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INTRODUCTION 

Autoregress ive  (AR) , moving-average (MA) , and au tore -  

gressive-moving average  (ARMA) models a r e  very  popular  i n  

time-series a n a l y s i s .  Many problems of e s t i m a t i n g  t h e i r  param- 

eters and t e s t i n g  hypotheses  a r e  on ly  so lved  a sympto t i ca l ly .  

The d e r i v a t i o n  of  asympto t ic  r e s u l t s  i s  u s u a l l y  n o t  easy.  An 

a l t e r n a t i v e  approach t o  such problems i s  t h e  Bayesian approach. 

I t  i s  assumed t h a t  t h e  parameters  of  t h e  models a r e  random 

v a r i a b l e s .  There a r e  theorems ensu r ing  t h a t  under g e n e r a l  

assumptions t h e  asymptot ic  p o s t e r i o r  d i s t r i b u t i o n  does n o t  de- 

pend on t h e  p r i o r  d i s t r u b i t o n .  A s  t h e  d e r i v a t i o n  of t h e  re- 

s u l t s  i s  u s u a l l y  e a s i e r  i n  t h e  Bayesian approach,  we can use  

t h i s  procedure  p a r t i c u l a r l y  f o r  t h e  s t a t i s t i c a l  a n a l y s i s  of 

more complicated models. 

PERIODIC AUTOREGRESSION 

I n  many a p p l i c a t i o n s  w e  encounter  t i m e  series wi th  a 

s easona l  behavior .  W e  may assume t h a t  t h e  l e n g t h  of season p 

i s  known (e .g . ,  f o r  monthJydata e x h i b i t i n g  a one-year season- 

a l i t y  we have p = 1 2 ) .  I n  t h e  c l a s s i c a l  approach Box and 

Jenkins  (1970, Ch. .9) recommend t o  s t a r t  w i th  t h e  d i f f e r e n c e s  



V X  = X t - X  and to apply an ARMA model to the differences 
P t t-P 

d D of the type VIVpXt. As such differencing is, however, not 

sufficient for real time series, a nonlinear transformation is 

sometimes applied before. In the well-known example of the 

number of airline passengers the log-transformation is applied 

at the beginning without taking into account its influence on 

other statistical procedures. 

If the length of periodicity p = 2, we can consider the 

following modification of an AR model: 

where {Y is a white noise. Simulations show (Andel 1983) t 
that the realization of such a model is very similar to some 

economic time series. In some cases the model has an explosive 

behavior. To take account of this behavoir, we put 

Then our model can be expressed in the form of 

Let zl, z2 denote the roots of the polynomial 



If lzl\<l, 1z21<1, the process {Et) is stationary; other- 

wise {E ) has an explosive behavior. t 

Our example was a special case of periodic autoregression. 

We used a model of the second order with p = 2. Generally, the 

periodic autoregression is given by 

If {Yt) is the usual white noise, we have a model with 

equal variances. If var Y 2 
= Ok' 

2 
n+(j-l)p+k where ol, ..., 

. . . ,cr2 are not all the same, we have a model with periodic 
P 

variances. The periodic autoregression is a special case of 

periodically correlated random sequences, whkch were intro- 

duced by Gladyshev (1961). Jones and Brelsford (1967) expanded 

bkl , . . . ,bkn into a Fourier series. Pagano (1 978) considered 

estimators for bki obtained by modified Yule-Walker equations. 

He also showed that a periodic AR can be rewritten into a 

multidimensional AR model. A periodic ARMA model was intro- 

duced by Cleveland and Tiao (1979). The problem of the 

periodic AR is also treated by Troutman (19791. Tiao and 

Grupe (1980) investigated the errors of nlsclassLfication when 

the periodic structure of an ARMA process was neglected. 

Newton (1982) shows that a periodic AR can substantially 

simplify the numerical procedures for estimating parameters 

in multiple AR models. Andel (1983) presents some results of 

the Bayesian analysis of the periodic AR model including tests 

on whether the t2me series can be described by the classical 

AR model. 

THE BAYESIAN APPROACH 

If 8 E 9 is a random (multidimensional) parameter with a 

prior density p(0), and if a random vector X has a conditional 

density of ~ ( ~ 1 0 )  given 0, then according to the Bayes theorem, 

the posterior density ~ ( 0 1 ~ )  of 0 is given by 



where cx i s  a  c o n s t a n t .  Usual ly  t h e  modus of t h e  p o s t e r i o r  

d e n s i t y  is  taken a s  an e s t i m a t o r  of 8. This  i s  a  gene ra l i za -  

t i o n  of t h e  maximum l i k e l i h o o d  e s t i m a t o r ,  which w e  would g e t  

f o r  p ( 8 )  = cons t .  (Another e s t ima to r  of 8  could be t h e  

p o s t e r i o r  expec ta t ion . )  

The main problem wi th  using t h e  BayesTan approach is t h e  

choice  of t h e  p r i o r  d e n s i t y  p(0)  . The fol lowing t h r e e  poss i -  

b i l i t i e s  a r e  most popular:  

a .  Conjugate p r i o r  dens2ty.  L e t  p(xl 0 )  be given.  A 

system M 
P ( X !  8 )  

is c a l l e d  a  conjugate  system, i f  p (8  [ x )  E 

M ( x l  holds  f o r  every p ( e )  E M 
P ( X I  8 )  

. Usually w e  t a k e  t h e  

minimal system M 
P ( X (  8 )  

wi th  t h i s  proper ty ,  o r  t h e  so-ca l led  

n a t u r a l  system. 

Although a  conjugate  p r i o r  d e n s i t y  i s  convenient from t h e  

mathematical p o i n t  of view, t h e r e  i s  no l o g i c a l  reason f o r  

us ing  it i n  a  given case .  Moreover, t h i s  procedure does not  

s p e c i f y  which d e n s i t y  from t h e  system M 
p(x l  e )  should be taken.  

b. Uncer ta in ty  p r i n c i p l e .  I n  t h e  case  of " f u l l  i g -  

norance" it i s  recommended t o  pu t  p ( 8 )  = 1 f o r  8  E 52. This  

o f t e n  l e a d s  t o  improper (o r  vague) d e n s i t i e s ,  e .g .  i f  52 = Rk 

(Euclidean k-dimensional s p a c e ) .  The advantage of  t h i s  method 

i s  t h a t  t h e  d e n s i t y  p ( 8 )  = 1 can a sympto t i ca l ly  s u b s t i t u t e  any 

o t h e r  reasonable  p r i o r  dens2ty.  

Theorem (DeGroot 1970. 5 10.4) . L e t  no (8 1x1 = cp (x 1 0 )  
and l e t  .rr(8(x) = c 1 p ( x [ 9 ) p ( 8 ) .  L e t  A c 52 be  such a set  t h a t  
m = i n f o  A ~ ( 8 )  > 0. L e t  a , b , c  > 0 s a t i s f y  

scp  p ( 8 )  = ( l+c)m . 
8 E R-A 



Then 

where 

-1 
E = max [ (1-a) (a+b) , (l+a+b+ac) -' (a-tbtab) J + 

In the typical situation the posterior distribution TT o is 

the normal one with a variance matrix of the order N-' (where 

N is the number of observations). Then a and b are nearly 

zero and E is very small. 

Unfortunately, the uncertainty principle is not logically 

consistent. For example, let 

~ ( ~ 1 8 )  = 1 ex (1-0) n-x , 0 c 0 e l  . 

If 8 is completely unknawn, we choose its prAor density 

p (8) = 1 and compute p (0 1x1 by means of the Bayea theorem. 
-I 

We find that w = €JL has a posterlor density of 

c w  (X-1)/2(~-w1/2)n-X.   ow ever, 

1/2 n-x p(xlw) = wXI2 (1-w ) 

If w is considered to be a completely unknown parameter 

with a constant prior density, then Its posterior density is 

c~w~/*.(~-w 1/2)n-x 

c. JeffreyFs principle. To avoid inconsistency it is 
1 /2 necessary to choose the prtor density proport2onal to IJ(o)[ , 

where J is the Fisher information matrix. 

In practice the prior denstty is chosen by combining the 

uncertainty principle and Jeffrey's principle. 



SOME RESULTS CONCERNING TRE PERXODIC AR 

Andel (1983) proved the following assertions: 

Theorem. Assume model ( x )  , where XI, ..., Xn are given 
2 constants and {ytl are i.i.d. N(0,o ) varfables. If xl, ..., xN 

is a known realization, put 

[N-n-k " = k ] + 1 (where [ 3 is the integer part), 
P 

(kJ = 
"k 

qij 1 Xn+k+ (h-1 ) p-i x n+k+ (h-1 ) p-j I h= 1 

Let the prior density of a,b be a-I for a > (I. Then 

(npv) (N-n-np) f (bk-b:) ' Q ~  (bk-b:) has a posterior F 
k= 1 np , N-n-np 

distribution, and [n (p-1 ) v] [N-n (p+l ) 3 A t H A  has a posterior 

F 
n(p-1) ,N-n(p+l) 

distribution, where 

Similar assertions are also derived for the model with 

periodic variances. 



GENERALIZATIONS 

Model (x) can be genera l lzed  t o  a  model wi th  exogenous 

and endogenous v a r i a b l e s *  The computations a r e  s l i g h t l y  e a s i e r  

when we write t h e  abso lu te  term (pk) sepa ra te ly .  The model 

r eads  

Quite  analogously w e  can g e t  a mul t ip l e  model f o r  t h e  

case  t h a t  Xt a r e  random vectors .  

PROBLEMS OF STRUCTURAL CHANGES 

For reasons of s i m p l i c i t y ,  we only  d l s c u s s  he re  t h e  main 

i d e a s  i n  t h e  f i e l d  of c l a s s i c a l  A'R models. Their  genera l iza-  

t i o n  t o  a  p e r i o d i c  AR model is then obvious. 

L e t  Xt be c r e a t e d  by t h e  model 

2 where Yt a r e  independent v a r i a b l e s ,  Yt - N ( 0 , ~ ~ )  . W e  assume 

t h a t  i n  some unknownmoment, t = 8 ,  t h e r e  can be a change of 

parameters: 



Some methods for the detection of point 8 are described 

by Segen and Sanderson (1980) and by Basseville and Benveniste 

(1983). Their procedures are Based on the cumulative sum 

(CUSUM) technique. Simulations show, howwer, that the CUSUM 

method is in many cases not sensit2ve enough. 

Another promising model for detecting structural changes 

can be the model with exogenous and endogenous variables, e.g. 

where 

The problem is to estimate parameters p, bl, ..., bn, a, 
2 8, and a = var Yt. The change occurs in tine t = 8 ,  mainly 

influencing the mean value of the process. This formulation 

reminds of the piece-wise linear regression with unknown break- 

points, where the solution is often Based on the maximum 

likelihood method. 

Both cases mentioned here can be generalized to more 

complicated models. Further research in th2s field is neces- 
sary, because the problem is interesting and important. It is 

clear that the theoretical results should be complemented by 

available computer programs. 
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