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PREFACE
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extended to the selection mutation model with mutation rates
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a simple Lyapunov function. For other mutation rates stable
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Riemann metric.
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THE SELECTION MUTATION EQUATION

Josef Hofbauer . . . .
Institut fir Mathematik, Universitat Wien, Austria

The classical selection model in population genetics, due
to Fisher, Wright and Haldane, is in principle well understood.
The basic result is Fisher's "Fundamental Theorem of Natural
Selection" saying that the mean fitness of the population is
steadily increasing, which is true for both the discrete time
and continuous time model (see e.g. [4,5,6,11,13]. From this
one can conclude that the state of the population tends to
equilibrium [ 12].

For more general selection models, taking into account e.g.
recombination, mutation or different fertilities, the state of
knowledge is less satisfying. The basic problem would be to
extend the "fundamental theorem" to these more general models,
i.e. to prove that mean fitness, or some suitable generalization
of it, is a Lyapunov function. Then the dynamic behaviour would
again be reduced to a study of fixed points. The main success
in this direction, and essentially the only one (besides The-
orem 1 below), was Ewens' generalization to multi-locus systems
with additive fitness scheme [5]. In contrast to this Akin [1,2]
proved a very general theorem (Theorem 5 below) implying that
most of the extensions of the classical selection equation, in
particular those allowing recombination or mutation, exhibit a
more complicated dynamical behaviour: oscillations (periodic
orbits, stable limit cyecles) are possible. Hence the usual fixed
point analysis cannot provide a complete and adequate picture of
the evolution of the population. In particular the search for
meximizing principles (= Lyapunov functions) is a hopeless task.
(See [9] for a recent survey on this question).

This paper is devoted to a study of combined action of
selection and mutation. We will show that, despite Akin's
general result, for a special class of mutational effects,
namely when mutation rates i- j depend only on the resulting



allele j, a simple generalization of the Fundamental Theorem
holds (§ 2). This result was motivated by Hadeler's paper [ 7]

who proved maintenance of stability properties of a polymorphism
when equal mutation rates are allowed. In § 3 we show that these
equations are even gradients with respect to a certain Riemannian
metric, introduced by Shahshahani [15]. § 4 contains a discussion
of Akin's result on cycling together with a concrete example of a
stable limit cycle in a 3-allelic system. We conclude with some
results for the discrete time model (§ 5).

My special thanks are due to Prof.K. Sigmund. It was his paper

[16] and his lectures on Shahshahani gradients which led me to
find the Lyapunov function (2.6).

1. The Model

The standard selection + mutation model for separated generations
is as follows (cf. Crow-Kimura [4]). Consider one gene locus with
n alleles A1,...,An and let XyyeeerXy be their relative frequences
in the gene pool of the population at time of mating. Assuming
random mating, the relative number of gametes of (ordered) geno-
type AiA. will be XX Due to natural selection only a proportion
of wijxixj will survive into procreative age, where wij = wji2<3
are the fitness parameters. So the number of newly produced genes
Aj is proportional to Ty w.kxjxk = x,(Wx).. Now let € 5 be the
mutation rate from Aj to A; (for i4 j), then

ei.z() and
J i

W

: eij=1 for all j=1,...,n (1.1)

i
gene pool of the new generation is proportional to %. eijxj(Wx)..
J

More precisely, it is given by !

for suitably defined €44 Then the frequency xi of genes Ai in the
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eijxj(WX)j/W(x) (1.2)

j=1

with W(X)::x.Wx::Zi o=1 YpgE Xy the mean fitness of the population
, - »

as the usual normalization factor. This is the discrete time

selection mutation equation. Since differential equations are

easier to handle mathematically we replace the difference xi-xi

by ii==dxi/dt in order to obtain the continuous time selection
mutation equation

X (1.3)

* -1
X, = wix) . T eijxjwjkxk" i

j,k
This is the equation studied by Hadeler [7]. Usually, e.g. in
the classical selection equation which corresponds to the special
case e,;="1 and eij==0 for i$ j, the vectorfield (1.3) is multi-
plied by the positive factor W(x), which is equivalent to a
change of velocity. For our purpose this is not useful, however.

Crow and Kimura [ 4], p. 265 and Akin [1] consider a different
model for overlapping generations: selection acts in the usual
way with Malthusian fitness values mij; mutation effects, being
small in general, change the gene frequencies linearly. Arguing
that simultaneous action of selectional and mutational forces in
a small time interval At is of smaller order (At)z, they arrive
at a continuous time model with separate selection and mutation
terms:

. n n
X. =xi( L m,.x.-X.Mx)+ Z (e..X.-€..X.) (1.4)

i j=1 137 j=1 i3] jiti
The three equations (1.2)-(1.4) describe dynamical system on the
probability simplex

n
Sn={x=(x1,...,xn)€Rn: xiZO and E x.=1}.
Rather than going into a discussion of which of the medels (1.3)
and (1.4) is the "correct" or at least "better" one, it seems to
be more useful to observe the following connection between them:




Rewrite (1.3) as

W(x)xi = xi[ (WX)i-W(x)] + Z [eijxj(Wx)j —ejixi(WX)i]

jFi
and replace
l 1.
€557 6eij (for i+ j) and Wi 1 +6mij (1.5)
to obtain

x, = bx,[ (Mx), - x.Mx] +5 T (e %, - €43%,) +0(82).
j4i
Thus after a rescaling of time, t= t/8, Hadeler's equation (1.3)
with (1.5) yields Akin's uncoupled version (1.4) in the limit
5 0. So for small selection differences and small mutation rates
both models are essentially equivalent.

2. Special Mutation Rates

In this section we restrict ourselves to the case of gpecial
mutation rates satisfying

€jy=€y for i# j (2.1)
i.e. mutation rates depending only on the resulting alleles. It
will become clear in § 3 (see especially Theorem 4) that this
case deserves a separate analysis. (1.1) implies here

n
eii=1+ei—e with e =j§1 ej, (2.2)
and (1.3) simplifies to
Wix)x; = x;[ (Wx),; - W(x)] te, Wix)-e x;(Wx), (2.%)

xi[ (1-e)(Wx)i -w(x)] + e; Wix)
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Hadeler [ 7] considered the case of equal mutation rates ei==e/n.
He posed the problem of finding a Lyapunov function in this case,
in order to globalize his stability results. This will now be
done. We write (2.3) as a replicator equation [11,16]

x, = x,[ £, (x) - (x)] (2.4)
with
(Wx)i e n
fi(x) = (1-¢) -WTJ-IT"'E; and F(x) = 121 xifi(x)=1. (2.5)

Obviously the functions fi(x) fulfill the integrability conditions
bfi/bx.==bf./bxi- This implies the existence of an integral V(x),
with fi(x)==bV/in, which is easily computed to

n
V(x) = 155 log W(x)+ £ e. log x.. (2.6)
j=1 1 i
Then
. n v - _ I
V(ix) = 121 bei x; = z xifi[ fi—f] =3 xi(fi-f) =20 (2.7)

This proves

Theorem 1: V(x) is a global ILyapunov function for the continuous
time selection mutation equation (1.3) with special mutation
rates (2.1).

Exponentiating V(x) we obtain the more suggestive Lyapunov function

_ 1- n 2¢ .
T(x) =w(x)"™ 1 =x. *. (2.8)

.=1 1
For e=0, i.e. no mutation, V(x) reduces to the mean fitness
function W(x). So (2.7) is 2 surprisingly simple and straightforward
generalization of Fisher's Fundamental Theorem of Natural Selection:
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The change of the modified mean fitness function V(x) is pro-
portional to the variance of the selection + mutation terms fi(x).
The precise mathematical meaning of (2.7) (in terms of Shahshahani
gradients) will be discussed in § 3. There we will also see that
this result cannot be extended to mutation matrices which do not
satisfy (2.1). When dealing with only n=2 alleles however, (2.1)
is no restriction. This case is analyzed ina nice way in Roughgarden
[13] p. 117ff, also using the Lyapunov function (2.8).

Recalling (1.5) the same result carries over to Akin's
equation (1.4). Since log (1 +6m)/8-» m as 8- 0, the above
Lyapunov function for Hadeler's equations is replaced by

1 n
V(ix) = zx.Mx-+i£1 e; log x,; (2.9)

and the fundamental relation (2.7) holds again, if we set

e.
f.(x) = (Mx), +=* and F(x) = x.Mx +e¢.
i i7xg

(Compare also [2, p. 57f]).
As a consequence of (2.7) we obtain

Corollary: All orbits of the continuous time selection mutation
equations (1.3) and (1.4) converge to the set of fixed points.
These are given by the solutions of the equations fi(x)==const.

The simple form of the Lyapunov function (2.6) allows us to
globalize Hadeler's result [7].

Theorem 2: Suppose the model without mutation (i.e. eij=:0 for itj)
admits a stable polymorphism (= interior equilibrium). Then for

every choice of mutation rates satisfying (2.1) with e=% e.s 1,

the equations (1.2), (1.3) and (1.4) have exactly one statignary
solution in Sn. This solution is globally stable for the differential
equations and at least locally stable for the difference equation.
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Proof. Let p€ int Sn be the (exponentially) stable polymorphism
assumed to exist for the selection equation. Then p is a (strict)
global maximum of mean fitness W(x) =x.Wx: W(x)sS W(p) for all x¢€ Sn'
Since p.Wx=x.Wp=p.Wp, we obtain (x-p).W(x-p)=0 or

g.We=0 for all §eR§={§ERn:Z g, =0} (2.10)

(with equality only for & =0). Together with this well-known
stability condition the parallelogram rule for the quadratic
form W(x) implies

e %(W(x) +W(y)] = -wEH) =2 o.
Hence mean fitness W(x) is a (strictly) concave function on Sn
and so is log W(x). The same holds for the log x;, and so the
Lyapunov functions V(x) in (2.6) and (2.9) are strictly concave
on S . But then V(x) can have only one critical point which is
a global maximum. Corollary 1 then implies the global convergence.

The proof of the discrete time case is deferred to § 5.

Remark. Although this result looks very plausible and coincides
with intuition it is not true for more general mutation rates

that do not satisfy (2.1), as we will see in § 4. Also if selection
alone produces a globally stable stationary state on the boundary
of Sn’ the conclusion does not hold. Even for n=2 alleles mutation
terms may produce anadditional stable fixed point on the opposite
side of the simplex. This somewhat unexpected effect was observed
by Biirger [ 3].

3, Shahshahani Gradients

In this section I want to explain why it is possible to find
such a simple generalization of the Fundamental Theorem for
special mutation rates. The main point in the proof of Theorem 1
was, after writing the differential equation in "replicator" form
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x, = £,(x) = (£, (x) - @], Bx) = % x;8,(x) (3.1)

that the £ (x) have a common 1ntegral V. Thus the trick will

work whenever the related system x =f., (x) on R™ is the gradient

of some potential V(x). In this case (2 7} holds and V(x) is also

a Lyapunov function for the corresponding replicator equation (3.1).
For the classical selection equation the fi(x) are linear functions:
fi(x)==2 LS 3 and the symmetry V3T Wyg ensures the existence of
the potential V(x) = x.Wx.

The question arises whether there is more behind this analogy.
In fact Kimura's Maximum Principle claims that for the selection

model the change of gene frequencies occurs in such a way that
the increase in mean fitness is maximal (see Crow and Kimura
(4], p. 230). A precise mathematical interpretation of this
statement could only mean that the selection equation is a gradient
with mean fitness as potential. But this is obviously not true.
The situation was cleared up by Shahshahani [15] and analyzed
further in great detail by Akin [1] and Sigmund [16]. That a
differential equation is a gradient means essentially that the
vector field 1s orthogonal to the contour lines of its potential
function. So gradient systems depend in an essential way on the
notion of orthogonality, or angle, or inner product. And in fact
Crow and Kimura replace the usual distance by a certain variance
in their proof of the maximum principle [4], p. 230ff. So,
following Shahshahani, let us define a new inner product (X, Y)
for vectors X,Y in the tangent space T S -R at every point
pélntS by

n
(X,Y)p = £ p. X.Y. (3.1)
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This is a Riemannian metric for int Sn. It is easy to check
that this Riemannian manifold is essentially isometric to the
part of the (n-1) dimensional sphere lying in the positive
orthant (with the usual Euclidean metric), by the simple change
of coordinates J§;==yi (see [1], p. 39,55 for details).

For a differentiable function V on Sn’ the Shahshahani gradient
Grad_ V is then the unique vector € Tpsn with

(Grade,Y)p = DPV(Y) for all Y€ TpSn, (3.2)
where DpV: Tpsn -+ R is the derivative of V at p.

Gradients f=grad V with respect to the Euclidean metric are easy

to recognize: Here the integrability conditions ofi/oxj==ofj/0xi,

or equivalently the symmetry of the Jacobian matrix of f are
necessary and sufficient conditions. It would be useful to have a
similar characterization for vectorfields on Sn’ which are giveg

in form (3.1), to be Shahshahani gradients. If the vectorfield f

in (3.1) is defined in a whole neighbourhood of int S, We may
compute

bfi dF. bf
g;; = 1 (£, -?)-Fxl(szg-ggz) (3.3)

But since we are interested only in S itself, only the action
on vectors in TpS -R is of relevance. So, following Akin [1],
p. 173, we consider the bilinear form

~ _ A _ n
pr(Y,Z) = (Y,(Dpf)(z))p for Y,Z€ 7,8, =R, (3.4)

Concrete evaluation gives

A

H £(Y,2) b 120y
’ (= — —— _ Y Z.
P L3 Pi oxy x=p 173

1 (f -E‘)Y zJ + )33 T, ,'(p)YiZj (3.5)
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with fi .=of_i/bxj for short. Since at interior equilibria the
first sﬁm disappears this leads to a considerable simplification
of the original formula (3.3). Now we can state

Theorem 3: For a vectorfield f,(x) =xi[ fi(x) -f(x)], as in (3.1)
defined in a neighbourhood U of int Sn, the following conditions
are equivalent:

~

(a) £y is a Shahshahani gradient on int Sn.

(b) There exist functions V,¢y: U=®R such that fi(x)=-§¥—-+¢(x)
holds on int § . 1

(¢c) The Jacobian blllnear form H f is symmetric at every pé€ int S

(a) £ + f =f, . +f +f. . holds on int S_ for all
.1,3 n

k,i k,J j,i
l’j’k'

i,k

Proof. (a) = (b). If f=Grad V, then (3.2) implies
(f(x),Y)x = le bV/bxi.Yi

for all Y€RY and all x € int S, Choosing Y; =2, -x;(I Z;) for
arbitrary ZER , We obtain by equatlng coefflclents

¢ -z (2L
£, (x) xi[bxl % x4 OXJ] on S, .

Comparing with (3.1) we conclude that (b) holds.

(b) » (c). Since the fi are of the form
fi(x) = bV/bxi+1(x) + (T xj—1 )epi(x) for x€T,

the 0, being arbitrary functions, the partials are given by

2f, 25T oy
= 5%, bxj -4-0}[‘j +coi(x) for x€ int Sn'
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Inserting this into (3.5), the terms with y,p; disappear by
z Yi=2 ZJ.:O. What remains is a symmetric bilinear form.

(¢c) » (d). The symmetry of pr(Y,Z) implies Z(fi’j-fj,i)Yist
for all Y,ZeRg. With Y=ei—ek and Z--ej-ek (ej being the unit
vectors in JRn) we obtain (4).

(@) » (b). Define for x4 +...+x 4<1, ;>0
gi(x1 ,...,xn_1) = fi(x1 peverX 4 =Xy = .o -xn_1) (3.6)

inci i =f, .-f. by th
Then 84 coincide with fi on Sn and 8; 3 f f n oY e
chain rule. So (d) implies (with k:nS:

g.

i,3 -8

“8y,5 T8 n,i

Jri

These are just the integrability conditions for g:=8y (1sisn-1)

on Rn_1 . Thus we find an integral V= V(x1 ree Xy 4 ) with

gi—gn="Dl i=1,...,n-1
Recalling (3.6) this implies (b) with r=g,-

(b) » (a). From £ Y, =0 we compute

<%(X)’Y)x ) -;:-_— xi[SDxl.—'*' y(x) - T]Yi =
i

1

[

It

z Yi = (va) (Y)

o

X,
1

Thus (3.1) is established.

Remark. (a)® (b) is taken from Sigmund [16]. Condition (c) is
due to Akin [1], p. 175. The explicit integrability condition (d)
which is the most useful in applications was motivated by the
corresponding cycle condition for linear fi's discovered by
Sigmund [16].

0




- 12 -

In particular, conditions (b)=-(d) are obviously satisfied
if fi j==fj 5 This explains the analogy pointed out in the
beginning 0f this section and implies

Corollary: The selection mutation equations (1.3) and (1.4) with
special mutation rates (2.1) are Shahshahani gradients with
potential V given by (2.6) and (2.9) prespectively.

That this is not true for more general mutation rates is a
consequence of the following theorem, which corrects the slight
mistake in [1], p. 181 that made this paper possible (see also
(2], p. 57).

Theorem 4: The mutation equation
L ] n
X. = % e..X.-X, (3.7)

is a Shahshahani gradient if and only if the mutation rates
satisfy (2.1).

Proof. Writing (3.7) in replicator form {(3.1), we have
fi(x) =Z%jei.x./xi and hence for i%j, fi,j:=eij/xi' The integra-
bility cendition (d) then says (for i,j,k pairwise different)

€. . € - €, . €. €,y . e
cii gk, ki “ik kI C3K 0 411 xe int S .
Xi Xj Xk xi Xk X, n

This implies, by taking the limit x; 0, that eij =€4y for all j#k,

and hence €55=€; (i£j). Therefore (eij) is of the special form
(2.1).

Of course this theorem does not mean that the general mutation
equation (3.7) behaves less nicely from the purely qualitative point
of view. (3.7) is a linear equation and if eij> 0 holds for suffi-
ciently many ifj, the Perron-Frobenius theorem implies the existence,
uniqueness and global stability of a polymorphic equilibrium (see
Akin [1], p. 160ff). So the Shahshahani metric is just not the right
tool to study mutation. But Theorem 5 below shows that it is still
relevant for the combined mction of selection and mutation.
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4. Iimit Cycles

This section deals with more general mutation rates than (2.1).
Our emphasis is to demonstrate that the Corollary of Theorem 1 is
no longer true in this case: The dynamic behaviour is in general
not gradient-like. The following simple example shows that stable
limit cycles may occur.

In order to make computations tractable we take the simplest
nontrivial case: We assume that all homozygotes AiAi have the
same fitness and also all heterozygotes AiAj (i£j). When working
with the simpler equation (1.4) this means mij==s6ij, where s
measures the selective advantage of the homozygotes. Motivated
by the successful treatment of the hypercycle and similar systems

in Schuster et al. [14], we assume mutation rates to be cyclic

symmetric, i.e. eij:zej—i' Then E?;é ei=‘1, where the index i
of €5 is now considered as a residue modulo n. Then (1.4) reads
L] B n
x; = sxi(xi—Q(X))-ﬁj£1 ej_ixj-xi (4.1)

with Q(x)::Zifl__1 xi. Obviously the barycenter g::(%,...,%) of the
simplex is a stationary solution of (4.1). We compute the Jacobian

of (4.1):

D. . = .. . o= L (XL - - -
1J(x) bxl/be sle(xl Q(x)) +s xi(éij 2xj)-+ej_i 5ij @.2)

The divergence of the vector field is the trace of the Jacobian

div

X Dii(x) = s Z(xi-Q(x))-+s(2 xi—2z xi)-kneo—n =
s(2-(n+2)Q(x))-+n(eo—1).

Since the flow is restricted to Sn we have to subtract the
eigenvalue transversal to S,» given by -f(x)=-sQ(x), to obtain
the divergence divO within Sn:

div_ = s(2-(n+1)Q(X))'+n(eo—1). (4.3)
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2
i

)2= we have for positive s

. 1 1
Since Q(x) =% x ZH(ZXi 5

. 1
div s s(1-ﬁ)+n(eo-1). (4.4)
So the divergence is negative on Sn\{g} whenever
n2
s s o7 (e0-1). (4.5)

Now we specialize to m=73 alleles. Then the eigenvalues A,k
at m within 83 are easily computed as

A = s/3-1 ‘e te,u +e2uT

with w = exp(2ri/3). They are complex if €, %€, and their real
part is )

Re A =%—g(e1 tey).

For s=g(<.:1 +e2) the eigenvalues are purely imaginary and a
Hopf bifurcation occurs, taking s as parameter. Since for all
ssg(e1 +e2) div_< O holds on S3\{g} by (4.4) and (4.5),
Bendixson's negative criterion implies that there are no periodic
orbits in this case, i.e. as long as m is stable (see Fig. 1a).
Hence the bifurcation is supereritical and stable limit cycles
appear if s is slightly larger than 2(51 +e2), i.e. when m
becomes an unstable focus. (Fig. 1b). If s increases further,

3 pairs of fixed points are created simultaneously and the limit
cycle, whose period tends to infinity, disappears in a triangle
of heteroclinic orbits. (This is sometimes called a "blue sky
bifurcation”, see Fig. le¢,d).
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Figure 1: Phase portraits of the three-allelic selection
mutation equation (4.1) with s=1, €q=¢, €,=0.

(a) ¢ =0.28. Strong mutation (e/s= 2/9) leads to gradient-
like behaviour with m as globally stable focus.

(b) € =0.2. For moderate mutation rates (1/6<¢/s<2/9)
there exists a stable limit cycle.

(¢c) e=1/6. At this critical value three fixed points,
cyclically joined by heteroclinic orbits, are created.

(d) e=0.14. Gradient-like behaviour for weak mutation
(e/s<1/6). The three stable fixed points P, ,1"’2,]?3
correspond to the well-known selection-mutation balance.

I am indebted to Dr.F. Kemler for producing the computer
Plots.
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So we see that the interaction of mutation and selection
may lead to stable limit cycles. Maybe this is not too surprising
for the above example since the fixed point for the mutation
field (s=0) is already a focus which is then destabilized by
the selection part. But one can also construct examples of Hopf
bifurcations when the selection field has a stable polymorphism
(compare the remark in § 2). Moreover the same bifurcation
behaviour appears for any mutation rates that are not of the
special form (2.1). This is a consequence of the following basic
theorem of Akin [1], p. 186:

Theorem 5: Let f(x) be a vectorfield on §, which is not a
Shahshahani gradient (e.g. any mutation field (3.7) with mutation
rates not of the form (2.1)). Then there exists a family of
selection matrices (mgj):=Nﬁ, such that the combined field

_ ¢ o
£, = £, (x) +x, ((x), -x.M'x)
(this is then (1.4)) undergoes a Hopf bifurcation and periodic
orbits occur.

In this general form, however, Akin's theorem does not say
anything on the stability of the periodic orbits. It could happen
that the Hopf bifurcations are always subcritical or critical.
The periodic orbits would then be of less biological relevance
since they would not be observable. But the above example just
shows that stable limit cycles are indeed possible.

By the approximation argument (1.5) the same result holds for
Hadeler's version (1.3), at least after the mutation rates £y4 are
rescaled to bei. by some small factor §> 0. With the rescaling
W 14+8W the difference equation (1.2) turns out to behave
essentially like Euler's discretization of the differential
equation (1.3), with 5W/(1 +&W) as step length. Thus Akin's
Hopf bifurcation result also carries over to the discrete time
model, and stable limit cycles (= attracting invariant curves)
-also occur in(1.2) for nonspecial mutation rates. (For a precise

treatment of this idea see [10]).
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Akin alse applied his theorem to other equations, in particular
tomultilocus systems. He proved that the vector field on Sn that
models the effects of recombination between two loci is never a
gradient with respect to Shahshahani's metric. Thus Hopf bi-
furcations occur. The actual computations proving that even stable
limit cycles are possible are more difficult in this case, however;
see Akin's memoir [2]. It is tempting to conjecture that even more
complicated dynamic behaviour, i.e. chaotic motion, is possible
for these two extensions of the selection model, allowing either
mutations or recombination.

We conclude with a critical remark. It is not quite clear how
relevant this cycling result is for real biological populations.
Indeed mutation rates are usually much smaller than selection
rates. The selection + mutation field can then be treated as a
perturbation of the selection equation. Since the latter is
structurally stable in general, small mutations will not change
the situation very much:nOnly the boundary equilibria will move
inwards the simplex Sn’ if they are stable, and some of the
unstable ones will move outwards. It would be useful to find
concrete estimates .of how- large the mutation rates may be (compared
e.g. with the variance of the wij) in order to retain a gradient-
like behaviour.

5. The Difference Equation

In this last section I want to collect a few results on the
difference equation (1.2). It would be desirable to show that
our function V from (2.6) serves as a Iyapunov function for the
discrete time model too,: if mutation rates are special. But this
seems to be a much harder problem which I haven't yet managed to
solve. So I confine myself to some partial results which indicate

that the difference equation behaves similarly to the differential
equation.
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In order to generalize Hadeler's theorem [ 7] to the difference
equation we have to exclude overshooting effects. This is done by
means of the following lemma, which is essentially contained in
Losert and Akin [12].

Lemma: All eigenvalues of the derivative of the discrete time
selection equation at any point pé€ Sn (which need not be an
equilibrium point) are nonnegative. For interior p all eigenvalues
corresponding to directions within Sn are even strictly positive
(if all wig> 0).

Proof. The derivative is given by

; (Wp); Py W, p; (Wp), (Wp)

L. =0. . + - . .
DlJ "ij p.Wp Dp.Wp 2 (p.Wp)< (5.1)

Since the selection equation is a Shahshahani gradient, Theorem 3(c)
applies and D is selfadjoint with respect to the Shahshahani
inner product. Thus it is sufficient to consider the quadratic
form
2
n (Wp)i X; X.Wx

Dx = X
<x’ >p 1=1

- Wp
— -2(X
P.Wp Dp; P.Wp (T

2
) (5.2)
Now Dp:QO and so the eigenvalue corresponding to the (irrelevant)
direction orthogonal to S, is zero. Substituting ¥y =x-(x.Wp/p.Wp)p

the corresponding one-dimensional degeneracy of the quadratic
form (5.2) can be eliminated:

2
n (Wp), yi y.Wy

D = —_— 1 =
2Dy = 5 B, TP
1 n 1/2 p; 1/2 2
= > (=) (= 20 .
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with equality only for y=0 (since wii>-0). Therefore (5.2)

is a positive definite quadratic form on Rg and so all eigenvalues
of D are positive. For boundary p the additional eigenvalues
pointing into the interior of S are given by (Wp)i/p.wP and

are obviously nonnegative.

Proof of Theorem 2 for discrete time.

(1.2) reduces for special mutation rates (2.1) to
x! = (1-¢) xi(Wx)i/x.Wx-bei (5.4)

We know already from Theorem 2 that there is a unique equilibrium
pE€ Sn which is stable for the differential equation (2.3). Now
the derivatives of (1.2) and of (1.3) differ only by the identity
matrix., This implies that all eigenvalues of (5.4) have real part
less than 1. Since the derivative of (5.4) differs from that of
the pure selection equation only by the factor 1-e= 0, its
eigenvalues are real and nonnegative, according to the lemma.
Thus they are all located within the unit circle and p is stable
for the dynamics (5.4).

For general mutation rates we can view the difference
equation (1.2) as the composition of the selection map -
T X; xi(Wx)i/x.Wx and the linear stochastic map x =+ Px,

G&)i =z, €55 Xy Now the inversion theorem of Losert and Akin
[12] says that gwhenever wij>-O for all i, j) the selection map T

is a diffeomorphism of Sﬁ, i.e. a bijective smooth map S~ S_

whose inverse function is also smooth. (The local invertibility
corresponds to that part of the lemma claiming that O is not an
eigenvalue of the derivative). As long as mutation rates are not
too large we have det P> O. Then mutation maps Sn onto a smaller
simplex P(Sn) inside Sn’ Thus the combined map (1.2) is a
diffeomorphism from.Sn onto P(Sn), whenever all wij>.O and det P> 0.
This result suggests that (1.2) will not behave much worse than

the differential equation (1.3). In particular it completely settles
the n=2 allelic case, as no overshooting effects are possible as
long as det P=:1-e1—e2\.0 and so orbits converge monotonically
towards the equilibrium states.
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