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FOREWORD

Within the framework of the Economic Structural Change
Program, a cooperative research activity of IIASA and the
University of Bonn, FRG, a project is carried out on "Statis-
tical and Econometric Identification of Structural Change";
the project involves studies on the formal aspects of the
analysis of structural changes. On the one hand, they include
statistical methods to detect non-constancies, such as sta-
bility tests, detection criteria, etc., and on the other hand,
methods which are suitable for models which incorporate non-
constancy of the parameters, such as estimation techniques
for time-varying parameters, adaptive methods, etc.

The present paper discusses the application of Bayesian
estimation methods in the context of ARMA-models such as the
periodic autoregression.

Anatoli Smyshlyaev
Acting Leader
Economic Structural Change Program
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INTRODUCTION

Autoregressive (AR), moving—average (MA), and autore-
gressive-moving average (ARMA) models are very popular in
time-series analysis. Many problems of estimating their param-
eters and testing hypotheses are only solved asymptotically.
The derivation of asymptotic results is usually not easy. An
alternative approach to such problems is the Bayesian approach.
It is assumed that the parameters of the models are random
variables. There are theorems ensuring that under general
assumptions the asymptotic posterior distribution does not de-
pend on the prior distrubiton. As the derivation of the re-
sults is usually easier in the Bayesian approach, we can use
this procedure particularly for the statistical analysis of

more complicated models.

PERIODIC AUTOREGRESSION

In many applications we encounter time series with a
seasonal behavior. We may assume that the length of season p
is known (e.g., for monthly data exhibiting a one-year season-
ality we have p = 12). In the classical approach Box and

Jenkins (1970, Ch. 9) recommend to start with the differences



w2~

Vpxt = Xt - Xt—p and to apply an ARMA model to the differences
of the type V?Vgxt. As such differencing is, however, not
sufficient for real time series, a nonlinear transformation is

sometimes applied before. In the well-known example of the
number of airline passengers the log-transformation is applied
at the beginning without taking into account its influence on

other statistical procedures.

If the length of periodicity p = 2, we can consider the

following modification of an AR model:
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where {Yt} is a white noise. Simulations show (Andel 1983)
that the realization of such a model is very similar to some
economic time series. In some cases the model has an explosive

behavior. To take account of this behavoir, we put
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Then our model can be expressed in the form of
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If |z1{<1, l22|<1, the process {g } is stationary; other-

wise {Et} has an explosive behavior.

Our example was a special case of periodic autoregression.
We used a model of the second order with p = 2. Generally, the

periodic autoregression is given by

n
(x¢) Xt (3=1)ptk = L. Pxi Xns(§-1)prk-i * Ynt (§-1)pik

3=1,2,... ; k=1,2,...,p) .

If {Yt} is the usual white noise, we have a model with

equal variances. If var Y where G?,...,

’ nt(G-npr = % \ o
...,cp are not all the same, we have a model with periodic
variances. The periodic autoregression is a special case of
periodically correlated random sequences, which were intro-
duced by Gladyshev (1961). Jenes and Brelsford (1967) expanded
bk1""'bkn into a Fourier series. Pagano (1978) considered
estimators for bki obtained by modified Yule-Walker equations.
He also showed that a periodic AR can be rewritten into a
multidimensional AR model. A periodic ARMA model was intro-
duced by Cleveland and Tiao (1979). The problem of the
periodic AR is also treated by Troutman (1979). Tiao and

Grupe (1980) investigated the errors of misclassification when
the periodic structure of an ARMA process was neglected.

Newton (1982) shows that a periodic AR can substantially
simplify the numerical procedures for estimating parameters

in multiple AR models. Andel (1983) presents some results of
the Bayesian analysis of the periodic AR model including tests
on whether the time series can be described by the classical

AR model. '

THE BAYESIAN APPROACH

If € € O is a random (multidimensional) parameter with a
prior density p(0), and if a random vector X has a conditional
density of p(x|8) given 6, then according to the Bayes theorem,

the posterior density p(8|x) of 8 is given by



p(8]x) = c _p(x|8)p(e) , e6€a ,

whe;e Cy is a constant. Usually the modus of the posterior
density is taken as an estimator of 6. This is a generaliza-
tion of the maximum likelihood estimator, which we would get
for p(8) = const. (Another eétimator of 6 could be the

posterior expectation.)

The main problem with using the Bayesian approach is the
choice of the prior density p(8). The following three possi-
bilities are most popular:

a. Conjugate prior density. Let p(x|6) be given. A

system Mp(xle) is called a conjugate system, if p(6]x) €
holas for every p(6) € Mp(x]@)'
with this property, or the so-called

Mp(xle) Usually we take the

minimal system Mp(x|6)

natural system.

Although a conjugate prior density is convenient from the
mathematical point of view, there is no logical reason for
using it in a given case. Moreover, this procedure does not

specify which density from the system M should be taken.

p(x|8)
b. Uncertainty principle. In the case of "full ig-

norance" it is recommended to put p(6) = 1 for 6 € Q. This
often leads to improper (or vague) densities, e.g. if Q = Rk
(Euclidean k-dimensional space). The advantage of this method
is that the density p(0) = 1 can asymptotically substitute any

other reasonable prior density.

Theorem (DeGroot 1970, § 10.4). Let w_(0[x) = cp(x][6)
and let w(8|x) = c'p(x[8)p(8). Let A C Q he such a set that

m = infe c A p(6) > 0. Let a,b,c > 0 satisfy
[ 7 (8|x)a8 = 1 -a ,  sup p(8) = (1+b)m
A 6 € A
secp p(8) = (1+c)m .

8 € Q-A



Then

[ Ime|x) - n_(8]x)[d8 = € ,
£

where

£ = max[(1—a)-1(a+b) , (1+a+b+ac)-1(a+b+ab)] +

+ (1-a) "]

a(l-a+c) .

In the typical situation the posterior distribution Mo is
the normal one with a variance matrix of the order N-1 (where
N is the number of observations). Then a and b are nearly

zero and € is very small.

Unfortunately, the uncertainty principle is not logically

consistent. For example, let

[}

p(x|6) (2) o* (1-0)™* |, o0 <8 <1 .

If 6 is completely unknown, we choose its prior density
p(6) = 1 and compute p(9|x] by means of the Bayes theorem.
We find that w = 82 has a posterior density of

o w(x—1)/2(1_w1/2)n‘x_ However,

p(x|w) = (2) wx/2 (1_W1/2)n—x

If w is considered to be a completely unknown parameter

with a constant prior density, then its posterior density is

c. Jeffrey's principle. To avoid inconsistency it is

necessary to choose the prior density proportional to |J(6)[1/2

where J is the Fisher information matrix.

In practice the prior density is chosen hy comhining the

uncertainty principle and Jeffrey's principle.

[4




SOME RESULTS CONCERNING THE PERIODIC AR
Andel (1983) proved the following assertions:

Theorem, Assume model (»x)}, where X1,...,Xn are given
constants and {Yt} are i.i.d. N(O,Gz) variables. If Xqreee Xy

is a known realization, put

a = [N-g—k] + 1 (where [ ] is the integer part),
a
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Let the prior density of a,b be a ' for a > Q, Then

el RPN E WX, X .
(npv) (N-n-np) L (bk bk) Qk(bk bk) has a posterior F

distribution, and [n(p—1)v]—1[N—n(p+1)]A‘HA has a posterior

np,N-n-np

Fn(p—1),N—n(p+1) distribution, where

- 1) ) L . - - x_x
b= (Alseeesbl )", B =B = b= (bg-bl) .

Similar assertions are also derived for the model with

periodic variances.



GENERALIZATIONS

Model () can be generalized to a model with exogenous
and endogenous variables. The computations are slightly easier
when we write the absolute term (uk) separately. The model

reads

n
Xnt (3-11p+k ~ Yk T i£1 Pei *n+(3-1)p+k-1 *
S
+ a +
s=1 r=o ST ¥5, n+(3-1)p+k-r

+ = 1,2,40.3

Yn+t(3-1)p+k * 3

k=1,2,...p.

Quite analogously we can get a multiple model for the

case that Xt are random vectors.

PROBLEMS OF STRUCTURAL CHANGES

For reasons of simplicity, we only discuss here the main
ideas in the field of classical AR models. Their generaliza-

tion to a periodic AR model 1s then obvious.

Let Xt be created by the model

(t)
ak xt—k + Yt ’

"
I
o~

where Yt are independent variables, Yt

that in some unknown moment, t = 6, there can be a change of

= N(O,oi). We assume

parameters:

~
"

1,...,n) ’ a

i
Q

aét) = a for £t < 0,

>
for t

|
@

aét) = a; &k =1,...,n) , o2 = cg



Some methods for the detection of point 6 are described
by Segen and Sanderson (1980) and by Basseville and Benveniste
(1983). Their procedures are based on the cumulative sum
(CUSUM) technique. Simulations show, however, that the CUSUM

method is in many cases not sensitive enough.
Another promising model for detecting structural changes

can be the model with exogenous and endogenous variables, e.g.

X

L+ b + ... + b X tay +y

1xt—1 n t=-n t !
where

Yy, =0 for £t < 6 ,

>
£ 1 for t .
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@
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The problem is to estimate parameters y, b1,...,bn, a,
6, and 02 = var Yt. The change occurs in time t = 0, mainly
influencing the mean value of the process. This formulation
reminds of the piece-wise linear regression with unknown break-
points, where the solution is often based on the maximum
likelihood method.

Both cases mentioned here can be generalized to more
complicated models. Further research in this field is neces-
sary, because the problem is interesting and important. It is
clear that the theoretical results should be complemented by
available computer programs.
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