximum value 

all these activities are equivalent, and m can be distributed 

in any way among them. 

The maximum profit per unit land area, obtained from putting 

land to the best possible use obviously determines land rent. 

We denote it 

g = Max .rr i 

The condition for a mix of various activities obviously is that 

for all those activities that are established. This is our first 

important conclusion. We should recall that the forms of the 

functions .rr.(p.) are completely determined from the production 
1 1  

technologies, as represented by the production functions f' (ki ,Pi) , 
and depend on nothing else. 

There is one activity that has not yet been introduced, 

namely the production of transportation services. To vary 

assumptions a little, let these services be produced by a fixed 

coefficient technology. This is by no means crucial - any of 
the activities listed in (1 ) and (2) could do as well. 



Thus, transportation of one unit of commodities, per unit 

distance traversed, is assumed to require the services of K 

units of capital, X units of labor andpunits of land. For 

simplicity we define the units of measurement of the commodities 

so that the input coefficients are the same for all. This in 

no way restricts the analysis. We are free to choose the units 

and can hence define suitably small units of goods that are 

heavy or bulky as compared to those more easily transportable. 

The cost of transportation accordingly is 

at any location. Using the Beckmann (1952) continuous model of 

transportation, where the flows of traded commodities are con- 

strued as vector fields, the conditions for optimum transporta- 

tion are 

Here, @i= ( @  (x ,y) , @2 (x ,y) ) represent the flows of trade , 
i3 

with 1 @i 1 = J ( @ ,  + @i2) being the quantities of traded corn- 
- 

rnodities, and the unit direction fields @i/ 1 @i 1 = (cos6, , sine, ) 
I I 

being the spatial directions of the flows. 

We observe that the cost of transportation h(g) only depends 

on land rent, due to (lo), as capital rent and wages are invari- 

ants, and that, due to our choice of units, the cost is equal 

for all commodities. 

The condition (11) tells us two things: For goods actually 

transported, they are shipped in the directions of the price 

gradients, and, in these directions, prices increase at the rate 

of transportation costs. Concentrating on the latter fact 

we take norms of both sides of (11) and get 

for all commodities actually transported. 



The question is how the conditions (9) and (12) fit together. 

Taking the gradient of (9) we find 

for all goods both produced and transported. As lgrad g l  and 

h(g) are the same for all i we conclude that n i  must be the 

same functions for all commodities produced and transported. 

But, we saw that nil and hence n' were independently i 
determined by the production functions fi and nothing else. 

Accordingly, one function IT' could be used in (14), which thus i 
provides a differential equation for determining the function 

g(x,y). But, it would be most unlikely that any other nl would 

then fit into (14) with g already solved. Using such a simple 

transversality principle we arrive at the following: 

I. Theorem of Specialization: 

At each location exactly one commodity is both locally 

produced and transported. There may be any number of other goods 

only produced for local consumption. The same is true about 

goods only shipped but not locally produced. 

We will disregard local production and concentrate on the 

trade pattern. Still, as we are dealing with an arbitrary 

number of commodities, the pattern might be incomprehensibly 

complex where all those flows, that actually occur, cross each 

other. Observe that we have no a priori radial communication 

with a single "central city" as von Thben. Accordingly, it 

might be difficult to speak of any structure of the spatial 

economic organization. 

IIowever, the picture can be very much simplified by a few 

elementary observations. From (9) we conclude that in a given 

specialization zone the price gradient of the single actually 

produced and transported commodity coincides in direction with 



the land rent gradient. Accordingly, for this commodity, the 

constant price lines, and the constant rent lines coincide 

everywhere in the zone of specialization considered, including 

the boundaries. The latter actually are curves of constant 

prices of the commodities in the specialization zones on either 

side of the boundary in question. 

This, however, implies that the boundary conditions are 

the same for both differential equations (12) for the commodities 

on either side of a common boundary. 

As the differential equations are the same for all commodity 

prices, the only way the solution could differ would be by 

reason of different boundary conditions. Accordingly, the 

solutions coincide (except for some space-invariant constants), 

and so do the trajectories of trade. 

This reasoning can be repeated, by continuing to the next 

specialization zone, and we finally establish a: 

11. Theorem on Unique Direction of Trade 

The flow directions of all traded commodities coincide, and 

coincide with the land rent gradient. 

From the complicated picture of a mess of crossing trajec- 

tories of trade for various commodities we have obtained a much 

simpler picture with one direction of all trade everywhere. 

Accordingly, this unique direction field of the land rent 

gradient, and its orthogonal trajectories, the constant rent 

lines, some of which become boundaries between specialization 

zones, makes it meaningful to speak of a structure of the whole 

space economy with an arbitrary number of commodities involved. 

This structure, however, need not have such a simple 

character as in von ThUnen's theory, with the zones being con- 

centric rings and the flows being radial from or to one center. 

For all we have learned up to now, the structure might take on 

so many different forms that it could be an impossible task to 

describe or classify them. 

The sequel will be devoted to attempting a topological 

description of the structures, using only the principle that 



they should be robust to disturbances due to factors not 

explicitly accounted for in the model. We will see that 

the picture becomes surprisingly precise and even refutes some 

rather basic ideas about the organization of economic space. 

The trajectories traced by the land rent gradient field 

can be defined by the pair of differential equations: 

and 

where El (x,Y) = %/a and S2(x1y) = % / a y e  Can we say anything 

in general about what the system of flow lines might look like? 

It is a good principle in scientific modelling to use robust 

assumptions that lead to systems that do not change their quali- 

tative character by the smallest disturbance. Scientific model- 

ling being associated with abstraction from many facts of reality, 

one must take care that the conclusions do not crucially depend 

on some assumption that might not hold, see Arnold (1983). 

So, we must admit for changes in a system like (14)-(15). 

A suitable representation of possible small disturbances 

is by an E-perturbation, obtained by replacing (14) - (15) by 

where 

and 



so that ( 1 6 ) - ( 1 7 )  differ little from ( 1 4 ) - ( 1 5 ) .  We thus con- 

sider an abstract metric space of differential equations where 

"distance" is represented in terms of a c1 topology. 

The land rent gradient thus should be robust, i.e., quali- 

tatively or structurally stable, under €-perturbations of the 

kind explained. To make this precise we next have to explain 

the concept of qualitative equivalence of two sets of trajec- 

tories that solve ( 1 4 )  - (15) and ( 1 6 )  - ( 1 7 )  respectively. 

If we can find a continuous one-to-one mapping from the 

solution space of ( 1 4 )  - ( 1 5 )  to the solution space of ( 1 6 )  - ( 1 7 )  , 
such that each trajectory is mapped on another trajectory, and 

each singularity on another singularity, with directions of 

trajectories and types of singularities being preserved, then 

we obviously have an equivalence of the type we are looking for 

between the sets of trajectories. 

The equivalence between the flow portraits can also be 

understood intuitively if we consider pictures of flows drawn 

on perfectly elastic rubber sheets. Then all the shapes into 

which such a picture could be deformed, by stretching without. 

tearing, would constitute a class of qualitatively equivalent 

flow portraits. 

Now, the concept of structural stability is at hand. If 

perturbations of the differential equations only lead to small, 

qualitatively eqcivalent, deformations of the flow 

portrait then it is stable. If the flow portrait changes 

qualitatively, so that trajectories are reversed, singularities 

appear,split, fuse, or disappear, then we deal with structural 

instability. 

This idea was formulated by Andronov and Pontryagin ( 1 9 3 7 ) .  

Later the work was completed by Morse, Smale, and Peixo.to. Of 

great interest are two remarkable theorems. 

The approximation theorem tells us that, in the abstract 

space of differential equations, almost all the elements belong 

to the subset of structurally stable ones. In formal terms the 

subset is dense and open, and hence the unstable equations are 

everywhere and in almost all directions surrounded by stable ones. 



Accordingly, we not only know that structurally unstable con- 

figurations do not persist in a world of change, but also that 

every time an unstable configuration is destroyed it is trans- 

formed into a stable one. 

This happy state of affairs only holds in two-dimensional 

systems, and fortunately this is exactly what we are dealing 

with. As Smale has demonstrated, with three dimensions already, 

it is quite likely that unstable systems are turned into other 

unstable systems. 

About this and the even more interesting characterization 

theorem Peixoto (1977) or Hirsch and Smale (1974) can be con- 

sulted. 

The characterization theorem tells three things: (a) any 

structurally stable flow is laminar , or topologically equi- 
valent to a set of parallel straight lines, almost everywhere; 

(b) the exception is a finite set of hyperbolic singularities, 

i.e., singularities with non-vanishing real parts of the eigen- 

values of the linearized differential equations. As we deal 

with gradient fields the imaginary parts always disappear, and 

hence nodes and saddles are the only hyperbolic singularities; 

(c) finally, there is the global result that no trajectory 

issuing from or going into a saddle point is incident to a 

saddle at the other end. 

As the flow is laminar, except at the singularities, we 

can use them to organize a basic graph at the stable flow. 

In particular, we try to draw a regular tessellation or tiling 

of space in the same spirit as do Christaller and ~Esch. 

The difference is that our picture is only topological, and 

admits all the distortions of the basic picture attained by 

stretching it in various ways. 

AS we are going to organize the picture by the possible 

singularities, nodes and saddles, the main organizing element 

consists in the two directions in which trajectories are 

incident to saddle points. This fact makes the organization 

quadratic, as demonstrated by Puu (1982), and, in particualr, 

rules out the hexagonal tilings of Christaller and Losch. The 



way the result is obtained is by starting out from a saddle 

point, where trajectories are incident in the horizontal and 

vertical directions. 

In a regular organization of space these trajectories end 

up at new singularities, which, according to the condition 

ruling out saddle connections, must be nodes. Two of them are 

stable, two unstable. 

As the stable and unstable ones are organized in opposite 

pairs we conclude that the singularities NE, SW, SE, and SW of 

the saddle points have ingoing as well as outgoing trajectories. 

In our list of admitted singularities only saddle points have 

this character, and hence, we identify four new saddle points. 

Accordingly, the whole basic graph can be oriented, as 

shown in Figure la, by starting anew from the saddles and con- 

tinuing as before. We obtain the: 

111. Theorem of S~atial Oraanization 

The only regular land rent surface, possessing structural 

stability, is quadratic (up to topological equivalence), where 

each node is surrounded by four saddles and vice versa. 

It then is a trivial matter to fill in the whole picture 

with trajectories as in Figure Ib. 

Figure la. Basic graph. Figure 3b. Complete flow portrait. 



We also note that, associated with the gradient field of 

land rent is a land rent "landscape" with hills, corresponding 

to stable nodes, and bottoms, corresponding to unstable nodes, 

equally spaced in a lattice with saddle points in the corners 

inbetween. This is shown in Figure 2. 

Figure 2. Land rent surface. 

But we noted that the specialization pattern was defined 

by contours of constant land rent. Accordingly, the orthogonal 

trajectories to the rent gradient lines are the boundaries of 

specialization areas and we arrive at von ThUnen "rings" of 

specialization as shown in Figure 3. Each hill top corresponds 

to a von Thdnen "central city", whereas the bottoms represent 

the "wilderness". This "wilderness" no longer completely 

surrounds the most peripheral ring, because we are not concerned 

with one "isolated state", but with a set of "central cities" 

with their hinterlands fused together into one single pattern. 

For this reason "wilderness" recedes to the corners between 

the various non-isolated "states". 

We have interpreted the node singularities as the most 

central and the most peripheral points in the system. What 

about the saddle points? There is an obvious interpretation 

at hand if we consider the fact that all trajectories seem to 



Figure 3. Specialization pattern. 

be attracted to them. Land rent was seen to be the main vari- 

able item in the cost of transportation. We could interpret 

this in terms of general congestion or competition for land. 

Along with congestion a main cost factor, which we have not 

brought into the picture, is the density and capacity of the 

road network. Obviously it should be better close to the cen- 

tral locations and worse in "wilderness".. 

Considering both factors, transportation would be easiest 

in points where density and capacity of roads is good, but con- 

gestion and competition for land are not too bad, i.e., at 

locations far back from "central cities" and from "wilderness". 

Such locations above all are the saddle points, and we can 

therefore understand why the trajectories would be attracted 

to them. 

By summary, we have, using no more than general assumptions 

of structural stability, established a pattern of specialization 

and seen it to be like the von ThUnen pattern of concentric rings. 

The picture differs in two ways from the original. First, 

von ThUnen's picture is geometrical, whereas the present one is 

topological, admitting a wide class of distorted pictures with 

only the same qualitative features. Second, we not only con- 

sider one isolated economy of the von ThUnen type, but a set 

of any number of such economies put together. 



The question is how reasonable structural stability is as 

a modelling instrument. Obviously, it only is a safeguard 

that in model construction we have not brought in any assump- 

tions that would destroy the whole system if there were some 

error in their precise formulation. 

This certainly is a non-restrictive principle, often used 

implicitly in prudent modelling, but seldom explicitly recognized. 

In economics it seems only to have been applied once, for 

simpler systems, by Samuelson (1947) in the "correspondence 

principle". 

The conclusions, however, seem astonishingly rich in view 

of how little restrictive the assumption is. 
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