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ABSTRACT 

This paper  se rves  two purposes, t o  which w e  give equal emphasis. 
First ,  it describes an optimization system fo r  solving large-scale stochastic 
l inear programs with simple (i.e. decision-free in t he  second stage) 
recourse and stochastic right-hand-side elements. Second, i t  is a study of 
the  means whereby large-scale Mathematical Programming Systems may be  
readily extended t o  handle cer ta in  forms of uncertainty, through post- 
optima! options akin t o  sensitivity on parametric analysis, which w e  t e r m  
"recourse analysis". This l a t t e r  theme (implicit throughout t he  paper)  is  
explore6 in a proselytizing manner, in the concluding section. 
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DESIGN AND ELEXENTATION OF A STOCHASTIC 
PROGRAMMING OPTIMIZER WlTH RECOURSE AND TENDERS 

J.L. Nazareth 

1. Introduction 

This paper  is a sequel t o  Nazareth and Wets [21] and serves  two purposes, t o  

which w e  give equal emphasis. First, i t  describes a n  optimization system f o r  solving 

a restr ic ted but important class of large-scale stochastic l inear programs with 

recourse.  Second, i t  is  a study and detailed illustration of t he  means whereby any 

large-scale Mathematical Programming System (MPS) designed f o r  solving deter- 

ministic l inear programs, could be  readily extended t o  handle some forms of uncer- 

tainty, in particular,  via post-optimal analysis options. This latter theme (implicit 

throughout the  paper)  i s  explored, in a proselytizing manner, in t h e  concluding 

section. 

The class of practical stochastic l inear programs with which w e  are con- 

cerned (termed C 1  problems in [21]) a r i s e  as a natural extension of t he  l inear pro- 

gramming model as follows: given a linear program with matrix A ,  i t  is  often the  

case that  some of t he  components of the  right-hand-side (exogenous) vector  of 

resource availability o r  resource  demand, are known only in probability and have 

been replaced (in t he  deterministic LP formulation) by some expected value. W e  

seek t o  extend this  l inear program, using the  recourse formulation. Rows of A 

corresponding t o  t h e  stochastic right-hand-side are used t o  define the  technology 

matrix T (we follow the  notation and terminology of [21]) and the  remaining rows of 

A are used t o  define the  constraint matrix A ,  both A and T being typically large, 

sparse  matrices. The recourse  is assumed t o  be  simple (i.e. decision-free in the  

second-stage problem) and specified in terms of costs (or  penalties) on shortage 

and surplus. Furthermore, w e  r e s t r i c t  attention t o  the  case where each component 

This paper is a draft for Chapter 14 of Numerical Techniques for Stochastic C&timization 
Roblems, Y .  Ermoliev and RJ.-B. Wets, eds., Springer-Verlag, t o  appear. 



of the stochastic right-hand-side has a given discrete  probability distribution. 

There are many applications fo r  such a model, see Ziemba [Z?], and more complex 

stochastic l inear programs with recourse can sometimes be  solved by a n  iterative 

discretization or sampling procedure involving definition and solution of a 

sequence of C1 problems. 

The above considerations are very much in the  background of o u r  implementa- 

tion design, ou r  choice of algorithms and of the  more general issues which w e  wish 

to discuss regarding t h e  extension of conventional Mathematical Programming Sys- 

tems, so as to be  able t o  handle at least some forms of uncertainty. Our optimiza- 

tion system is based primarily upon a version of Wolfe's generalized programming 

algorithm (see Dantzig [4]) given in Nazareth and W e t s  [21] Section 3.2.1 and, in 

more detail, in Nazareth [18]. I t  also includes a version of an  algorithm based 

upon bounded variables (see Wets [25]) given in [21] Section 2.1 and, again in more 

detail, in [20]. Two simpler options, namely to solve an  initial l inear program and 

to permit some of its constraints t o  be "elastic" are also included t o  help get  a 

recourse  problem "off t h e  ground." In our implementation (see Nazareth [I91 fo r  

an  overview of ou r  overall  approach) w e  have utilized cu r ren t  mathematical pro- 

gramming technology fo r  specifying the  problem (using standard MPS conventions 

[14] for the  LP portion and a suitable extension to provide t h e  added stochastic 

information), t o  represent  t h e  da ta  internally (in packed data  s t ructures ,  space 

for which is dynamically allocated within a work s torage a r r a y )  and to implement 

ou r  solution s trategies  (using an  efficient and numerically stable implementation of 

the  simplex method, namely the  MINOS System of Murtagh and Saunders [15], [16]). 

Finally, w e  want our  design to mesh as naturally as possible with cur rent  

Mathematical Programming Systems. In particular,  w e  argue in the  concluding sec- 

tion of ou r  paper ,  t ha t  t'recourse analysis" (simple recourse t o  start off with, but 

also more general forms of recourse)  could be  provided as a post-optimal analysis 

option in any large-scale MPS, t o  augment the  options f o r  parametric and sensi- 

tivity analysis tha t  are now usually available. 



2. Overview of the SPORT System 

2.1. Problem 

SPORT (pronounced SUPPORT) is a n  acronym f o r  Stochastic R-ogramming 

Gptimizer with Recourse and Zknders. The cu r ren t  version solves large-scale sto- 

chastic programs with simple (decision-free in the  second stage) recourse  and 

discrete  distribution of right-hand-side elements (termed C1 problems). The for- 

mal statement of such problems may be found in [21] (see (1.1) through (1.3) where 

W = [I , -I ] and where the  right-hand-side h (a) is  t h e  only stochastic quantity, 

with a known d iscre te  distribution) and w e  shall not r e p e a t  here.  Instead, w e  shall 

state the  problem from t h e  perspective emphasized in this  paper ,  namely tha t  of a 

given linear program in which inherent uncertainty in some of the  right-hand-side 

(exogenous) elements i s  t o  be  more fully taken into account. Consider therefore  

t he  l inear  program 

minimize cz 
subject t o  A z  = d 

z 2 0  

where A is an  m x n  matrix (which i s  generally la rge  and sparse).  d i s  a given m- 

vector  and c is a given n-vector .  Some of t he  elements of d which correspond t o  

demands (o r  available resources)  may be, in reality,  only known in probability and 

defined in (2.1) by taking some expected value. For  simplicity, let us suppose t h a t  

t he  corresponding "technology" constraints of (2.1) are t h e  last m 2  constraints 

and let  us denote them by Tz = K ,  where T i s  an  m 2  x n matrix. Let the  remaining 

m constraints b e  A x  = b where A i s  an  m  X n matrix and d = . [:I 
A useful extension t o  t he  LP model (2.1) is t o  permit t he  constraints Tz = h t o  

be "elastic" (Tomlin [24]) by imposing a penalty q< on shortage in t he  i th technol- 

ogy constraint when demand (corresponding t o  the  right-hand-side element 6 ) 
exceeds the  supply (Tz),, s o  t h a t  y; = Ef -(%), 2 0. Similarly let qf- b e  t h e  

penalty imposed on surplus (when the  r eve r se  of the  ea r l i e r  conditions holds) s o  

tha t  y,- = (Tz), -Kf 2 0. (The choice of notation q< f o r  shortage and q,- f o r  

surplus is a li t t le unfortunate, but  i s  now standard.) Thus associated with the  deci- 

sion z f o r  t he  ''first-stage" o r  decision variables, w e  have a penalty of 

- I qi+(Kf -(%),) when (K, -(Tz),) r 0 - 
4 ( z 1 h f )  = qf7(%), - h i )  when (K, -(TI),) S O .  



To minimize f i r s t  s tage costs  and all penalty costs w e  can  formulate the  extension 

of (2.1) as a problem with "elastic" constraints as follows: 

+ + minimize c z  + q y + q -y - 
subject t o  h = b  

RE + y + - y -  = ji 
z 2 0 ,  y + 2 0 ,  y - 2 0  

where q + and q - are m-vectors with components q: and qt- respectively. 

Unfortunately (2.2) does not address  t he  uncertainty in t he  right-hand side 

vector ,  which s o  f a r  has  been replaced by h. One way t o  address  uncertainty is t o  

compute the  penalty cost  associated with each realization of t h e  random vector  

h (a) .  Let us  also define the  "tender" o r  'bill of goods" associated with a decision 

z by x = RE.  Thus w e  have 

me me me 
Let * ( X I  E C $< (xi 9 hi (a ) )  = C E a($< (x< 1 hi (a ) )  C *< (x< 1. W e  seek t o  

t =l t =l t =l 

minimize the  cost of t he  decision c z  and the  expected value of t h e  penalty costs. 

Thus we can formulate this  extension of (2.1) as 

me 
maximize c z  + *t (xi ) 

t =l 

s u b j e c t t o  Ax = b  

= - X  = 0 
x r o  

For C1 problems i t  can be  readily demonstrated (see, f o r  example [25], [20]) t ha t  

where stL and etL are defined from the  probability distribution of hi (.). Let this  b e  

given by values hi l,ht 2,. .. ,h*, with htL Shil l  +1, with associated probabilities 

pi l ,pt ,..., psi. Then, f o r  l = O  ,..., kt 



0 
where, by convention, = 0 ,  qt = (qi+ +qi-) > 0  and Ki is the  expected value of 

i=1 

hi(o) .  Finally, using a theorem in [18], i t  i s  possible t o  s t a t e  (2.3) in an  

equivalent  form and in s o  doing also unify with (2.2) as follows: 

me 
minimize c z + q + y + + q - ~ - + ~ * ~ ( x ~ )  

i =1 

subject t o  Az 

T x + y + - y - - x  

For j &  h w e  obtain (2.2) since +(K) i s  then a constant t e r m .  (2.5) is a piecewise- - 
l inear separable  convex programming problem with which w e  shall be  concerned 

henceforth. It  makes possible both convenient implementation of the  algorithms 

which we employ and the  various options tha t  w e  provide, as discussed in t he  next 

section. 

2.2 Algorithms 

The system is  based primarily upon the  Wolfe generalized programming 

approach as discussed in [21], Section 3.2.1. The part icular  algorithm imple- 

mented he re  termed ILSRDD (Inner Linearization - Simple Recourse - Discrete Dis- 

tribution) i s  described, in detail, in [18]. The generalized programming approach 

was chosen because i t  proved effective in ea r l i e r  experimental versions (see [18]) 

and because of i t s  potential applicability t o  a wide class  of stochastic programs 

(including problems with complete recourse  and problems with probabilistic con- 

s t raints ,  s e e  [18]). We also include a n  alternative t o  ILSRDD. This is algorithm 

based upon problem redefinition and the  introduction of bounded variables given 

by Wets [25] and implemented in t he  simpler form given in Nazareth and Wets [20]. 

The algorithm is  termed BVSRDD (Bounded Variables-Simple Recourse-Discrete 

Distribution). This approach i s  much more limited in i t s  range of possible applica- 

tion as w e  have discussed in [21], but we include i t  f o r  t he  following reasons: (a) i t  

is very convenient t o  have a second algorithm tha t  works on basically the  same 

input as ILSRDD, f o r  purposes of comparisons of answers and validation of imple- 

mentation. Two identical answers on a part icular  problem from two different algo- 

rithms a r e  r a t h e r  comforting in this  world of uncertainty and although this  is no 

guarantee of correctness ,  i t  provides some indication tha t  an  e r r o r  (if any) i s  in 

t he  input da ta  o r  i ts  conversion into internal representations.  (b) A f a i r  amount 

of experience has been accumulated with an  ear ly  implementation of this  method 



for dense problems (see Kallberg & Kusy [ I l l )  and a more advanced implementa- 

tion (which handles sparsity) should be available. (When t h e r e  a r e  relatively few 

points in each distribution of h i ( . )  then this may even be  a quite efficient way t o  

solve C1 problems. (c) The algorithm BVSRDD makes possible a simpler and more 

direct  extension of a deterministic MPS when the  aim i s  only t o  handle simple 

recourse.  
- 

Two fu r the r  options a r e  provided in o r d e r  to be able  t o  solve (2.5) with x = h 

(ELASTIC option) and in o r d e r  t o  solve an  initial l inear  program, equivalent to - - 
(2.5) with x = h ,  qif = qi = - (MINOS option). Here,  denotes an  a rb i t r a ry  

right-hand-side vector.  Both of t h e s e  options a r e  useful as preliminaries to the  

recourse  formulation. 

2.9 Implementation 

From a pract ical  standpoint, t h e  l inear programs which w e  want t o  solve and 

extend a r e  of t he  more general  form: 

minimize cz 

where = indicates t ha t  constraints take  one of t h r e e  possible forms and u and L I:] 
are vectors  of upper  and lower bounds. Furthermore, w e  cannot usually expect  

t he  parti t ion A = with technology rows T coming last in t he  matrix A .  In gen- 11 
eral, rows of A and rows of T will be interleaved in A .  In addition, i t  is  worthwhile 

t o  explicitly include a scale  fac tor  p to permit a weighting of t h e  second-stage 

objective relat ive to t h e  f i r s t  (see [18]). Thus the  pract ical  problems which we 

seek t o  solve, a r e  derived from (2.5) and (2.6) and take  t h e  form 

mi? 
minimize c z  + q +y + + q -V - + p qt (x i  ) 

i =1 

subject to (Aai)z (S  = 2 )  bi . q 
T ~ ~ Z  + y: - yi- - x i  = O  , Ti El-' 

L S Z  s u ,  y + ,  Y - 2 0 .  



where A a i ,  ai E A defines t he  rows of A ,  T ~ ' ,  ri E r defines t he  rows of T ,  and A and 

rare index sets with 1 Al =nil, I ri =ni2 (I A (  denotes t h e  number of indices in A). 

Our system f o r  solving recourse  problems of t he  form (2.7) has  t h r e e  main 

phases: 

Phase 1 :  Problem Setup and Generation 

Phase 2: Specialized Setup and Solution 

Phase 3: Output 

This is summarized in Figure 2.1. A design goal w a s  tha t  all algorithms work 

on essentially t he  same input and each ignore input da ta  t ha t  is only required by 

the  o thers ,  e.g. t he  limit on the  number of cycles, which i s  only required by 

ILSRDD. The input i s  specified in the  form of t h r e e  files of information which are 

described in more detail in t h e  next section. All t ha t  i s  often necessary t o  switch 

options is t o  change the  algorithm ca rd  in t he  "control" fi le and check tha t  enough 

work space  has been provided f o r  various items. The Problem Setup and Genera- 

tion Phase resul ts  in t h e  creat ion of two files required by MINOS - t he  SPECS file 

and the  MPS file. The next  main phase consists of reading in these files by MINOS, 

inserting additional columns into i t s  packed data  s t ruc tures  and finding t h e  solu- 

tion of t he  problem. Finally t he  Output Phase augments t h e  solution output by 

MINOS with some additional information about t he  solution of t he  stochastic pro- 

gram with recourse.  

The next  t h r e e  sections go into this  in more detail. 

3. Problem Setup and Generation 

To be  specific, w e  discuss this  within the  context of an  example. Consider t h e  

following product-mix example (due t o  J. Ho [lo]). The problem has  two products 

and t h r e e  ingredients. W e  seek t o  minimize cost  of production while maintaining 

the  levels of f a t  and protein at acceptable levels, and not exceeding availability of 

ingredients. The demand f o r  each product is a random variable with d iscre te  dis- 

tribution but in an  LP formulation this  must be  replaced by some expected value. 

The problem is summarized as follows, where x i ,  yi, zi denote t h e  amount of each 

ingredient in product i (i =1,2). 



Figure 2.1 Overview 
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minimize z l  + 2 y l  + 32 ,  + z z  + 2 y z  + 3 2 ~  (OB J) 

subject t o  

Fat/Protein : 0 . 3 ~ ~  + 0 . 4 ~ ~  + 0.22, 
Content of Pro- 
duct 1 

Fat/Protein 
Content of Pro- 
duct 2 

Amount of In- : Zi 
gredient 1 

Amount of In- : Y i  + Y 2  C 12.0 (A2) 
gredient 2 - 
Amount of Pro- : z i +  Y l +  21 = hi ( T I )  
duct 1 

Amount of Pro- : 
duct 2 

The penalties f o r  under and over  production are 2.0 and 1.0 units, respec- 

tively, f o r  each product, and the  probability distribution on demand h (e) is  as fol- 

lows: 

Product 1 Product 2 

Level 8.0 10.0 12.0 15.0 18.0 20.0 
Probability 0.25 0.5 0.25 0.2 0.4 0.4 

hi = 10.0 and hz  = 18.2. The recourse function * ( x )  is  defined in the  usual 

way with q +  = (2.0.2.0) and q -  = (1.0,l.O). 

3.1 Corefile 

The input data  corresponding t o  t he  decision variables z of the  problem forms 

the  "corefile". This specifies 

- t he  names and types of each row of t he  problem 

- t he  objective c 

- the  coefficients of A and T 

- the deterministic right-hand-side elements 

- the  bounds on variables and ranges on rows 



The "corefile" i s  specified in standard MPS format, see 1141 and will often ori- 

ginate in a p r io r  LP formulation. A and T can have interleaved rows and rows 

corresponding t o  T should normally be equality rows. However if these 

correspond t o  2 o r  5 rows i.e if t h e r e  is no penalty on surplus o r  shortage, 

respectively, then provision i s  made in t he  system t o  change these  t o  equality rows 

and a warning message i s  printed t o  tha t  effect. This means tha t  qc or qi- must be  

chosen appropriately at value zero. Note also tha t  if t h e r e  w e r e  non-zero elements 

in t he  right-hand-side vec tor  corresponding t o  rows in t he  technology matrix they 

will be  ignored by ILSRDD or BVSRDD and a message printed t o  this  effect.  

For  ou r  example, t he  corefile is given in Figure 3.1. (Slack variables were 

introduced explicitly in this  case,  but this  i s  not necessary and could have been 

avoided by appropr ia te  definition of row types.) 

3.2 Stochastics File 

The "stochastics" fi le specifies t he  information pertaining t o  t he  recourse  

problem. I t  gives: 

- the  row names identifying t h e  technology matrix 

- t he  probability distribution f o r  each stochastic right-hand side 

- t he  penalties q + and q - on shortage and surplus 

- t he  set of initial tenders  f o r  ILSRDD o r  the  base tender  f o r  BVSRDD 

An MPS-like format w a s  designed f o r  each of these  items of information and is 

explained in the  rest of this  subsection. (An extension of this  format is given in 

Edwards e t  al. [7].) 

NAME This is a header  card.  The use r  may e n t e r  any cha rac t e r s  in 

columns 15 t o  72. 

TECHNOLOGY The da ta  consists of a list of names, one f o r  each row in the  tech- 

nology matrix. These must b e  a subset  of t he  list of rownames in 

t h e  "corefile". The submatrix corresponding t o  this  set of rows in 

t he  COLUMNS section of the  "corefile" defines t he  technology 

matrix. One name appears  p e r  line in columns 5 through 12. 

DISTRIBUTION The data  consists of s e t s  of entr ies  of t he  form "rowname value 

probability". There i s  one such set f o r  each of t h e  rows named in 

the  TECHNOLOGY section. "rowname" specifies t he  row associated 

with the  en t ry  (columns 5 through 12). "value" and "probability" 
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OBJ 
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?2 
OBJ 
.44 
OBJ 

Figure 3-1 The corefile 

specify the  point and i t s  associated probability. They occupy the  

f i r s t  and second numeric fields (columns 25 through 36 and 50 

through 61) respectively and must be  specified as real numbers. 

The "rowname" r epea t s  itself f o r  each possible value associated 

with the  row and the  probabilities f o r  this "rowname" must sum t o  

unity. 

The data  consists of entr ies  of the  form "name value value" where 

name is a rowname of T and the  f i r s t  value gives the  value of qi+ 

and the  second the  value of qi- i.e the  penalties on shortage and 

surplus respectively. The name occupies the  f i r s t  field (columns 5 

through 12) and the  values the  f i r s t  and second numeric fields 



(columns 25 through 36 and 50 through 61) respectively. They 

must be  specified as r ea l  numbers. 

TENDERS The data  consists of entr ies  of the  form "name rowname value" 

where name i s  t he  name associated with tender ,  "rowname" speci- 

f ies  the  row associated with the  en t ry  and "value" is the  level of 

the  tender  f o r  this row. "name" r epea t s  itself ove r  all entr ies  

associated with the  tender  and the re  is one such "name" f o r  each 

tender  specified. "name" and "rowname" occupy the  f i r s t  two 

name fields (columns 5 through 12) and (15 through 22) respec- 

tively and "value" the f i r s t  numeric field (columns 25 through 36). 

(If a set of these a r e  provided f o r  ILSRDD then the  f i r s t  one is 

used by BVRDD as its base tender,  see Sec. 2.1 of [21].) 

ENDATA This ca rd  must be  specified and flags t he  end of t he  "stochastics" 

file. 

For our  example the  "stochastics" file is given in Figure 3.2. 

Figure 3.2.The stochastics file 



9.9 Control File 

The "control" file provides t he  information needed t o  guide the  solution pro- 

cess. It  gives: 

- algorithm selected (generalized linear programming, bounded variable algo- 

rithm, elastic constraints o r  l inear programming) 

- input/output units f o r  the  files used by the  system 

- dimensioning information f o r  various a r r a y s  within the  system 

- names of objective and right-hand-side vectors  

- additional control parameters  e.g. output level, cycle limit, e tc .  

- specification ca rds  f o r  MINOS 

Our design h e r e  i s  similar t o  t he  MINOS SPECS file, but ou r  format specifica- 

tion is more rigid and is based upon fields of four  charac te rs .  Each main section is 

identified by a principal keyword which begins in column 1. Within each of these 

fur ther  options are identified by a second keyword which begins in column 5. Each 

of these options may have fu r the r  suboptions and these are in turn  identified by 

keywords beginning in column 9. The numerical strings o r  integers which provide 

the  information tha t  goes with a keyword are specified in a data  field given by 

columns 23 through 30. Integers must of course be r ight  justified. Only the  f i r s t  

four cha rac t e r s  (including blanks) of any keyword a r e  significant. 

The principal keywords, i.e. the keywords beginning in column 1, must be  

specified even when all  defaults are selected. 

The keywords a r e  a s  follows: 

BEGIN This i s  a delimiter identifying the  beginning of t he  control file 

ALGORITHM This identifies the  selected algorithm. Options are ILSRDD, 

BVSRDD, ELASTIC o r  MINOS. 

UNIT The unit numbers are specified as follows: 

CORE unit number of "corefile". Default = 5 

STOCHASTICS unit number of "stochastics" file. Default = 7 

SPECS unit number of t he  MINOS SPECS file. Default = 8 

MPS unit numbers of t he  MINOS file specifying the  

matrix. Default = 9 



DEBUG unit number for  debugging information. Default = 

0 (no output) 

LOG unit number of the  log file. Default = 0 (no out- 

put> 

DIMENSIONS This specifies information for  setting up the  work a r r a y  

ELEMENTS an upper bound on the  number of elements in the  

matrix (including space for  input and generated 

tenders). Default = 1500 

ROWS an upper bound on the number of rows (including 

technology). Default = 100 

TECHNOLOGY an upper bound on t h e  number of technology 

rows. Default = 20 

COLUMNS an upper  bound on the  number of columns in the  

matrix (including tenders). Default = 300 

PROBABILITIES an upper  bound on t h e  number of discrete  levels 

associated with each stochastic right-hand side. 

Default = 30 

TENDERS This provides information on tenders  as follows: 

INPUT an upper bound on the  number specified in the  "sto- 

c h a s t i c ~ "  file. Default = 1 

GENERATED an upper  bound on the number of tenders  saved. 

Used in the  round robin strategy. Default = 20 

ELEMENTS an upper bound on the  total  number of tender ele- 

ments. Default = 2000 

Note: One must be  careful about specifying these quantities. 

SELECTORS 

OBJECTIVE name of the  objective row - up t o  8 charac ters  

(must be  provided) 

RHS name of the  right-hand-side vector - up t o  8 char- 

a c t e r s  (must be  provided) 

BOUNDS name of the bounds vector  - up t o  8 charac ters  



RANGES name of the  ranges vec tor  - up t o  8 cha rac t e r s  

CONTROL OPTIONS 

OUTPUT output level. Options are 1, 2 o r  3, which provide 

increasingly verbose output. Default = 2 

CYCLE limit on number of tenders  generated. Default = 1 

SCALE scale  factor (see (2.1)), expressed as a percentage 

( p  = SCALE/100). Default = 100. 

MINOS SPECIFICATIONS Here one specifies any MINOS options which are 

then echoed into t he  MINOS SPECS file. 

END Delimiter indicating the  end of t h e  control section 

In ou r  example t h e  "control" file i s  given in Figure 3.3. 

3 E t I N  
NEW I i i  ! LSD3 
' N I T  % 9 2 5  

C S E  FILE 
STOC!+AST!CS 'ILE 
SPECS FILE 
PllPS 'ILE 
3FsLG =!IF 
I% =!LE 

3!YEVSIGh5 
ELEENTS 
R o w s  
C C L L M  
PRrn!%!L!T!ES 
?-E?CcpE; 

IVY 
m . 4 m  
ELE."I!=?!?S 

Figure 3.3.The control file 



3.4 Implementation of Problem Setup 

This is done using some modules from LPKIT (see Nazareth [I?]) suitably modi- 

fied t o  suit o u r  purposes. Additional routines have been written t o  set up informa- 

tion specified in the "stochastics" file into packed data  s t ruc tures  and t o  generate  

t he  MINOS SPECS and MPS files. 

4. Specialized Setup and Solution 

This p a r t  of t he  implementation i s  built around MINOS Version 5.0 whose 

outermost routines MINOSl and MINOS2 were modified f o r  o u r  purposes. In partic- 

ular ,  the  PHANTOM COLUMNS option of MINOS (simply a device t o  provide some 

"elbow-room" in the  data  s t ruc tures  holding the  problem) i s  extensively used in 

o r d e r  t o  complete the  setup of t he  recourse problem in the  packed data  s t ruc tures  

used by the  MINOS system. 

4.1 ILSRDD 

The master program is defined by expression (3.7) in [21] with W 4 [ I ,  -I ] - 
and the  obvious extension t o  match expression (2.7) in this paper .  MINOS 5.0 sets 

up the  A and T matrices in packed data  s t ruc tures  from the  MPS file which w a s  

generated in the  previous phase. Then ou r  modifications t o  subroutine MINOS2 

pack in t he  additional columns corresponding t o  tenders.  Other routines 

developed by us, which are called within the  subroutine MINOS2, implement the  

generalized linear programming algorithm in coordination with the  solution of each 

master program by MINOS 5.0. The detailed algorithm is given in [18]. 

This is an  implementation of the  bounded variable method of Wets [25] in t he  

form given in [21], Section 2.1. Further  details of the  algorithm may be  found in 

[20]. There is a danger of performing a large number of pivot operations when the  

probability distribution of each right-hand-side element has many points (the so- 

called epsilon-to-death problem) but the  associated computational e f fo r t  is allevi- 

a ted by the  way in which MINOS updates i ts  basis matrix representation. I t  is  pos- 

sible t o  improve t h e  implementation (a) by using some of t he  acceleration tech- 

niques discussed in Wets [25] which, in effect,  c a r r y  out several  basis changes a t  

t h e  same time, (b) by specifying a good starting basis from the  special s t ruc ture  in 



(2.7). 

In contrast to  ILSRDD, implementation is much more straightforward because 

only an initial linear program must be set up. 

4.3 ELASTIC 

This option implements the  linear program (2.2) (see Section 2.1 of this 

paper), thereby permitting the "technology rows" t o  be elastic. The row names 

defining the technology rows and the  penalties q + and q - are defined by the sto- 

c h a s t i c ~  file. Other data in this file is ignored. 

4.4 MINOS 

This simply provides the  preliminary option of solving an initial linear pro- 

gram. The data in the  stochastics file is  not required here.  

5. Output Phase 

The output consists of two parts: 

(a) MINOS output in standard MPS format. For a description of this see Murtagh & 

Saunders [16]. 

(b) SPORT output. This gives the  first-stage and second-stage costs the optimal 

tender, the dual multipliers (prices) associated with the technology rows in 

the  optimal solution and the  probability levels of the  equivalent chance- 

constrained program. 

For the  earl ier  example the  output is given in Figure 5.1. 



Pigare 5.1 The output for the earlier example 

9 3 0 R T ( I W ) :  O P T I N  SOUrrION OF RECCCRSE RmBl FOU9 

OBJECTIK W 4.36&500000d+01 

STATLS (PTIPW, saJlr ITERATION 1 -I= 0 

O B J U T I K  OBJ (HIN) 
Fb6 m 
R P M S  
80U95 

SECTION 1 - Ra6 

NSeER ...ROW.. STATE ... ACTIVITY. . .  9PM K T I V I T Y  ..L= LIMIT.  . .LPER LIMIT.  .DLYIL ACTIVITY 

n AZ A M 12.00000 0. 12.00000 12.00000 0. 
28 A3 EQ 3. MOO0 0. 3.30000 3. MOO0 5.62'500 
29 AI, EQ 4.00000 0. 4.00000 4.00000 1.12500 
30 T I  EQ 0. 0. 0. 0. 4. 25000 
31 f2 EQ 0. 0. 0. 0. 1.4- 
32 CCWXITY M 1. OOOOD 0. 1.00000 1. O O O M  26.962'50 

... ACTIVITY. .. .m m!mImT. 

1. oomo 
2. C0000 
3.00000 
0. 
1 . ooom 
2.00000 
3. WOOO 
0. 
C. 
0. 
2.0co00 
2.00000 
1 .00000 
1 .00000 
3.660W 

10.400m 
7.90000 
4.20000 
8.40WO 
0. 
0. 
0. 
0. 
0. 

..L= L IMIT .  . .LPER L IHIT .  

w U 
@J's ffi 
CLPIb 85 
CLM7 LL 
CL* u 
CLPR !L 
CLnlO 85 
M l O O l  LL 
i u m o r n  LL 
M 1 0 0 3  LL 
M l O D G  U 
M l O E  LL 
M l O W  LL 
M I 0 0 7  85 
M l O O B  u 
M I 0 0 9  ffi 
M l O l O  A EQ 
M I 0 1 1  A Ea 
RNTlOlZ A M 
M 1 0 1 3  A Ea 
RNT1014 A Ea 

0.56250 
0. m o o  
2.4- 
0 . ~ 0  
3.00000 

4. oomo 
0. 

COSrS PeSOCIATED UITH aeOK SOUrrION 

W.uZ% D I R T  - 35. MOO0 RECOLRQ - 
Q W n I T I n  ABSOCIATED UITH MUX U I M  

R W m  TPOERS RlIQS KfQJIvPlLPm 

T I  10.25000 4.325000 0 . m W  

R 15. woo0 1 . 4 ~  0 . 1 ~ 7 ~  



6. Testing 

The program has  been exercised on severa l  test problems as follows: 

(a) The product-mix example of Section 3 due to J. Ho. This is a "toy" problem 

with 5 rows of which 2 are technology rows and 6 first-stage decision vari- 

ables. 

(b) The test problem given by Kallberg & Kusy [ll]. This too is  a ' toy" problem 

with 3 rows of which 2 are technology rows and 6 first-stage decision vari- 

ables. (Documented in King [12].) 

(c) The test problem given by Cleef [3]. This has  9 rows of which 6 are technology 

rows and 1 6  first-stage decision variables. (Documented in King [12].) 

(d) The problem of allocating a i r c r a f t  to routes  given in Dantzig [4]. This has  9 

rows of which 5 are technology rows and 29 first-stage decision variables.  

(Documented in King [12].) 

(e) A discretized version of t he  stochastic transportation problem given by Qi 

[23] formulated as a s tandard stochastic l inear  program with simple recourse.  

This has  78 rows of which 44 are technology rows and 1496 first-stage deci- 

sion variables.  

The bank asset  and liability model given by Kusy & Ziemba [13] and a full- 

sca le  version of problem (d) above both provide good illustrations of the  pract ical  

applications f o r  which ou r  program is  designed. 

7. Sportsmanship 

The cu r r en t  system can  b e  applied to a wider range  of problems than would 

appea r  at f i r s t  sight. For  example when the  stochastic l inear  program has  sto- 

chastic technology matrices with a few discrete  probability levels (which are 

independent of the  right-hand-side distribution) say, TI, ..., Tt with probabilities 

pi, ...,pi, then w e  can exp re s s  this  as an  equivalent problem 



minimize cz + P ' ~ Q + Y ~ +  + P ' ~ Q - U ~  + ' * + P ' ~ Q  +vt+ + P t Q  -Yt- 

subject t o  

dx = b 

= h (o)  

(7.1) 

= h (o)  

Let us treat T defined by 

as a technology matrix in t he  usual way. Then w e  can set up the  problem s o  tha t  i t  

can be solved by the  system, as described ea r l i e r ,  with appropriate  definition of 

penalties and distribution determined by (7.1). 

In some situations the  underlying probability distribution of h (.) i s  only known 

implicitly through a simulation model involving the  random elements o. Nazareth 

[I81 discusses how the  system can  be  extended t o  this case (see, in par t icular ,  Sec- 

tion 3.2 of [la] f o r  some numerical experiments). 

When the  probability distribution of h(.) is not discrete ,  SPORT 2.0 can be  

used in conjunction with some i terat ive discretization procedure and computation 

of e r r o r  bounds (see, f o r  example, [26]). 

When a more complex penalty s t ruc ture  is imposed on the  second stage, pro- 

gram modifications would be required. This could, in many cases,  be  done fairly 

easily. 

8. Availability 

The Fortran implementation described here ,  SPORT 2.0 (pronounced SUPPORT 

Version 2.0) w a s  developed f o r  use at IIASA on the  VAX 11/780 (under the  UNIX 

operating system). I t  uses MINOS 5.0 (the latest documented version), which is 

available in-house. Using the  terminology in Nazareth 1191, the  cu r r en t  version of 

o u r  system is  a level-2 implementation, designed f o r  algorithmic experimentation 



and f o r  problem solving by an  experienced user  (one expected t o  be  familiar both 

with his problem and with the  implemented algorithm). 

To use SPORT 2.0 at another  s i te ,  i t  would be  necessary t o  obtain MINOS 5.0 

independently from Stanford University and t o  substitute o u r  set of Fortran rou- 

tines f o r  the two MINOS 5.0 files MIOOMAIN and MIIOMACH. (Note tha t  SPORT 2.0 

will not run  with versions of MINOS below 5.0.) 

An ea r l i e r  version of o u r  system, designed f o r  MINOS 4.9, SPORT 1.1, is avail- 

able  on the  SDS/ADO tape,  which i s  a collection of a number of routines f o r  sto- 

chastic programming. This version provides readable Fortran and a manual (see 

Edwards [6]) t o  document ou r  implementation. Note tha t  i t  i s  not executable, since 

MINOS 4.9 is not included with it. 

In o r d e r  to  obtain a copy of SPORT 2.0, please contact t he  au thor  of this ar t i -  

cle at e i ther  of t he  following addresses: 

IIASA, System & Decision Sciences, A-2361, Laxenburg, Austria 

o r  

CDSS, P.O. Box 4908, Berkeley, California 94704, USA 

9. Stochastic Programming with Recourse as a Form of Post-Optimal 

Analysis in a Mathematical Programming System 

Many large-scale Mathematical Programming Systems (for example, MPSX/370 

[I]) provide options f o r  performing parametric and sensitivity analysis in t he  

optimal solution of a linear program and f o r  repeated (and efficient) reoptimiza- 

tion through a dual simplex procedure, when the  right-hand-side is changed. (For 

MINOS, post-optimal analysis routines have been developed by Dobrowski, et a1 

[51.) 

A common approach f o r  handling uncertainty in t he  right-hand-side is t o  use 

scenario analysis, which i s  indeed greatly facilitated by the  above post-optimal 

options. Ermoliev and Wets [8] character ize this approach t o  dealing with uncer- 

tainty as being "seriously flawed" and explain why as follows: "Although i t  

(scenario analysis) can identify 'optimal' solutions f o r  each scenario (that speci- 

fies some values f o r  the  unknown parameters),  i t  does not provide any clue as t o  

how these 'optimal' solutions should be  combined t o  produce a merely reasonable 

decision." Another approach tha t  has  been utilized by mathematical programmers 

as discussed in Section 2.1 is t o  introduce elastic constraints by defining 



penalties on shortage and surplus f o r  a given right-hand-side. This, as we have 

noted, is in the  sp i r i t  of t he  recourse  model, but i t  does not yet  address  the  sto- 

chastic aspect  of the  right-hand-side elements. 

One aim of o u r  paper  has  been t o  demonstrate (hopefully convincingly) tha t  

recourse analysis could be  introduced in a very natural way as a post-optimal 

analysis option in an  MPS and that  i ts  implementation is not substantially more dif- 

ficult than tha t  of o the r  post-optimal analysis options current ly provided within 

them. I t  could b e  argued, of course,  since problem (2.7) can be  directly expressed 

as a linear program, tha t  i t  could be  left up t o  t he  use r  t o  set up this  l inear pro- 

gram, c r ea t e  the  appropriate  MPS file and solve it in the  conventional way. This is 

t o  impose upon him o r  h e r  a laborious and e r r o r  prone task. To do s o  would be  as 

unreasonable as requiring tha t  t h e  use r  implement his own post-optimal parametric 

and sensitivity analysis. Another approach is t o  use an  extended LP system based 

upon piecewise-linear (separable) programming (see Fourer  191) t o  solve (2.5) o r  

(2.7). Unfortunately such systems a r e  not available as general purpose software. 

Thus i t  is  necessary t o  fall back upon the  more conventional mathematical pro- 

gramming systems. 

The part icular  implementation described in ea r l i e r  sections of this  paper  w a s  

developed f o r  MINOS (specifically Version 5.0) in i t s  l inear  programming mode, but 

an  implementation f o r  another  large-scale l inear programming system (MPS) could 

b e  pat terned along r a t h e r  similar lines (see, in par t icular ,  Figure 2.1). This would 

requi re  the  following: 

(a) Firstly, augmentation of the  standard MPS description of a linear program 

(which may be  formulated and solved as a f i r s t  s tep)  by some standardized 

description of the  stochastic information. A format along similar iines t o  Sec- 

tion 3.2 would be  quite appropriate .  Note t ha t  this does not conflict with t he  

t rend toward high-level modeling systems f o r  defining mathematical program- 

ming problems (see, f o r  example, t he  GAMS System of Brooke, et al. 121). MPS 

format (and i ts  extension t o  stochastic problems) primarily serves  t he  pur- 

pose of formalizing the  interface t o  optimization codes and indeed MPS format 

continues t o  play this ro le  in systems like GAMS. (With regard  t o  the  third 

"control" file of Figure 2.1, note tha t  this is specific t o  t he  MINOS implementa- 

tion and would obviously vary with different MPS systems.) 



(b) Secondly, s e t  up of one o r  more linear programming problems corresponding 

t o  (2.7) by augmenting internal data  s t ructures .  The more straightforward 

implementation (because i t  involves only one augmentation) is t o  use some ver- 

sion of the  bounded variable method of Wets [25] as in BVSRDD (see Section 

4.2.). Assuming tha t  a deterministic version of t he  problem has already been 

solved, the  additional columns could be inserted directly into the  packed data  

representation used by the  MPS from the  stochastic information supplied as 

described in (a) above, and the  problem reoptimized. (It would be wasteful t o  

generate  a f resh  MPS file f o r  (2.7).) In MPSX/370, the  augmentation and reop- 

timization could be done through the  Extended Control Language (see [I]). 

The difficulty with the  bounded variable approach ar i ses  when the  distribu- 

tion has many points, f o r  example, when i t  is  obtained by discretizing a con- 

tinuous distribution. See  the  discussion in Section 4.2. Also i t  does not gen- 

eralize t o  non-simple recourse.  The alternative i s  t o  implement the  general- 

ized linear programming approach,  again directly inserting the  added columns 

into internal data  s t ruc tures  and solving a sequence of l inear programs, each 

starting off where the  previous one left off (as in ILSRDD, Section 4.1). A s  w e  

have seen, implementation required modification only of t he  outermost level of 

MINOS and we believe this would be t rue  fo r  o the r  MPS systems as well. The 

ILSRDD algorithm is very efficient in this context and as w e  may note, the  

approach applies t o  more general forms of recourse.  

(c) Thirdly, the  output of t h e  solution in an  appropriate  way, again done most con- 

veniently through access  t o  t he  internal data  s t ructure.  

To summarize, the  mathematical programming field is r i pe  f o r  incorporating 

some forms of stochastic programming with recourse into cu r r en t  large-scale MPS 

systems. W e  have provided a detailed illustration of how i t  can be  done f o r  one 

current ly available MPS and how i t  could (possibly even should) be done fo r  o the r  

systems. 
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