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ABSTRACT

This paper serves two purposes, to which we give equal emphasis.
First, it describes an optimization system for solving large-scale stochastic
linear programs with simple (i.e. decision-free in the second stage)
recourse and stochastic right-hand-side elements. Second, it is a study of
the means whereby large-scale Mathematical Programming Systems may be
readily extended to handle certain forms of uncertainty, through post-
optimal options akin to sensitivity on parametric analysis, which we term
"recourse analysis’. This latter theme (implicit throughout the paper) is
explored in a proselytizing manner, in the concluding section.
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DESIGN AND IMPLEMENTATION OF A STOCHASTIC
PROGRAMMING OPTIMIZER WITH RECOURSE AND TENDERS

J.L. Nazareth

1. Introduction

This paper is a sequel to Nazareth and Wets [21] and serves two purposes, to
which we give equal emphasis. First, it describes an optimization system for solving
a restricted but important class of large-scale stochastic linear programs with
recourse. Second, it is a study and detailed illustration of the means whereby any
large-scale Mathematical Programming System (MPS) designed for solving deter-
ministic linear programs, could be readily extended to handle some forms of uncer-
tainty, in particular, via post-optimal analysis options. This latter theme (implicit
throughout the paper) is explored, in a proselytizing manner, in the concluding

section.

The class of practical stochastic linear programs with which we are con-
cerned (termed C1 problems in [21]) arise as a natural extension of the linear pro-
gramming model as follows: given a linear program with matrix A, it is often the
case that some of the components of the right-hand-side (exogenous) vector of
resource availability or resource demand, are known only in probability and have
been replaced (in the deterministic LP formulation) by some expected value. We
seek to extend this linear program, using the recourse formulation. Rows of A
corresponding to the stochastic right-hand-side are used to define the technology
matrix T (we follow the notation and terminology of [21]) and the remaining rows of
A are used to define the constraint matrix 4, both 4 and T being typically large,
sparse matrices. The recourse is assumed to be simple (i.e. decision-free in the
second-stage problem) and specified in terms of costs (or penalties) on shortage

and surplus. Furthermore, we restrict attention to the case where each component

This paper is a draft for Chapter 14 of Numerical Technigues for Stochastic Optimization
Problems, Y. Ermoliev and R J.-B. Wets, eds., Springer-Verlag, Lo appear.
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of the stochastic right-hand-side has a given discrete probability distribution.
There are many applications for such a model, see Ziemba [27], and more complex
stochastic linear programs with recourse can sometimes be solved by an iterative
discretization or sampling procedure involving definition and solution of a

sequence of C1 problems.

The above considerations are very much in the background of our implementa-
tion design, our choice of algorithms and of the more general issues which we wish
to discuss regarding the extension of conventional Mathematical Programming Sys-
tems, so as to be able to handle at least some forms of uncertainty. Our optimiza-
tion system is based primarily upon a version of Wolfe's generalized programming
algorithm (see Dantzig [4]) given in Nazareth and Wets [21] Section 3.2.1 and, in
more detail, in Nazareth [18]. It also includes a version of an algorithm based
upon bounded variables (see Wets [25]) given in [21] Section 2.1 and, again in more
detail, in [20]. Two simpler options, namely to solve an initial linear program and
to permit some of its constraints to be "elastic" are also included to help get a
recourse problem "off the ground.” In our implementation (see Nazareth [19] for
an overview of our overall approach) we have utilized current mathematical pro-
gramming technology for specifying the problem (using standard MPS conventions
[14] for the LP portion and a suitable extension to provide the added stochastic
information), to represent the data internally (in packed data structures, space
for which is dynamically allocated within a work storage array) and to implement
our solution strategies (using an efficient and numerically stable implementation of

the simplex method, namely the MINOS System of Murtagh and Saunders [15], [16]).

Finally, we want our design to mesh as naturally as possible with current
Mathematical Programming Systems. In particular, we argue in the concluding sec-
tion of our paper, that '"recourse analysis” (simple recourse to start off with, but
also more general forms of recourse) could be provided as a post-optimal analysis
option in any large-scale MPS, to augment the options for parametric and sensi-

tivity analysis that are now usually available,



2. Overview of the SPORT System

2.1. Problem

SPORT (pronounced SupPORT) is an acronym for Stochastic Programming
Optimizer with Recourse and Tenders. The current version solves large-scale sto-
chastic programs with simple (decision-free in the second stage) recourse and
discrete distribution of right-hand-side elements (termed C1 problems). The for-
mal statement of such problems may be found in [21] (see (1.1) through (1.3) where
W =[1,-1] and where the right-hand-side ~(w) is the only stochastic quantity,
with a known discrete distribution) and we shall not repeat here. Instead, we shall
state the problem from the perspective emphasized in this paper, namely that of a
given linear program in which inherent uncertainty in some of the right-hand-side
(exogenous) elements is to be more fully taken into account. Consider therefore

the linear program

minimize cx
subjectto Az =d (2.1)
z 20

where A is an m Xn matrix (which is generally large and sparse), d is a given m-
vector and ¢ is a given n-vector. Some of the elements of & which correspond to
demands (or available resources) may be, in reality, only known in probability and
defined in (2.1) by taking some expected value. For simplicity, let us suppose that

the corresponding "technology” constraints of (2.1) are the last m, constraints

and let us denote them by Tz = h, where T is an m, X7 matrix. Let the remaining
b
m 4 constraints be At = b where 4 isan m; Xn matrixand d = il

A useful ext.t_-:nsion to the LP model (2.1) is to permit the const.raint.s Tz =h to
be "elastic” (Tomlin [24]) by imposing a penalty qi+ on shortage in the i*" technoi-
ogy constraint when demand (corresponding to the right-hand-side element I:i)
exceeds the supply (Tz),;, so that yi‘L = Ei —(Tx); 2 0. Similarly let g, be the
penalty imposed on surplus (when the reverse of the earlier conditions holds) so
that y; = (Tx), —I?i = 0. (The choice of notation g;* for shortage and g, for
surplus is a little unfortunate, but is now standard.) Thus associated with the deci-

sion z for the ‘first-stage’ or decision variables, we have a penalty of

¢;*(hy —(Tx);) when (h; —(Tz);) 20

r’: = - b h.
@z, hy) gy ((Tx); —h;) when (h; —(Tz);) <0.
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To minimize first stage costs and all penalty costs we can formulate the extension

of (2.1) as a problem with "elastic' constraints as follows:

minimize cx +qtyt+qy"”
subject to Az =P 2
Tz +y*t -y~ =h (2-2)

z20,y*20, vy =20

where ¢ ¥ and ¢ ~ are m-vectors with components qt" and g; respectively.

Unfortunately (2.2) does not address the uncertainty in the right-hand side
vector, which so far has been replaced by h. One way to address uncertainty is to
compute the penalty cost associated with each realization of the random vector
h(w). Let us also define the "tender' or '"bill of goods' associated with a decision

z by x = Tz. Thus we have

_ 2, (hy(w) ~x;) when (h;(w)—x;) =0
Q@ h) 8 ¥y Ry (O) =00~ (@) when (hy(w)—x;) =0

mg mp mpe
Let YOOAE (X ¥i(xy . hy(@)= L E (¥ 0y hi (@) A X ¥, (x;) We seek to
i=1 i=1 i=1

minimize the cost of the decision cx and the expected value of the penalty costs.

Thus we can formulate this extension of (2.1) as

me
maximize cz + ) ¥ ()
i=1

subject to Az =d
z =20

For C1 problems it can be readily demonstrated (see, for example [25], [20]) that

¥ =
1 (X'l ) . =Ig,ax.q (Su Xi ey )

where s;, and e;; are defined from the probability distribution of ~;(‘). Let this be

given by values h;y.Ryg,....hy, with hy =h, .4, with associated probabilities

i

pt1.p12...-.piki. Then, forl =0""'ki

- +
Sg = 9y —Qy

L
L hy
=1

(.4)

_ L
ey = qithy—qy [E hit Dyt
t=1
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0 -
where, by convention, 2 =0,q = (qi+ +q9; ) >0 and A, is the expected value of
i1=1

h;(w). Finally, using a theorem in [18], it is possible to state (2.3) in an

equivalent form and in so doing also unify with (2.2) as follows:

Mmp
minimize cx+qtyt+qy+ 2 ‘I'i(Xi)
i=1
subject to Az =b 25
Tz +y* -y~ —x =0 ®>

z 20, yt=20, y~ =20

For xé); we obtain (2.2) since \P()-z-) is then a constant term. (2.5) is a piecewise-
linear separable convex programming problem with which we shall be concerned
henceforth. It makes possible both convenient implementation of the algorithms
which we employ and the various options that we provide, as discussed in the next

section.

2.2 Alporithms

The system is based primarily upon the Wolfe generalized programming
approach as discussed in [21], Section 3.2.1. The particular algorithm imple-
mented here termed ILSRDD (Inner Linearization - Simple Recourse - Discrete Dis-
tribution) is described, in detail, in [18]. The generalized programming approach
was chosen because it proved effective in earlier experimental versions (see [18])
and because of its potential applicability to a wide class of stochastic programs
(including problems with complete recourse and problems with probabilistic con-
straints, see [18]). We also include an alternative to ILSRDD. This is algorithm
based upon problem redefinition and the introduction of bounded variables given
by Wets [25] and implemented in the simpler form given in Nazareth and Wets [20].
The algorithm is termed BVSRDD (Bounded Variables—Simple Recourse—Discrete
Distribution). This approach is much more limited in its range of possible applica-
tion as we have discussed in [21], but we include it for the following reasons: (a) it
is very convenient to have a second algorithm that works on basically the same
input as ILSRDD, for purposes of comparisons of answers and validation of imple-
mentation. Two identical answers on a particular problem from two different algo-
rithms are rather comforting in this world of uncertainty and although this is no
guarantee of correctness, it provides some indication that an error (if any) is in
the input data or its conversion into internal representations. (b) A fair amount

of experience has been accumulated with an early implementation of this method



-6 -

for dense problems (see Kallberg & Kusy [11]) and a more advanced implementa-
tion (which handles sparsity) should be available. (When there are relatively few
points in each distribution of h;(‘) then this may even be a quite efficient way to
solve C1 problems. (c) The algorithm BVSRDD makes possible a simpler and more
direct extension of a deterministic MPS when the aim is only to handle simple
recourse.

Two further options are provided in order to be able to solve (2.5) with x = h
(ELASTIC option) and in order to solve an initial linear program, equivalent to
(2.5) with x = }?, q,f =gq; = o (MINOS option). Here, h denotes an arbitrary
right-hand-side vector. Both of these options are useful as preliminaries to the

recourse formulation.

2.3 Implementation

From a practical standpoint, the linear programs which we want to solve and

extend are of the more general form:

minimize cx
=<
subject to Az|=|b (2.6)
=
l=rx=su

=
where [=| indicates that constraints take one of three possible forms and v and [

2

are vectors of upper and lower bounds. Furthermore, we cannot usually expect

A
the partition A = T] with technology rows T coming last in the matrix A. In gen-

eral, rows of 4 and rows of T will be interleaved in A. In addition, it is worthwhile
to explicitly include a scale factor p to permit a weighting of the second-stage
objective relative to the first (see [18]). Thus the practical problems which we

seek to solve, are derived from (2.5) and (2.6) and take the form

mp
minimize ez +qfyt+oy T +p Y ¥ (xy)
i=1
subject to (Aa‘)z (==2)b,; , &y €A
- . _ (2.7)

lsz=su,yt, vy 20
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where 4%, a, € A defines the rows of 4, T™, 74 €[ defines the rows of T, and Aand

['are index sets with |A| =m,4, || =m, (| A| denotes the number of indices in A).

Our system for solving recourse problems of the form (2.7) has three main

phases:

Phase 1: Problem Setup and Generation
Phase 2: Specialized Setup and Solution
Phase 3: Output

This is summarized in Figure 2.1. A design goal was that all algorithms work
on essentially the same input and each ignore input data that is only required by
the others, e.g. the limit on the number of cycles, which is only required by
ILSRDD. The input is specified in the form of three files of information which are
described in more detail in the next section. All that is offen necessary to switch
options is to change the algorithm card in the "control” file and check that enough
work space has been provided for various items. The Problem Setup and Genera-
tion Phase results in the creation of two files required by MINOS — the SPECS file
and the MPS file. The next main phase consists of reading in these files by MINOS,
inserting additional columns into its packed data structures and finding the solu-
tion of the problem. Finally the Output Phase augments t.her solution output by
MINOS with some additional information about the solution of the stochastic pro-

gram with recourse.

The next three sections go into this in more detail.

3. Problem Setup and Generation

To be specific, we discuss this within the context of an example. Consider the
following product-mix example (due to J. Ho [10]). The problem has two products
and three ingredients. We seek to minimize cost of production while maintaining
the levels of fat and protein at acceptable levels, and not exceeding availability of
ingredients. The demand for each product is a random variable with discrete dis-
tribution but in an LP formulation this must be replaced by some expected value.
The problem is summarized as follows, where z,, ¥;, z; denote the amount of each

ingredient in product i (i =1,2).
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minimize z, + 2y, + 3z, +z,+ 2y, + 3z,
subject to

Fat/Protein : 0.3z, + 0.4y, + 0.2z, > 33
Content of Pro-
duct 1

Fat/Protein : 0.5y, + 0.6z, 2 4.0
Content of Pro-
duct 2

Amount of In- : Ty + z, < 15.0
gredient 1

Amount of In- : Y, + Y2 < 12.0
gredient 2

]
L
-

Amount of Pro- : z, + Yy + z,
duct 1

N
»
"
&)
»

Amount of Pro- : z, + Ve t+
duct 2

z,,¥%;.2,20,1=1.2

(OBJ)

(A3)

(A4)

(A1)

(AZ)

(T1)

(T2)

The penalties for under and over production are 2.0 and 1.0 units, respec-

tively, for each product, and the probability distribution on demand A (+) is as fol-

lows:

Product 1 Product 2
Level 8.0 10.0 12.0 15.0 18.0 20.0
Probability 0.25 0.5 0.25 0.2 0.4 0.4

hy =100 and A, =18.2. The recourse function ¥(x) is defined in the usual

way with ¢ ¥ = (2.0,2.0) and ¢ ~ = (1.0,1.0).

3.1 Corefile

The input data corresponding to the decision variables z of the problem forms

the "corefile'. This specifies

~ the names and types of each row of the problem
— the objective ¢

— the coefficientsof A and T

- the deterministic right-hand-side elements

- the bounds on variables and ranges on rows
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The "corefile” is specified in standard MPS format, see [14] and will often ori-
ginate in a prior LP formulation. 4 and T can have interleaved rows and rows
corresponding to T should normally be equality rows. However if these
correspond to = or = rows i.e if there is no penalty on surplus or shortage,
respectively, then provision is made in the system to change these to equality rows
and a warning message is printed to that effect. This means that qf or q;  must be
chosen appropriately at value zero. Note also that if there were non-zero elements
in the right-hand-side vector corresponding to rows in the technology matrix they
will be ignored by ILSRDD or BVSRDD and a message printed to this effect.

For our example, the corefile is given in Figure 3.1. (Slack variables were

introduced explicitly in this case, but this is not necessary and could have been

avoided by appropriate definition of row types.)

3.2 Stochastics File

The "stochastics” file specifies the information pertaining to the recourse

problem. It gives:

- the row names identifying the technology matrix

- the probability distribution for each stochastic right-hand side

- the penalties ¢ ¥ and ¢ ~on shortage and surplus

- the set of initial tenders for ILSRDD or the base tender for BVSRDD

An MPS-like format was designed for each of these items of information and is
explained in the rest of this subsection. (An extension of this format is given in

Edwards et al. [7].)

NAME This is a header card. The user may enter any characters in

columns 15 to 72.

TECHNOLOGY The data consists of a list of names, one for each row in the tech-
nology matrix. These must be a subset of the list of rownames in
the "corefile”. The submatrix corresponding to this set of rows in
the COLUMNS section of the "corefile” defines the technology

matrix. One name appears per line in columns 5 through 12.

DISTRIBUTION The data consists of sets of entries of the form "rowname value
probability”. There is one such set for each of the rows named in
the TECHNOLOGY section. "rowname’ specifies the row associated

with the entry (columns 5 through 12). "value”" and "probability”
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NAME  LP
ROWS
N 08J
£ Al
£ a2
E A3
E A4
ET1
c T2
COLUMNS
cLM1 08J 1.0 a1 1.0
CLML a3 0.3 T1 1.0
LMz o8J 2.0 AZ 1.0
cMzZ A3 0.4 T 1.0
cLM3 08 3.0 A3 0.2
CLM3 T1 1.0
CLM& A3 -1.0
cLme 08 1.0 Al 1.0
o) T2 1.0
CLMS oB8J 2.0 A2 1.0
CLMS AG 0.5 T2 1.0
CLM? oB8J 3.0 AL 0.6
CLM? T2 1.0
cLm Al -1.0
CLM? A1 1.0
CLM10 A2 1.0
RHS
QTH A1 15.0 a2 12.0
RTH A3 3.3 A 4.0
RTH T1 10.0 T2 18.2
BOUNDS
ENDATA

Figure 3.1 The corefile

specify the point and its assoclated probability. They occupy the
first and second numeric fields (columns 25 through 36 and 50
through 61) respectively and must be specified as real numbers.
The "rowname" repeats itself for each possible value associated
with the row and the probabilities for this "'rowname” must sum to
unity.

The data consists of entries of the form ''name value value" where
name is a rowname of T and the first value gives the value of qi"
and the second the value of ¢, i.e the penalties on shortage and
surplus respectively. The name occupies the first field (columns 5

through 12) and the values the first and second numeric fields
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ENDATA
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(columns 25 through 36 and 50 through 61) respectively. They

must be specified as real numbers.

The data consists of entries of the form "name rowname value"
where name is the name associated with tender, "rowname” speci-
fies the row associated with the entry and "value” is the level of
the tender for this row. "name” repeats itself over all entries
associated with the tender and there is one such "name" for each
tender specified. "name” and "rowname' occupy the first two
name fields (columns 5 through 12) and (15 through 22) respec-
tively and "value"” the first numeric field (columns 25 through 36).
(If a set of these are provided for ILSRDD then the first one is
used by BVRDD as its base tender, see Sec. 2.1 of [21].)

This card must be specified and flags the end of the "stochastics”
file.

For our example the "stochastics” file is given in Figure 3.2.

NAME TEST
TECHNOLOGY
T
T2
DISTRIBUTION
T1 8.0 8.25
T 10.0 0.5
T 12.0 0.25
T2 15.0 0.2
T2 18.0 0.4
T2 20.0 0.4
OBJECTIVE
T1 2.0 1.0
T2 2.0 1.0
TENDERS
TEND1 T1 8.0
TEND1 T2 15.0
ENDATA

Figure 3.2.The stochastics file
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3.3 Control File

The "control” file provides the information needed to guide the solution pro-

cess. It gives:

- algorithm selected (generalized linear programming, bounded variable algo-

rithm, elastic constraints or linear programming)
- input/output units for the files used by the system
- dimensioning information for various arrays within the system
- names of objective and right-hand-side vectors
- additional control parameters e.g. output level, cycle limit, etc.
- specification cards for MINOS

Our design here is similar to the MINOS SPECS file, but our format specifica-
tion is more rigid and is based upon fields of four characters. Each main section is
identified by a principal keyword which begins in column 1. Within each of these
further options are identified by a second keyword which begins in column 5. Each
of these options may have further suboptions and these are in turn identified by
keywords beginning in column 9. The numerical strings or integers which provide
the information that goes with a keyword are specified in a data field given by
columns 23 through 30. Integers must of course be right justified. Only the first

four characters (including blanks) of any keyword are significant.

The principal keywords, i.e. the keywords beginning in column 1, must be

specified even when all defaults are selected.
The keywords are as follows:
BEGIN This is a delimiter identifying the beginning of the control file

ALGORITHM This identifies the selected algorithm. Options are ILSRDD,
BVSRDD, ELASTIC or MINOS.

UNIT The unit numbers are specified as follows:
CORE unit number of "corefile”. Default = 5
STOCHASTICS  unit number of "stochastics” file. Default =7
SPECS unit number of the MINOS SPECS file. Default =8

MPS unit numbers of the MINOS file specifying the

matrix. Default =9



DIMENSIONS

SELECTORS

DEBUG

LOG

~-14 -

unit number for debugging information. Default =

0 (no output)

unit number of the log file. Default = 0 (no out-

put)

This specifies information for setting up the work array

ELEMENTS

ROWS

TECHNOLOGY

COLUMNS

an upper bound on the number of elements in the
matrix (including space for input and generated
tenders). Default = 1500

an upper bound on the number of rows (including
technology). Default = 100

an upper bound on the number of technology

rows. Default = 20

an upper bound on the number of columns in the

matrix (including tenders). Default = 300

PROBABILITIES an upper bound on the number of discrete levels

TENDERS
INPUT

GENERATED

ELEMENTS

associated with each stochastic right-hand side.
Default = 30

This provides information on tenders as follows:

an upper bound on the number specified in the "sto-

chastics" file. Default = 1

an upper bound on the number of tenders saved.

Used in the round robin strategy. Default = 20

an upper bound on the total number of tender ele-
ments. Default = 2000

Note: One must be careful about specifying these quantities.

OBJECTIVE

RHS

BOUNDS

name of the objective row — up to 8 characters

(must be provided)

name of the right-hand-side vector — up to 8 char-

acters (must be provided)

name of the bounds vector — up to 8 characters
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RANGES name of the ranges vector — up to 8 characters

CONTROL OPTIONS
QUTPUT output level. Options are 1, 2 or 3, which provide

increasingly verbose output. Default = 2
CYCLE limit on number of tenders generated. Default = 1

SCALE scale factor (see (2.1)), expressed as a percentage
(p = SCALE/100). Default = 100.

MINOS SPECIFICATIONS Here one specifies any MINOS options which are
then echoed into the MINOS SPECS flile.

END Delimiter indicating the end of the control section

In our example the "control” file is given in Figure 3.3.

REGIN
ALCORITHM ILSFDD
UNIT NMBERS
TORE FIlLE n
STOCHASTICS FILE 1l
SPECS FILE 2
MPS FILE 132
DERLG FILE !
“0G FILE 14
2IMENSICNS
ELEMENTS 700
ROWS 10
COLLMNS 40
FPROBABILITIES 2
T=ENDERS
INPUT p
GENERATED 12
ELEMENTS 39
SELECTORS
CBIECTIVE oRJ
R-S BT
CONTROL OPTIONS
oUTPLT 2
CvC e LIMIT 8
SCALE FACTOR peals)
END '

Figure 3.3.The control file
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3.4 Implementation of Problem Setup

This is done using some modules from LPKIT (see Nazareth [17]) suitably modi-
fied to suit our purposes. Additional routines have been written to set up informa-
tion specified in the "stochastics” file into packed data structures and to generate
the MINOS SPECS and MPS files.

4. Specialized Setup and Solution

This part of the implementation is built around MINOS Version 5.0 whose
outermost routines MINOS1 and MINOSZ2 were modified for our purposes. In partic-
ular, the PHANTOM COLUMNS option of MINOS (simply a device to provide some
"elbow-room" in the data structures holding the problem) is extensively used in
order to complete the setup of the recourse problem in the packed data structures
used by the MINOS system.

4.1 ILSRDD

The master program is defined by expression (3.7) in [21] with W é [I,-I1]
and the obvious extension to match expression (2.7) in this paper. MINOS 5.0 sets
up the 4 and T matrices in packed data structures from the MPS file which was
generated in the previous phase. Then our modifications to subroutine MINOSZ
pack in the additional columns corresponding to tenders. Other routines
developed by us, which are called within the subroutine MINOSZ2, implement the
generalized linear programming algorithm in coordination with the solution of each

master program by MINOS 5.0. The detailed algorithm is given in [18].

4.2 BVSRDD

This is an implementation of the bounded variable method of Wets [25] in the
form given in [21], Section 2.1. Further details of the algorithm may be found in
[R0]. There is a danger of performing a large number of pivot operations when the
probability distribution of each right-hand-side element has many points (the so-
called epsilon-to-death problem) but the associated computational effort is allevi-
ated by the way in which MINOS updates its basis matrix representation. It is pos-
sible to improve the implementation (a) by using some of the acceleration tech-
niques discussed in Wets [25] which, in effect, carry out several basis changes at

the same time, (b) by specifying a good starting basis from the special structure in
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(2.7).

In contrast to ILSRDD, implementation is much more straightforward because

only an initial linear program must be set up.

4.3 ELASTIC

This option implements the linear program (2.2) (see Section 2.1 of this
paper), thereby permitting the "technology rows” to be elastic. The row names
defining the technology rows and the penalties ¢ * and ¢ ~ are defined by the sto-

chastics file. Other data in this file is ignored.

4.4 MINOS

This simply provides the preliminary option of solving an initial linear pro-

gram. The data in the stochastics file is not required here.

9. Output Phase
The output consists of two parts:

(a) MINOS output in standard MPS format. For a description of this see Murtagh &
Saunders [16].

(b) SPORT output. This gives the first-stage and second-stage costs the optimal

tender, the dual multipliers (prices) associated with the technology rows in
the optimal solution and the probability levels of the equivalent chance-

constrained program.

For the earlier example the output is given in Figure 5.1.
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Figure 5.1 The output for the earlier example

SPORT(ILSRDO)Y: OPTIMAL SOLUTION OF RECOLRSE PROBLEM FOUND

1. MINOS QUTRUT

1

PROBLEM NAME OBJECTIVE VALLE 4 .3442500000a+01
STATUS OPTIMAL SON ITERATION 1 SUPERBASICS 0
0BJECTIVE o8J (MIN)

(.2 -] RTH

RANGES

80UNDS

SECTION 1 - ROLS

...ROW.. STATE ...ACTIVITY... GSLACK ACTIVITY .. LOGER LIMIT. ..UPPER LIMIT. .DUAL ACTIVITY

NUMEER
25 o8y Bs 43.46250 =~43.46230 NONE NONE -1.00000
2 Al £Q 15.00000 g. 15.00000 15.00000 -0.43750
7 A2 A EQ 12.00000 0. 12.00000 12.00000 a.
28 A3 EQ 3.30000 a. 3.30000 3.30000 $.42500
29 AL EQ 4.00000 0. 4.00000 4.00000 1.12300
/T EQ a. a. 0. 0. -0.25000
N T2 EQ 0. 0. a. a. 1.43750
32 CONVXITY €Q 1.00000 a. 1.00000 1.00000 25.96250
SECTION 2 - COLLMNS
NMBER .COLLMN. STATE ...ACTIVITY... .0BJ GRADIENT. ..LOMER LIMIT. ..UPPER LIMIT. REDUCED GRADNT
1 M BsS 8.00000 1.00000 a. NONE a.
2 ame BS 2.25000 2.C0000 0. NONE -0.00000
3 aM3 L a. 3.00000 a. NONE 2.12500
4 M L 0. a. 0. NONE 5.462500
S ams BS ?.00000 1.00000 a. NONE a.
6 COMe BS 8.00000 2.00000 0. NONE a.
7 am L 0. 3.00000 a. NONE 0.8870
g 8 L 0. 0. 0. NONE 1.12500
9 am L 0. C. Q. NONE 0.43750
10 amio BsS 1.75000 a. 0. NONE 0.
11 PHNT1001 L 0. 2.00000 0. NONE 2.25000
12 PHNT1002 L 0. 2.00000 0. NONE 0.56250
13 PHNT1003 L 0. 1.00000 a. NONE 0.75000
146 PHNT1004 (I 0. 1.00000 0. NONE 2.43750
1S PHNT100S L 0. 3.64000 a. NONE 0.34000
16 PHNT1004 L 0. 10.40000 0. NONE 3.00000
17 PHNT1007 BS 0.87s00 7.90000 0. NONE 0.00000
18 PHNT1008 L 0. 4.20000 0. NONE 0.11250
19 PHNT1009 BS 0.12500 8.40000 0. NONE -0.00000
20 PHNT1010 A EQ 0. 0. 0. g. 0.
21 PAHNT1011 A EQ 0. 0. 0. 0. 0.
22 PHWNT101Z2 A EQ a. 0. 0. 0. a.
23 PHNT1013 A EQ 0. 0. 0. 0. 0.
26 PHNT1014 A EQ 0. o. 0. o. 0.
ENDRUN
2. SPORT(ILSRDD) OUTPUT
COSTS ASSOCIATED WITH ABOVE SOLUTION
TOTAL = 43.44250 DIRECT = 35.50000 RECOLREE =
QUANTITIES ASSOCIATED WITH ABOVE SOLUTION
ROW NAMES TENDERS PRICES CC-EQUIVALENTS

T 10.25000 -0.25000 0.75000
™ 15.00000 1.4370 0.18750

DN NS WN -

z

UNNBSESFGRURE o

N

Hegdgyen

7.96250
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6. Testing

(@)

(b)

()

(d)

(e)

The program has been exercised on several test problems as follows:

The product-mix example of Section 3 due to J. Ho. This is a "toy"” problem
with 5 rows of which 2 are technology rows and 6 first-stage decision vari-

ables.

The test problem given by Kallberg & Kusy [11]. This too is a "toy" problem
with 3 rows of which 2 are technology rows and 6 first-stage decision vari-

ables. (Documented in King [12].)

The test problem given by Cleef [3]. This has 9 rows of which 6 are technology

rows and 16 first-stage decision variables. (Documented in King [12].)

The problem of allocating aircraft to routes given in Dantzig [4]. This has 9
rows of which 5 are technology rows and 29 first-stage decision variables.
(Documented in King [12].)

A discretized version of the stochastic transportation problem given by Qi
[23] formulated as a standard stochastic linear program with simple recourse.
This has 78 rows of which 44 are technology rows and 1496 first-stage deci-

sion variables.

The bank asset and liability model given by Kusy & Ziemba [13] and a full-

scale version of problem (d) above both provide good illustrations of the practical

applications for which our program is designed.

7. Sportsmanship

The current system can be applied to a wider range of problems than would

appear at first sight. For example when the stochastic linear program has sto-

chastic technology matrices with a few discrete probability levels (which are

independent of the right-hand-side distribution) say, T,,...,T; with probabilities

Pi.---.P¢, then we can express this as an equivalent problem
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minimize cx + pyq9tys +P@7Yy + -+ ety + 0Ty
subject to

.Az —4

7
Tyz + [7.-1¢, H =h (@)
. (7.1)
ll¢+
T,z e s UL = R ()

Let us treat T defined by
7, |
T

as a technology matrix in the usual way. Then we can set up the problem so that it
can be solved by the system, as described earlier, with appropriate definition of

penalties and distribution determined by (7.1).

In some situations the underlying probability distribution of & () is only known
implicitly through a simulation model involving the random elements . Nazareth
{18] discusses how the system can be extended to this case (see, in particular, Sec-
tion 3.2 of {18] for some numerical experiments).

When the probability distribution of A(:) is not discrete, SPORT 2.0 can be
used in conjunction with some iterative discretization procedure and computation
of error bounds (see, for example, [26]).

When a more complex penalty structure is imposed on the second stage, pro-
gram modifications would be required. This could, in many cases, be done fairly

easily.

8. Availability

The Fortran implementation described here, SPORT 2.0 (pronounced SupPORT
Version 2.0) was developed for use at IIASA on the VAX 11/780 (under the UNIX
operating system). It uses MINOS 5.0 (the latest documented version), which is
available in-house. Using the terminology in Nazareth [19], the current version of

our system is a level-2 implementation, designed for algorithmic experimentation
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and for problem solving by an experienced user (one expected to be familiar both

with his problem and with the implemented algorithm).

To use SPORT 2.0 at another site, it would be necessary to obtain MINOS 5.0
independently from Stanford University and to substitute our set of Fortran rou-
tines for the two MINOS 5.0 files MIOOMAIN and MI1OMACH. (Note that SPORT 2.0

will not run with versions of MINOS below 5.0.)

An earlier version of our system, designed for MINOS 4.9, SPORT 1.1, is avail-
able on the SDS/ADO tape, which is a collection of a number of routines for sto-
chastic programming. This version provides readable Fortran and a manual (see
Edwards [6]) to document our implementation. Note that it is not executable, since

MINOS 4.9 is not included with it.

In order to obtain a copy of SPORT 2.0, please contact the author of this arti-

cle at either of the following addresses:
IIASA, System & Decision Sciences, A-2361, Laxenburg, Austria
or

CDSS, P.O. Box 4908, Berkeley, California 94704, USA

9. Stochastic Programming with Recourse as a Form of Post-Optimal
Analysis in a Mathematical Programming System

Many large-scale Mathematical Programming Systems (for example, MPSX/370
" [1]) provide options for performing parametric and sensitivity analysis in the
optimal solution of a linear program and for repeated (and efficient) reoptimiza-
tion through a dual simplex procedure, when the right-hand-side is changed. (For
MINOS, post-optimal analysis routines have been developed by Dobrowski, et al
[51)

A common approach for handling uncertainty in the right-hand-side is to use
scenario analysis, which is indeed greatly facilitated by the above post-optimal
options. Ermoliev and Wets [B8] characterize this approach to dealing with uncer-
tainty as being 'seriously flawed" and explain why as follows: "Although it
(scenario analysis) can identify 'optimal’ solutions for each scenario (that speci-
fies some values for the unknown parameters), it does not provide any clue as to
how these 'optimal’ solutions should be combined to produce a merely reasonable
decision.” Another approach that has been utilized by mathematical programmers

as discussed in Section 2.1 is to introduce elastic constraints by defining
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penalties on shortage and surplus for a given right-hand-side. This, as we have
noted, is in the spirit of the recourse model, but it does not yet address the sto-

chastic aspect of the right-hand-side elements.

One aim of our paper has been to demonstrate (hopefully convincingly) that
recourse analysis could be introduced in a very natural way as a post-optimal
analysis option in an MPS and that its implementation is not substantially more dif-
ficult than that of other post-optimal analysis options currently provided within
them. It could be argued, of course; since problem (2.7) can be directly expressed
as a linear program, that it could be left up to the user to set up this linear pro-
gram, create the appropriate MPS file and solve it in the conventional way. This is
to impose upon him or her a laborious and error prone task. To do so would be as
unreasonable as requiring that the user implement his own post-optimal parametric
and sensitivity analysis. Another approach is to use an extended LP system based
upon piecewise-linear (separable) programming (see Fourer [9]) to solve (2.5) or
(2.7). Unfortunately such systems are not available as general purpose software.
Thus it is necessary to fall back upon the more conventional mathematical pro-

gramming systems.

The particular implementation described in earlier sections of this paper was
developed for MINOS (specifically Version 5.0) in its linear programming mode, but
an implementation for another large-scale linear programming system (MPS) could
be patterned along rather similar lines (see, in particular, Figure 2.1). This would

require the following:

(a) Firstly, éugmentat.ion of the standard MPS description of a linear program
(which may be formulated and solved as a first step) by some standardized
description of the stochastic information. A format along similar lines to Sec-
tion 3.2 would be quite appropriate. Note that this does notf conflict with the
trend toward high-level modeling systems for defining mathematical program-
ming problems (see, for example, the GAMS System of Brooke, et al. [R]). MPS
format (and its extension to stochastic problems) primarily serves the pur-
pose of formalizing the interface to optimization codes and indeed MPS format
continues to play this role in systems like GAMS. (With regard to the third
"control" file of Figure 2.1, note that this is specific to the MINOS implementa-

tion and would obviously vary with different MPS systems.)
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(b) Secondly, set up of one or more linear programming problems corresponding

(c)

to (.7) by augmenting internal data structures. The more straightforward
implementation (because it involves only one augmentation) is to use some ver-
sion of the bounded variable method of Wets [25] as in BVSRDD (see Section
4.2.). Assuming that a deterministic version of the problem has already been
solved, the additional columns could be inserted directly into the packed data
representation used by the MPS from the stochastic information supplied as
described in (a) above, and the problem reoptimized. (It would be wasteful to
generate a fresh MPS file for (2.7).) In MPSX/370, the augmentation and reop-
timization could be done through the Extended Control Language (see [1]).
The difficulty with the bounded variable approach arises when the distribu-
tion has many points, for example, when it is obtained by discretizing a con-
tinuous distribution. See the discussion in Section 4.2. Also it does not gen-
eralize to non-simple recourse. The alternative is to implement the general-
ized linear programming approach, again directly inserting the added columns
into internal data structures and solving a sequence of linear programs, each
starting off where the previous one left off (as in ILSRDD, Section 4.1). As we
have seen, implementation required modification only of the outermost level of
MINQOS and we believe this would be true for other MPS systems as well. The
ILSRDD algorithm is very efficient in this context and as we may note, the

approach applies to more general forms of recourse.

Thirdly, the output of the solution in an appropriate way, again done most con-

veniently through access to the internal data structure.

To summarize, the mathematical programming field is ripe for incorporating

some forms of stochastic programming with recourse into current large-scale MPS

systems. We have provided a detailed illustration of how it can be done for one

currently available MPS and how it could (possibly even should) be done for other

systems.
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