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Abstract

A design based on parallel processing is laid out for solving (multistage)
stochastic programs. Because of the very special nature of the
decomposition used here, one could rely on hard-wired micro-processors that
would be extremely simple in design and fabrication, and would reduce the
time required to solving stochastic programs to that needed for solving
deterministic linear programs of the same size (ignoring the time required

to design the parallel decomposition).
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We deal with the following class of stochastic programs with recourse:

n
find x € R ! such that Ax = b, x> 0,

and z := cx *+ E{Q(x,£)} is minimized,
where
Q(x,g) := inf n {qy|Wy = h - Tx},
€R°
y +
and
£ := (h,,...,h_ 3 t..,c.0,t s Eoyeeny 3 £ yeeesl ),
1 m2 11 1,n1 21 m21 m2n1

are the random elements of the problem. The matrices and vectors c(n1),

A(m1 x n1), b(m1), q(n2) and w(m2 x n2) are deterministic in this model.

Let P denote the probability measure defined on the support = c RN

(N = m, + m, x n1) of the random vector §. We assume that for all

K, := {x|Ax = b, x > 0}

the expectation E{Q(x,g)} 1is finite. This means that we are dealing with

a stochastic program with relatively complete recourse, either because it

was originally given to us in that form or we have generated enough of the

induced constraints to reduce it to a problem of that form. We also assume

that the problem is solvable (feasible and bounded) and stable (the Kuhn-

Tucker conditions are sufficient and necessary for optimality). For a
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review of the terminology, and a discussion of the conditions used here,
consult Wets (1974).

We restrict our attention to problems of this type, but the scheme that
Wwe suggest in the ensuing development applies (with modifications) to much
more general classes of problems. If we do not have relatively complete
recourse, then an additional step must be introduced in the algorithm to
generate feasibility cuts such as in Step 2 of the L-shaped algorithm, for a
review see Wets (1986). If we are dealing with more than a two-stage linear
program, or equivalently--see Wets (1972)--with a nonlinear Lipschitzian
function q(y) for the objective of the recourse problem (replacing also

n
y €R f with y € D, a polyhedral convex set), we can still rely on the

principles laid out here for the decomposition of the recourse problem, but
instead of separable linear approximates one needs to use separable
nonlinear approximates. The details of the nonlinear case, as it applies to
multistage problems, will be included in another article.

The first part deals with approximating general linear programs by very

simple linear programs. This is the basis for the parallel decomposition of

the recourse problem. The second part deals with tﬁe use of this
decomposition to solve stochastic programs. Finally, we discuss its
implementation in parallel processing machines.

We present here a scheme based on a "primal" parallel decomposition of
the recourse function of a two-stage stochastic program; it relies on ray
function approximates. A related scheme based on a "dual" representation of
the recourse function is also under study, see the comments at the end of

Section 1.
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1. APPROXIMATIONS FOR LINEAR PROGRAMS

In Birge and Wets (1985), we introduced simple recourse approximates
for general recourse problems to calculate upper bounds for stochastic
problems. It is this type of approximations that will be used to obtain a
"parallel" decomposition of the recourse problem. To begin with let us

consider the following function:

(1.1) p(t) := inf 0 {qy|Wy = t, y > 0}.
2
y €R |

This is a sublinear function (positively homogeneous and convex), proper
((t) > - », ¥(0) = 0) as follows from the assumptions we have made about

the stochastic program, and finite on the convex polyhedral cone
(1.2) pos W := {t|t =Wy, y> 0}

Note that the assumption of relatively complete recourse means that for all
X € K1,
h~-Tx € pos W

for all £ = (h;T .»T ) in Z. Not only is the effective domain of

1 m2

polyhedral, so is actually also epi ¢ 1its epigraph, this means that we can
find a representation of ¢ 1in terms of a finite collection of rays that

determine a frame for its epigraph. Let



al
{( )9 L = 1’ -,L}
tl
m,+1
be a finite collection of vectors in R such that
al
(1.3) epi ¢ = pos [( l)' £ =1,...,L]
t
m,+1 L
a 2 a L a
= {({) €R (L) = Ty, ul(tf‘)' ug 2 0},
Then, it is easy to see that
. a L a
(1.4) p(t) = inf {af () = L/ . Cplug, up > 0}

t

This representation of ¢ brings us to the following construction of

approximates of . Let

{®*)er? , s=1,...,5]
s
t
m.+1
be any finite collection of vectors in R such that for all



S
(1.5) (“s) € epi ¥

i.e., a° > y(t%). Then

. o S o
(1.6) p(t) < inf {a|(t) = I (ts)us. Mg > 0}.
o3
By choosing {( s), s =1,...,3}, we have built another sublinear function
t

that majorizes y. If this new sublinear function is to be a reasonable

approximate of ¢y, at least on the rays:

{t|t =2 t", A>0}, s=1,...,5,
we should choose

(1.7) a® = y(t®%) = inf {aqy |Wy = t5, y > 0}.

A second condition, that needs to be satisfied in order to be able to use

this new sublinear function as an approximation for ¢y 1is that the
as

collection of vectors {( s), s =1,...,3} be rich enough. This means
t

basically that one would need to choose this collection so that it

determines, or nearly determines a frame for the epigraph of ¢. If we

proceed in that fashion, ignoring even the work necessary to find such a



_7_

frame, it would not be any easier to determine the value of y(t) by
solving the linear program (1.1) that defines it, or the linear program
(1.4) that yields its dual representation.

The parallel decomposition that we introduce here is based on sublinear

majorization of ¢, but instead of using on one such approximate, we rely

on a whole collection =-- each one corresponding to a very simple linear
program -- that can be combined to yield the value, or an approximate value,
of Y(t).

1 m

Let D=[D,...,D 2] be a square invertible matrix, i.e., a linear

m>
basis of R ~. Then

5
(1.8) pos [D, -D] = R 7,

m
i.e., the columns of D and -D determine a positive linear basis of R 2,

m
; . 2 ; ‘e s : . .
i.e., every vector in R can be obtained as a positive linear combination

of the column vectors of D and -D, and none of the vectors in D or -D

is a positive linear combination of the others. For j = 1,...;m2, let
. . .

(1.9) 6 := inf [ay[Wy = DY, y > 0} = y(D’)

and

(1.10) 6):= inf Lay|Wy = DY, y >0} = y(-D)).



If DY (or —DJ) does not belong to pos W, then we set 63 (or dj) = @

this will not affect the operations that are needed to be performed when
working with the stochastic program (in view of our relatively complete

recourse condition). Let

+ -
m S m §
. 2 Jy o+ 2 joy-
(1.11) (t) :=inf {a|(*) =3.°, ( D + .5, ¢ I,
¥D | t J=1 J)uJ Jj=1 _nd "
D D
Y'so0, ul > 0}
Uj_ H Uj_ .
From our earlier remarks, it follows that
(1.12) vy,
with
(1.13) 9(t) = y () whenever t = pJ, j = Tyeeeymy.

Moreover notice that for any given t, finding wD(t) is particularly

easy, indeed we have that

m2 J
(1.14) Up(8) = T2 w(e)
where
(1.15 J(t) :=inf (6 uh s 6T W] -ut =0y w0, w0
) vp(E) inf {8, uy + &5 uy | My =My = (D) uy >0, uy > 0}
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£, =1 -1
§.(D't), if (D 't), >0,
J ' )5 2

- - -1
-5.(D 't), if (D 't), <O
J ' ( '

Finding the value of wD(t) requires:

(1) premultiplying t by the inverse of D,
(ii) by a sign check determining the value of ¢%’
(iii) adding up the resulting values (1.14),

The subgradients of wD(t) are equally easy to determine. Indeed, we have

that
-1 J .

(1.16) awD(t) = {m = oD |°j €17, J=1,...,m2}
and

- -1

-5, if _
— GJ i (D t)J <0

(1.17) - [-67, 671 if (D 't), =0

J J J

- 53 if (0 ') > o0

In addition to the operations indicated here, there is also the work

required to choose a matrix D, and compute the slopes

{(cj, cj), j= 1,...,m2}
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of the function ¢ 1in the directions DJ and -DJ. But once that work is

done, and D ! is available, then finding the value of wD(t) for a large

number of possible values of t 1is extremely easy.

However wD might not be a sufficiently good approximate of ¢ so

that it can be used as a substitute for . To improve the approximation we

could use not just one function wD’ but a collection of functions

{wD(\)) v = 1,---,N}

where each matrix D(v) 1is a square invertible matrix. For each v, we

have that ¢ < wD(v), so that S_infv wD(v)’ In fact we can do somewhat
better. Since ¢ 1is convex, its epigraph is convex, and ¢ < wD(v)
implies that the epigraph of wD(v) is contained in the epigraph of .

Thus,

epi v Dco (epi wD(v)’ v=1,...,N) =: C
where co denotes convex hull. Now let
. a
co wD(v)(t) = inf [al(t) e Cl,
then

(1.18) v Lco by LAnf by .
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If by * we denote conjugation, i.e.,

w*(u) = sup n fut - wit)l,

t €R 2

from the definitions and (1.18), it follows that

(1.19) w*(u) 2 sup ., N w;(v) (u) = (co wD(v))* (u).

*
Each function wD(v) is the indicator function of a generalized rectangle,

indeed

‘ _ .
(1.20)  wye ) = [0 if -6l <ulD(WT < 5; ;3= 1.,

+ @ otherwise,
Using this in conjunction with (1.19), it implies.

* —
(1.21) vy (u) = 0 only if for all v =1,...,N

- J' +.
-§. < ulD(v) < 6., =1,...,m,,
J_[ ]_J J >

+ o otherwise.

Note that we can always choose a collection {D(v), v =1,...,N} such

that

v(t) = infv wD(v)
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or equivalently.

* _ *
v (u) = sup wD(v)‘

For example, if W 1is of full rank, then we could choose for the
{D(v), v =1,...,N} all square invertible submatrices of W. Practically,
of course, we would not proceed in that fashion, we would choose an
appropriate subcollection, or even a collection that would not necessarily
be connected with the submatrices of W.

The problem of choosing a parallel decomposition, or equivalently a
collection of matrices {D(v), v =1,...,N}, that yields a "good"
approximation of ¢ and involves a relatively small number N of functions

wD(v) is very much an open question, and needs much further investigation.

One possibility is to construct the matrices D(v) in sequence, so that
each one in turn will reduce as much as possible the error of the
approximation. One such procedure is laid out in what follows.

To begin with we could always take D(1) = I and compute using

formulas (1.9) and (1.10), the corresponding vectors §7(1) and s (1).

Let
o= v j - j : i =
V(v) : Up -1 {DY (), -DY(R); j 1,...,m2}
i.e., all the columns that form the matrices D(1),...,D(v) that are
already in our collection, and let e(v) := {corresponding vector of cost

coefficients}, 1i.e., with this notation we have
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ej(v) = inf {qylWy = v (v), y > O}.
Let us alsc assume that the matrices D(2) have been chosen so that

(1.22) co wD(v) = infv wD(v)

and that ¢ 1is inf-compact, (i.e., with compact level sets), as would

usually be the case for well-posed problems, cf. Wets 1973. Then, to

compare ¢y and co wD(v)' we see how well

lev, ¢ :

{t|w(t) < 1}

matches up with

lev, (co y

1 ) i= {tfeo gy oy (£) <11

D(v)

In view of the assumptions we have made, we have that

m . m

- -5 2 =13 2 _
lev, ¥ = {t|t Iip Ay g WXy Ay =1 Ay > 0}
- =13 C
—co{(qj W), o= 1,...,m,)
and
_ -1 3 o
lev1(co wD(v)) = Co {(ej(v) Vi(v)), §J = 1,...,m(v)}
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As mentioned in the Introduction, there is a dual scheme that could
also be used to obtain a parallel decomposition of the recourse function

(1.1). 1Indeed, since ¢ is sublinear and polyhedral:

(1.24) y(t) = sup {ak tlk = 1,...,p}

i.e., is the sup of a collection of linear functions of t. It can be

shown that each ak can be identified with the multipliers associated to

some basis of W (for some t € pos W), see Wets (1974). Assuming that we

have obtained these vector {ak, Kk =1,...,p}, we could then find the

values of y(t), for any t € pos W, by calculating in parallel the values

akt for k=1,...,p and take their supremum.

These two parallel decompositions of ¢ could of course be combined,
in practice. However, finding a good dual representation of ¢ may be more
demanding than obtaining the parallel decomposition that we have outlined

first.

2. APPLICATION TO STOCHASTIC PROGRAMMING
We show here how to use the parallel decomposition of linear programs
outlined in Section 1. To simplify the presentation let us assume, that the

stochastic program.

n
(2.1) find x € R ! such that Ax = b, x > 0,

and z = cx *+ E{Q(x,£)} is minimized

where
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(2.2) Q(x,&)

inf {ay|Wy = h - Tx}

n
y €R 2

+

and

£ =1¢(h, T veeen T )

1 2

a random vector with support = c RN and distribution P, is a stochastic

program with complete recourse, i.e.,

which means that ¢ as defined by (1.1) is finite everywhere and thus there
will be no need to introduce feasibility cuts. Let us also assume, that ¢
is inf-compact, as is to be expected in practice (excluding some degenerate
cases).

Before we actually begin with solving the stochastic program (2.1), we

design the parallel decomposition of the linear program that determines the

recourse function. To fix the ideas, let us consider an example in R2.

Let
- -3 -1 2 3/2 -3/2 )
W= 1 2 1 -1/2 -1 ! q_[1’1’1,1,1]
"2
then pos W =R , and ¢ 1is compact. Suppose that we consider the
collection

| I |

D<1>=['é }] D<2>=['} ?] o<3>=[? ]] D(u>=[} :



then

§T (1) = [4/9, 3751 ,
§7(2) = [3/5, 3/51
§7(3) = [3/5, W51
s (4) = [4/5, 3/5] ,

and comparing lev1

_.1 7_

§ (1)

§ (2)

§ (3)

5 (4)

¥ and lev1(co wD(v)) we

2

(375, 14/9]

[14/9, 4/3]

[4/3, 10/9]

[10/9, 4/9]

obtain Figure 1.

Figure 1. Comparing ¢ and its approximate.

It is easy to see that a slightly richer collection of matrices

Wwill lead to a parallel decomposition that closely approximates

V.

{D(v)}

But
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even if we work with this one the error should not be too large. The

maximum error occurs when t 1is a positive multiple of
- (3 - -
t = (_]), then p(t) =1 and co wD(v)(t) = 2.378f

Substituting for D(1), the two matrices

reduces substantially the error between ¢ and co wD(v)' The maximum

error then occurs when the vector ¢t 1is a multiple of
), then y(t) =1 and co wD(v)(t) = 7/5.
Replacing D(4), by the two matrices

1 2 R B 1
D(L4)Y = [ 1 ] and D(4') = [1 0 ]

would make the error between ¢ and co wD(v) inconsequential.

—_

Now suppose that the analysis has led us to the collection {D(k),
K=1,...,v} to form the basis of our parallel decomposition. Let us also
suppose that by sampling or using a discrete approximation to P we have
reduced the stochastic program to one where only a finite number of possible

values of E need to be examined, say



~

For given x, we construct the collection
{(t“ " =h" -T x, 2 =1,...,L}

. . L L )
To find (mfk wD(k)) (t7) and 3(co wD(k)) (t”) we use the formulas given

by (1.15) and (1.17). For each k =1,...,v, we calculate D-1(k) t, and

set

m
I B R
ey (B0 7 Tyay oo (B

~

ef. (1.15). Then, we simply identify the index k that yields the inf of
these values {y (tl)}. This fixes the value of inf ¥ (tl) and
D(k) k "D(k)

from there, with the help of (1.17) we obtain the subdifferential by setting

m

J=1

n

a(co 4y ) = 3 k).

Thus we have (upper) approximates for

L L
Q(g™, x) < co wD(v)(t )

g =) %
9. a(g”, x) = -T (3 co wD(v)(t ))
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If the probabilities {pl, £ =1,...,L} are associated to the points (g7,

£2=1,...,L}, it follows that

- L [
E{Q(Ey X)} : —22‘=1 PQ(CO lJ)D(\))(t ))
and
CH E{Q(ﬁ. x)} ~ ;51 py T (co wD(v)(t ))

This is all the information that we need to work with decomposition type
methods, such as the L-shaped procedure Wets (1986), to solve stochastic

programs of type (2.1).

3. PARALLEL PROCESSING IMPLEMENTATION
G. Dantzig (1985) suggested that parallel processors be used for
solving stochastic programs of type (2.1) or more precisely, multistage

versions of that model. For the problem considered in Section 2, his

; . ‘ . L
suggestions correspond to reserving a processor for solving for each t7,

the linear program

m

(3.1) find y € R 2 such that Wy = tl
and w2 = qy 1is minimized
or more exactly its dual.
)
(3.2) find mw € R such that 7 W < gq
L. L.
and v, = 1wt is maximized.

)
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We then form a weighted combination of the values and solutions of (3.2) to
obtain the quantities needed in the implementation of decomposition type
methods for solving the stochastic program, see the end of Section 2. This
procedure would thus require L parallel processors, all equipped to solve
general linear programs.

The parallel decomposition of the recourse problem however would allow
us to use extremely simple processors as a matter of fact we can actually

build hardware that would solve simultaneously a very 1abge number of these

trivial linear programs giving us for each tl almost instantaneously the

exact or an approximate solution of (3.2). A double array of such circuits

would thus allow us to process in parallel the vectors {tz, L =1,...,L}
in about the time it takes to solve one of these simple linear programs,
ef.(1.15). The implication is that construction of the optimality cuts in
the L-shaped method could be reduced to an insignificant operation, where as
up to now this was the operation that was the real stumbling block in
obtaining fast solutions to stochastic linear programs.

Naturally there is some set-up time required in designing the parallel
decomposition of the recourse problem, but this can also be done

systematically using bunching techniques, see Section 4 of Wets (1986).

Indeed what we need to find are the coefficients 6; and Gj to associate

to a collection of linear programs that differ only in the right-hand sides,

ef. (1.9) and (1.10).

4, CONCLUSION
We have shown that with the appropriate design of a parallel micro-

processor we could reduce the time required for solving stochastic programs
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to essentially the same time than that required for solving deterministic
linear programs of the same type, ignoring the set-up time required for
designing the parallel decomposition of the recourse problem,

For the application of stochastic programming in the modeling of

decision making under uncertainty, this approach allows us to study the

stability of the solution under perturbations of the probability measure

associated to the realizations {52 = (hz, Tz), L =1,...,L}, (there is of

course no need to redesign the parallel decomposition of the recourse

problem). Thus if the Ez are various scenarios that we consider as future
possibilities, we can then make an analysis of the solution as we change the
probability of these events, without having to "mix"™ (?) the solutions that
would be obtained by considering each scenario individually (without

reference to other possibilities).
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