NOT FOR QUOTATION
WITHOUT PERMISSION
OF THE AUTHOR

EXTENSION OF THE CLASS OF MARKOV MODELS
V.I. Arkin

Cpr-84-8
March 1984

Collaborative Papers report work which has not been

performed solely at the International Institute for

Applied Systems Analysis and which has received only
limited review. Views or opinions expressed herein

do not necessarily represent those of the Institute,
its National Member Organizations, or other organi-

zations supporting the work.

INTERNATIONAL INSTITUTE FOR APPLIED SYSTEMS ANALYSIS
A-2361 Laxenburg, Austria







PREFACE

In a recent book, the author proposed a new method of solving stochastic
control problems, which, unlike the traditional approach, is not based on
dynamic programming techniques. The main features of the new method are the
extension of the Markov controls and the use of non-Markov controls which de-
pend on the complete history of the process.

In this extended control domain the optimal control problem becomes a
mathematical programming problem in the space of functions and can be studied
using convex analysis. The author first generalizes the Markov control ex-
tension theorem for problems with constraints which depend on future time,
and then obtains a method for finding the optimal control in convex problems
through the solution of the auxiliary mathematical programming problem.
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INTRODUCTION

In control theory, for example when deriving existence theorems or
optimality criteria, it is often necessary to extend the class of controls
without changing the value of the problem. There are a number of well-known
methods for doing this which are based on the convexity of integrals of
measurable multifunctions and which are related to randomized and relaxed

controls.

This paper is devoted to some new theorems of this kind for control
problems involving stochastic difference equations with mixed constraints

on phase coordinates and controls.

The results presented here are generalizations and extensions of earlier

results obtained by the author [1].

1. STATEMENT OF THE PROBLEM

Let S, be a Markov process defined on a measurable space (s,E). Assume

that st has transition function Pt(s )y, t=0,1,... and initial distri-

t,dst+l
bution Po(dso).

Consider the following problem:
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Yeer = 5 Sprseeveny) 00 Y5 = ¥olsy) (2)
u =u (st) €U (s,) (3)
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u, Vt(st yt) (5)

for some measurable function Vt(s,y), i.e., ut is a Markov control. Rela-

tions (2)-(5) hold almost surely (a.s.).

Here st = (s ,...,st) is the "history" of the process st up to time

s
0’71
t and Ut(st) is a measurable multifunction with values in a Polish space U
with Borel O-algebra B such that graph Gr Ut(st) € Bx E, Y, € Rn, 9. € Rm,

and ¢t, ft, gt are measurable. Controls which have the form u, = ut(st) we

t
call non-antiecipatory.

THEOREM 1 (Sufficiency of Markov controls). Let {Gt}g—l be a non-antieipatory
eontrol and {§t}g—l a trajectory such that constraints (2)-(4) are satisfied.
Then there exists a Markov control {ut}(‘;_l and a trajectory {yt}g which
satisfy both constraints (2)-(5) and the following inequality:

1-1 -1

t+l t+1
LOEOT (syseqevpu) > ] BEOT (s
t=0 t=0

tlst+llytlut) . (6)

In other words, it is sufficient to consider only the class of Markov
controls when searching for a solution of problem (1)-(4). Thus the problems

(1)-(4) and (1)-(5) are equivalent.

2. APPLICATIONS

(1)-(4) is a mathematical programming problem in the space of variables

t . (t=1-1 . .
)}t—o Under certain assumptions, both a maximum prin-

t
{ut(s )iy, (s
ciple and an existence theorem can be derived for this problem (see, e.qg.,

[1]). By contrast, (l)-(5) is a dynamic programming problem which can be



solved only by applying Bellman's equation, and this can be very complicated.
The theorem given above states that all results obtained for problem (1)-(4)

are also valid for problem (1)-(5).

3. PRELIMINARY RESULTS

The following measurable selection theorem will be used in the proof of

Theorem 1.

THEOREM 2 (Sant-Bev). Let (X,B) be a Polish space with Borel o-algebra and
(R,F) beanarbitrary measurable space. Then for each T € F x B there exists
an F-measurable selection £ (w) (such that (w,E(w)) € T), where F is the uni-

versal completion of F.

The following corollary is also helpful.
COROLLARY. The projection of T on § is such that Projo T € F.

LEMMA 1. Let u, be a Markov control and u, € Ut(st) (a.s.). Then there ex-

ists an (F x B)-measurable Vt(s,y) such that:

(1) u, = Vt(st,yt) (a.s.)

(ii) P{Vt(st,y) € Ut(st) vyl=1 .

PROOF. Since u, is a Markov control, then there exists a Vt(s,y) with prop-

erty (i). We define the set D as follows:
D= {(s,y):v (syy) € u )l .

D is measurable, since D = {(s,y):(s,Vt(s,y)) € Gr Ut(s)}.

Let Q be the image of the measure P in the space SxRn under the mapping
st > (st’yt)' Then 2(D) = 1, ProjSD € E (the universal completion of E), and
QS(ProjSD) = 1, where QS is the projection of measure Q on S.

From the measurable selection theorem, there exists a measurable func-

tion G(s) € Ut(s) (Qs—a.s.). The function



Vt(SIY) s (s,y) € D
1
Vo (siy) = A _
u(s) , (s,y) €D

then satisfies conditions (i) and (ii) of the lemma.

LEMMA 2. Let (R,F,P) be a probability space with o-algebra Fo CFand (u,B)
be a Polish space. Take ®(w,u) to be (FO><B)-measurabZe and let w > T'(w) be
a multifunction with graph T = {w,u:u €E T(w)} € FO><B. Assume that

u(w) € T(w) (a.s.) and that u(w) is F-measurable, E|®(w,u(w) |<® . Then

there exists an Fo—measurable function v(w) € T'(w) (a.s.), such that
E®(w,v(w)) > E® (w,u(w))
PROOF. Let Y(w) = E[@(w,u(w))lFo] and set

A= {(w,u):®(wu) >¥(w ,ueTlmw} ,

A e F_, where FO is the universal com-

Q (6]
pletion of FO' Let us show that P(D) = 1.

so that A € FO><B. Denote D = Proj

If this is not true, then
PIB=Q - D}={w:0(w,u) < ¥(w), ¥Yuc=TlWw}>o0

and since ®(w,u) < ¥Y(w) for each w € B, we have E XB¢(w,u(w» < E XBW(W),

which contradicts the definition of ¥Y(w).

From the measurable selection theorem there exists an f6—measurable

function v(w), (w,v(w)) € A. This means that v(w) € I'(w) (a.s.) and
®(w,v(w)) > ¥Y(w) (a.s.)= E ¢(w,v(w)) > E ¥(w) = E ¢(w,u(w))

4. PROOF OF THEOREM 1

The proof will be divided into three parts and carried out by induction.

4.1. Inductive assumptions. BAssume that we have constructed random vectors
k

Y177
properties:

k
Yo and measurable functions Vk(s,y),...,VT_l(s,y) with the following
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n
1. Ly (s,y) €U (s,)  VYERT =1 t=k,...,T-1
ko_ gt k k kK~
) = -5- = k+1,...
2. yt f (St_l:Stryt_ert_l(St_l,yt_l))lyt yt (a.s.) t k+1, T
t+1 k k
> .. _ 1-
3.0 9 (SS Yp Ve lSeeyy)) 20 (a.s.) t =k, -1
T-1 -1
e+l k k t+1 .
oE Zk O S Y Ve By 2 E tZk LA T

The theorem will be proved if it can be established that k can be re-

placed by k-1 in these four relations.

4.2. Preliminaries. Let Yt(u) (k < t < T) beasequence of random variables
which depend on the parameter u € Uk_l(sk_l):
Y (u) = ft(s s, ,Y (u) v (s Y (w))) t >k
t t-1""¢" "t-1 " T e=1 -1 el !
Y (u) = £%(s F. o)
' = k-1'%k'Yx-1'"

It is easily seen that the Yt(u) are measurable with respect to the

. k
O-algebra F ~ x B and that Y, (u y = .
g NEYRRRLI Y e Pk-1) T Yy
Put
Gt (s S5, .,u) = gS(s. .,s.,Y. . (u),V. .( Y. . (w))
k-1'""""S¢r¥xo1 TS 1% T 1 Sy Tt ’

and consider the sets

t t ~
T = {w,u;G (sk_l,...,st,yk_l,u) >0 , ﬂ(sk_l,dsk,...,dst%-(a.s.)},

k<t<T,

where ﬂ(sk_l,ds ..,dst) is the conditional distribution of random parameters

| S

s ...,st, given s

k’ k-1°



Since
t t ~
'™ = {w,u:fG_(sk_l,...,st,yk_l,u) ﬂ(sk_l,dsk,...,dst) = 0} ,

GE = min (Gt,O), we have Tt e Fs - x B .
k-1"Yx-1

Define:

T
t
= N N :
r ek r {w,u:u € u ( )} (7)

k-1""k-1

k

sy yreeorSp ¥y = 00 (8 pespyy

su) +

Yt(u)rvt(stlYt(u))) (8)

T-1
t+1
+ z ) (s, ,s ’
=k t t+l

@(sk_l,yk_l,u) = fF(sk_l,... ,u) “(Sk—l'dsk""'dST)' (9)

rSro17¥x-1

4.3. Use of Lemma 2. Let us apply Lemma 2 to the set I'(w) = {u:(w,u) €T}
defined by (7), to the function ¢ defined by (9), and to the 0-algebra

F =F -~ . This shows that there exists a measurable function V(s,y)
O S 1Y%
k-1""k~-1
such that
~ - S - ~
EQ(sy 1 o¥p1rV (S ¥y ) 2 BO(S, p oy g0y ) (10)
and with probability 1l:
V(sk_l,yk_l) € Uk—l(sk—l) (11)
t ~ ~
.. >0 - e +S.) .
G (Sk—l' ’St’yk—l’v(sk—l’yk-l))-—O TT(Sk_lydskl 'dst) (a.s.)
(12)
This last relation is equivalent to
ct(s S.,¥. .V(s, ,9. )) >0 (a.s.) (13)
k-17°°"" tryk_lr k_l,yk_l 2 a.s. .
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4.4. Completion of the proof. From Lemma 1, there exists a measurable
function Vk_l(s,y) such that

vk_l(sk_l,yk_l) = V(sk_l,yk_l) (a.s.)

P{Vk—l(sk—l’y) € ( ) ’ VY} =1 .

Ug-1'5k-1

It is clear that the relations (10)-(13) remain valid if we replace V by

k-1 t k-1

o~ . - - k-1
Ypo1 T Y1 P Y Els yrser¥e 1 Veo1 Sy ¥ 1)) -
noting that
~ k-1
Y VS Yy )) = ¥y (t > k-1)
Then from (13) we obtain
t k-1 k-1

g (St_llsttyt_lrvt_l( )) =

St-1"Y¢-1

t ~ ~
= “en . , > .s.
G (Sk_l' :St yk_lrvk_l(Sk_l yk—l)) —.O (a.s.)

and from (8) we get

-1

E E ® k-1 k-1

t+ -
w1 ¥e VelSpr¥e

l(st.s )} =

=EF(sk_ ( ))

17 S Y1 Vee1 k-1 k-1

=E¢ (s ) >

k-1"Yk-1" Vi1 ko171

| v

~ ~ k ~ ~
= +
E® (s _1v¥y_yr8y ) B & (5 1080y iy

-1

o L t+l k k
E tgk O (s is g YV (Spyy))

-1
Z ¢t+l(st,s

t=k-1

+

2 E g1 Yol

using the inductive assumptions. This completes the proof.



REMARK. The case of independent s Let the random elements s, t = O,l...

¢ t+1

+
be independent and assume that the mappings ¢t, £ ' Ut, gt 1 do not depend
on st. Then for each non-anticipatory control one can choose a special kind
of Markov control which depends only on the values yt of the controlled pro-

cess

= . 4
Ve = Vo lyy) (14)
This implies the Blackwell-Strauch-Ryll-Nardzewski theorem on the sufficiency

of simple strategies for controlled Markov processes.

5. CONSTRUCTION OF MARKOV CONTROLS

5.1. Preliminaries. Suppose now that the convexity conditions stated below
are satisfied for problem (1)-(5). 1In this case, it is possible to construct
(quite efficiently) the majorizing Markov pair (yt,ut) for every non-
anticipatory pair (§t,ﬁt) which satisfies constraints (2)-(4). (Note that
the time moment T is not necessarily finite.)

CONVEXITY CONDITIONS. For any collection (st,yl,yz,ul,uz,a), -yl,y2 € r",
ul,u2 €U, (s), 020, there exists a u € U, (s)) such that the following

conditions are satisfied P (s ,ds  )-a.s.:

t+1

t+ 2

o l(S

1 1 t+1 2
£/ See1rY 10) + (1-a)¢ (ﬁfﬂﬁyy,u) <
t+1 1 2
<¢ (st,st+l,ay + (1-a)y ,u) (15)
t+l 11 t+1 2 2.
of (st,st+l,y ) + (L-af (st,st+l,y ) =
t+1 2
= f (Stlst+l,Otyl+ (l—OL)y ,U) (16)
t+1 1 1 t+1 2
og (st,st+l,y ) + (l-0)g (S +S 10y U ) <
t+1 1 2
<g (st,st+l,a37 + (1l-0)y ,u) . (17)

In order tosimplify the proof we shall also assume that the sets Ut(st)
t . .
are compact and that the functions ¢ ,ft,gt are both continuous with respect

to (y,u) and bounded with respect to y on any bounded set ¢ C R



-0~

|¢t| + |ft| + |gt| < KC, y € C for some constant KC > 0. Assume also that

yo(so) is a bounded function.

THEOREM 3.

1. Let sequences {ﬁt}, {§t} satisfy the conditions of Theorem 1. Then there
ex1sts a Markov pair {ut}, {yt} which satisfies constraints (2)-(5) and is

such that the process Y, 18 defined by the following equations:

Yerp = Elyeyp/scrsiyy 0y, (18)

and

t+ t+

1 1 ~ o~
> =
E¢ (S rS i qr¥ ru) > EG (s 18, 1V ouy) , t=0,1l... (19)

2. If the elements s, are independent and the mappings ¢t+l, ft+l, gt+l,

U, do not depend on s_, then it is possible to choose Markov controls of the

t’

form u,_ = u (yy)s where the process ' 18 defined by the process §t as fol-

t
lows:

Y.

-+l Ely

e+1/Ser1r¥ed - (20)

The pair {ut}, {yt} satisfies both (2)-(5) and inequality (19).

We shall now formulate two auxiliary results which will be used in the

proof of Theorem 3.

LEMMA 3. Let U be a Polish space, u(s%) be a measurable function defined on
U, a(s%) be another measurable function,cmuiﬂ(st,a,du) be the conditional
distribution of u(sh) for fixed S, and a(s%). Then for any measurable func-
tion B(st,st+l,u) such that the function Bls
following equality is satisfied:

t .
t,st+l,u(s Y) 28 summable, the

E[B(S ' S llu(st)) /s ;u) (a.s.)

t
t e+ pool = [m(s_,a(sT) ,au) B(s

S
t'Tt+l
U

£ S+

Let U be a metric compact set, Y be a compact set in Rn, S be a measur-
able space with probabilistic measure Vv, and function Y(y,u,s) be continuous
with respect to (y,u), measurable with respect to s, and with values in

finite-dimensional space.
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Assume that the following convexity condition is satisfied:
for all yl,y2 €Y, ul,u2 €u, 0<a<l1l
there exists a u €U such that v-a.s.

ap(ytut e + (L-wy (v2,u?,8) <UL -wyt +ay’u,s) .

LEMMA 4. For any probabilistic measure w on Y X U there exists a u €U
such that

f Yly,u,s) u (dy x du) f_w( f y u(dy x du,u,s)) (v-a.s.)
YxU YxU

The proof of these simple results can be found in [1].

5.2. Proof of Theorem 3. We shall prove only the first part of the theorem

since the proof of the second part is analogous to that of the first. We

shall first verify that there exists a measurable function G£ = G£(st—l'st'
yt—l) such that the following relations are satisfied:
E¢t+l(st’st+1’yt’aé) Z-E¢t(st'st+l'§t'at) (21)
ElY, ,1/8c 1 S Sea1 Yoyl = ft+1(st,st+l,yt,5£) (22)
Ter1 (57 Spa1r¥erly) 20 (23)
G; € Ut(st) . (24)

We shall denote by T(s ,§t_l,dy % du) the conditional distribution

t-1"5¢
of the element (yt,ut) for fixed values of the element (st-l’st’yt—l). Take

t+1 .
Ty (s 1rSprSe ¥ y) = E[¢ (st.st+l,yt,ut)/st_l.st,st+l,yt_l] =

= (s ,dy x du) ¢t

n t-1" %t Ye-1 Se17S¢ Sea1 YW
R xUt(st)

(25)
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) = E[ft+l(s ,S

J (st_llst'st+llyt_l t t+1,yt,ut)/st_l,s S 'Y ] =

2 t T+l T t-1

= f m( y, .,dy % du) ft+l(s )Y,u) (26)
n t-1
R xUt(st)

S
St-1"5¢’ t'Se+1

_ t+1 _
J, (s 1) = Elg (st ]

3 th)/S 1S, 4S5 'Y

-1t %41 Y- Ser17Y¢ =15t St41'¥eo1

t+1
= In M(s, _1sS.¥,_q.dy x du) g~ “(si,s .y,u) . (27)
R xUt(st)

The equalities (25)-(27) are due to Lemma 3. Lemma 4 and the convexity
condition imply that for every value of parameters (St—l’st'yt—l) there ex-
ists an element u € Ut(st) such that the following relations are satisfied

Pt(st,dst+l)—a.s.:

I8 175 Ser1 Ve 5—¢t+l(St'st+l'E[§t/st—l'st'yt—l]'u)'=

- ¢t+l(st,st+l,yt,u) (28)
PR LN S ft+l(st'st+l’E[§t/st—l'st'yt—l]'u) B

= ft+l(st’st+1'yt’u) (29)
T3(8¢ 175¢ Sea1Yed) 5—gt+l(St'st+1’E[§t/st—1’st’yt—1]'u) =

= gt+l(st,st+l,yt,u) . (30)

According to the measurable selection theorem there exists a measurable func-

tion u. = u. (s s
t t( t-1’'"¢’

(28)-(30) immediately lead to (21)-(24).

yt—l) for which (28)-(30) are satisfied. Relations

The second part of the proof is similar to the first. It is necessary
only to take the conditional mathematical expectation with respect to (St'
St+l'yt) in (21)-(24) and apply Lemmas 3 and 4, and the measurable selection
)

theorem, making use of the fact that yt depends measurably on (St—l'st'yt—l
(see (16)).
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