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WLICIT FLTNCTION THEOREXS FOR 
MULTI-VALUED MAPPINGS 

B.N. Pshenichn y 

V. Glushkov Institute of Cybernetics 
Kiev, USSR 

Let us consider t h r e e  Banach spaces X, Y, Z and opera tor  F : X  x Y -+ Z. We 

are interested in the solution of t he  following equation: 

Suppose tha t  the  points (zo, yo) satisfy this equation. Then implicit function 

theorems yield cer ta in  sufficient conditions fo r  solvability of t he  equation (1) with 

respec t  t o  y f o r  all z f r o m  the  cer ta in  neighborhood of zo. 

Let us somewhat reformulate t he  problem now. Define 

Then implicit function theorems give conditions f o r  a (z) # 4 in t he  neighborhood 

of zo. W e  shall be  concerned mostly with this  reformulation. 

Let us introduce some notations. Take Z = X  x Y. Dual spaces  of continuous 

l inear functionals will be denoted by X* , Y* , Z* . P a i r  of points from X and Y will 

be defined (z, y) while Cc, z* > is reserved fo r  the  value of the functional z* at 
* * * 

t he  point z . Taking z = (z , y ), z = (z , y ) w e  obtain 

Multivalued mapping transforms each point z E X  into set a(z) G Y. The s e t  a(z) 

may be  empty. 

Some more notations: 

aom a = [z :a(z) # @ {  

Mapping a is called convex if  gf a is a convex set and closed if gf a is closed. Some 

more notations will be introduced in due course.  Terminology is close t o  [I]. 



I. mPLIcrr F'JNCTION THEOREMS FOR CONVEX MAPPINGS 

Let us s t a r t  with some definitions. For any convex set M exist  

which is convex cone associated with the  set M .  For convex mapping a  le t  us de- 

fine 

Suppose tha t  z  E gf a .  Then 

a,(Z) = I G : ( Z ,  G )  Ma(z ) j  

* * * 
a, (v ) = )I  : ( - z * ,  v * )  E K ; ( Z ) {  , 

* 
where Ka (z  ) is cone dual t o  Ka (z  ). Thus, 

* 
z  E a:(Y *) if and only if 

Let us prove two auxiliary lemmas: 

* * 
LEMMA 1 a, ( 0 )  = - (dom a, ) . 
PROOF The mapping a, is  a positively homogenious convex mapping and there-  

fo re  dom a, is convex cone and dual cone t o  this cone exists. According t o  defini- 

* * 
tion of a, ( 0 )  i t  contains those and only those elements z  which satisfy t he  follow- 

ing condition: 

which is equivalent t o  

* 
ti, - z  > 2 O , Z  E d o m a ,  

The last  inequality means that  

* * 
- z  E (dom a, ) 

The proof is  completed. 



LEMMA 2 S u p p o s e  t h a t  K i s  cone in X ,  int K # 0 a n d  K* = to{. Then  K = X .  

I f X  = Rn t h e n  requ irement  int  k # d c a n  be dropped.  

PROOF It  follows from t h e  well-known theorems of convex analysis t h a t  

K** = c l K ,  where symbol c l  defines c losure  of t h e  se t .  The f a c t  t h a t  K* = 101 im- 
* * 

plies c lK = K = X. There fore  cone X i s  dense everywhere  in X and i t  i s  lef t  t o  

p rove  t h a t  i t  coincides with X. Let us  assume t h e  opposite,  namely suppose t h a t  ex- 

i s ts  zo  such t h a t  z o  K. Take z l  E in tK and se lec t  2 = 2 z 0  - z l .  The cone K i s  

dense  everywhere  in X, thus  exis t  sequence zk E K such t h a t  zk 4 2. Let us  t a k e  - 
zlk  = 2 z 0  - zk .  I t  i s  c l e a r  t h a t  zlk  4 X and f o r  l a r g e  k w e  have  zlk  E K. A c -  

1 1 - 
cording t o  definition z0 = zzk + 2 z k ,  and due t o  convexity of K w e  obtain zo  E K. 

The proof is  completed because  in t h e  finite-dimensional case assumption in tK # q5 

i s  fulfilled automatically, which c a n  b e  verif ied in t h e  s t andard  way. These two 

lemmas lead t o  t h e  following resul t :  

THEOREM 1 S u p p o s e  t h a t  a i s  a convez  m a p p i n g ,  z = ( zO,  y o )  E gf a a n d  t h e  

following c o n d i t i o n s  a r e  sa t i s f i ed:  

1 int dom a # I0 

T h e n  for  a n y  element z e z i s t  s u c h  n u m b e r  S > 0, t h a t  a ( z o  + h z )  # q5 for  

all h E [O, dl. X i s  of f i n i t e  d i m e n s i o n  t h e n  t h e  f i r s t  requ i rement  c a n  be 

dropped a n d  in a d d i t i o n ,  e z i s t  s u c h  a member S > 0 t h a t  a ( zo  + z) # q5 for all 

Z,  11; 11 r S. 

Before s t a r t ing  t h e  proof l e t  us  make one comment. W e  have in t h e  statement 

of t h e  theorem c e r t a i n  point y o  E a ( z O )  and i t  is not defined how t o  se lec t  it .  I t  

might seem t h e r e f o r e  t h a t  t h e  resu l t  of t h e  theorem depends on a p p r o p r i a t e  selec- 

tion of th is  point. Let  u s  show t h a t  th is  is not t h e  case. First ly w e  shall  in t roduce 

t h e  following notations [I]: 

Notice t h a t  Wa ( z  , y * ) = + - if a ( z )  = 6 and t h e  function Wa ( z  , y *)  i s  convex with 

r e s p e c t  t o  z . Let us t a k e  

* 
a ( z , y ) ( ~ * )  = 1 if y F a ( z ,  y * )  

a, W a ( z ,  Y * )  if Y E a ( z ,  Y * )  



* 
If y  = 0 then 

I 

* 
There fore  ZZ Wa ( x  , 0 )  = a 6 ( x  (dom a )  = - [con(dom a  - z ) ]  . Comparison of 

these  statements leads  t o  t h e  conclusion t h a t  

f o r  any point y  E a ( z ) .  There fore  w e  can t a k e  a n  a r b i t r a r y  point in t h e  statement 

of t h e  theorem 1. Let us  start t h e  proof now. If assumption 1  i s  satisfied then i t  i s  

easy t o  ge t  t h a t  doma, = X. Let us se lect  a r b i t r a r y  5 .  We have z E doma, and 

t h e r e f o r e  ex i s t  v e c t o r  
- 
y  = 7 ( y  - y o ) ,  7  > 0 ,  ( z ,  y )  E gf a Taking now 6  = 7 - 1  w e  obtain 

( zo  + X Z ,  y o  + A ; )  = ( ( 1  - X 7 ) z o  + X 7 z ,  ( 1  - X7)yo  + X 7 y )  E g f a  

f o r  X E [0, dl i.e. a  ( zo  + Xz) # 0 .  In t h e  c a s e  of a finite dimension t h e  f i r s t  as- 

sumption i s  not  necessary .  Fur thermore,  if X = Rn then i t  i s  possible t o  find such 
- - 

vec tors  zi ,  i = 1 , .  . . , n + 1 t h a t  simplex S = I X l z l  + . + An Z ,  +I: X i  2 0, 

z r 2  X i  = lj contains 0 as inner  point. If w e  r e d u c e  t h e  length of t h e  vec to rs  Zi 

appropr ia te ly  w e  can obtain t h a t  all sets a ( z o  + z i )  are not empty. Therefore  any 

point from t h e  ce r ta in  neighborhood of z e r o  can b e  represen ted  as follows: 

This toge ther  with p r o p e r t i e s  of t h e  convex maps implies 

The proof i s  completed. 

This proof i s  fa i r ly  simple, but  t h e  resu l t  i s  quite interesting.  Let us  i l lus t ra te  

th is  with some examples: 

EXAMPLE 1  Take X = R ~ ,  Y = R ~ ,  A and B are matrices r x n and r x m .  

- 0. Then Ka (0) = Define g f a  = ) ( z ,  y ) : A z  - B y  = 0 ]  and se lect  zo  =O, y o -  

I(Z, y) : f i  -B;  = 01, 



* * 
Therefore a. ( y  ) = )A* u = B* u , u E Rr j .  Condition a: (0) = )O j  means now 

tha t  B*U = 0  which implies A * u  = 0. Thus, f o r  solvability of the  system of equa- 

tion Ax -By = 0  with r e spec t  t o  y  fo r  all  x ,  i t  is sufficient tha t  Kern B* c 
* 

Kern A . Here, a s  usual, Kern C = !v :Cv = O j  

EXAMPLE 2 Take the  same assumption as in the  previous example and consid- 

e r g f a  = ) ( x ,  y ) : h  - B y  SO, y  201. Nowwe have 

where Rf, and R y  a r e  positive orthants.  This gives 

Hence condition a: (y  * )  = 101 implies in this case tha t  from inequalities B * u  5 0, 

u 2 0  t he  equality A * u  = 0  follows. Therefore f o r  solvability of t he  system 

Ax - B y  5 0, y  r u f o r  all z  i t  i s  sufficient tha t  the  following inclusion is satis- 

fied:   ern A* >= Iu 2 0 : B * u  s 01. 

EXAMPLE 3 Suppose now tha t  X, Y, W a r e  Banach spaces,  Z = X x Y ,  F- 

convex multivalued map from Z into W ,  i.e. F ( x ,  y )  C W ,  M-convex subset of W. 

Define a ( x )  = )y  : F ( x ,  y )  n M + $1. I t  is c lear  tha t  points ( x ,  y )  E g f a  if and 

only if exist such point w t ha t  ( x ,  y  , w )  E gf F ,  w  E M .  Let us select  the  point s o  

such tha t  a  ( xo )  + 4, y o  E a  ( x O )  i.e. ( so ,  y o )  E gf a .  Suppose t ha t  w o  is  such a 

point from M tha t  ( xo ,  y o ,  wo )  E gfF .  Let us denote zo = (so ,  y o )  and define 

~ : ~ ( y * )  a s  follows. According to  definition x*  E az* ( y  * )  if and only if - <z - xO.  
0 

z *  > + <y - y o ,  y  * > 2 0, ( x ,  y )  E gf a .  Taking into account t he  description of 

gf a  given above, w e  a r r i ve  a t  the  conclusion tha t  the  las t  inequality is  equivalent 

t o  the  following: 

f o r  all  ( x ,  y  , w )  E g f F ,  w E M ,  where 0: is  ze ro  of the  space w * .  But the  last 

inequality is equivalent t o  the  following: 



Suppose now tha t  exist  the  point (x ,  y , y ) E gf F such that  (2) u E int M .  This im- 

plies g f F  5 int (X X Y X M) + 0. I t  is consequence of the  well-known resul ts  of 

convex analysis tha t  under this assumption the  cone in the  r ight  hand side of (2) is 

equal t o  the  sum of convex cones dual t o  the  intersected ones. Taking into account 

easily established relations 

* * * * 
(con (X x Y x M - ( zO ,  Y 0,  ~ 0 ) ) )  = (Ox I O y ,  (con (M -wo))  ) 

w e  obtain t ha t  (2) is equivalent t o  the  following statement: 

* * 
o r ,  in o ther  words, exist  functional w E (con (M - wo)) such that  the  following 

inclusion holds: 

And, finally using a definition of the  conjugate mapping introduced before w e  ob- 

* * * 
tain tha t  x E G* (y  * ) only if f o r  some w E (con (M - w 0)) the  following inclu- 

2 0 

sion holds: 

* 
Hence a, ,(O) = 10{ only if the  following inclusion 

* * 
implies equality x = 0, , i.e. 

THEOREM 2 Suppose tha t  X, Y, W are  Banach spaces,  M i s  a convex set 

which  belongs to W ,  F i s  convez mult ivalued mapping from X X Y to W and  



suppose  t h a t  y o  E a ( x  O )  a n d  w E M are  po in t s  s u c h  t h a t  ( x o ,  y w o )  E gf F .  

Then  t he  following cond i t i ons  a re  s u m c i e n t  for exis tence of number  d > 0 for 

a n y  s u c h  t h a t  a ( x o  + h z )  + 4 ,  h E [O, 63: 

1 int dom a + @; 

2 g f F  9 ( X  XY XintM) + @; 

* * * * 
F ( z ~ w ~ )  (- (con (M - w o > >  > = lo,, 0, I .  

I f X  i s  o f f i n i t e  d i m e n s i o n  t h e n  i t  i s  no t  necessary  to check t he  f i r s t  condi t ion.  

The proof follows d i r ec t l y  from theorem 1 a n d  t he  above a rgumen t .  

EXAMPLE 4 Suppose tha t  b and c a r e  convex multivalued mappings from X t o  

Y and a ( x )  = b ( x )  r.~ c ( x ) .  

THEOREM 3 Suppose  t h a t  y E a ( x  o )  a n d  t he  following cond i t i ons  a re  sa-  

t i s f ied:  

1 int doma + 4; 

2 gf b n int gf c + 4; 

* 
3 for a n y  y e i t he r  one of the  se t s  b:o(y *), cze0(- * )  i s  emp ty ,  o r  e x i s t s  

* * * s u c h  f unc t i ona l  x * t h a t  bz*o(y * ) = Ix 1, c ( -  y ) = ) - x * 1. Then  for  

a n y  Z E X  ex i s t  b > 0 s u c h  t h a t  a ( x o  + h z )  + 4 f o r  h E [O, 61. I f X  i s  o f f i n -  

i t e  d imens ion  t h e n  i t  i s  no t  necessary  to check cond i t i on  1. 

The proof of the  theorem follows from theorem 1, the  fact  tha t  

* 
gf a = gf b n gf c and d i rec t  calculation of azO(O) by using convex analysis tech- 

niques. 

Let us show how t o  use this theorem by t he  following example. Take 

b ( x )  = Ix : A x  - B y  5 01, c ( x )  = M  where M is a fixed convex se t  in Rm, A and B 

a r e  matrices of dimension r xn and r X m , X = Rn , Y = Rm. Suppose tha t  0 E M 

and exist  points x l ,  y such tha t  Axl - B y  5 0 ,  y E int M .  A straightforward a r -  

gument shows tha t  



Kc (0) = X x con M 

W e  can obtain more from the  following resul t  by applying theorem 3. In o r d e r  tha t  

the  system of inequalities Ax - B y  4 0, y E M has a solution with respec t  t o  y f o r  

all  z from some neighborhood of zero  i t  i s  sufficient t ha t  conditions 

* * 
imply equality A* u = 0. In fac t  b o  (y  ) = @ if y * can not be  represented in t he  

* * 
form y = B * u ,  u 2 0 .  In case if y = B * u , u  2 0 ,  and - B * U  Z ( c o n ~ ) * .  If, 

however, 

* * * 
then fo r  f* = B  u w e  have c o  (- y ) = 101. Therefore according t o  the  theorem 

* * 
3 the  set b o  (y  ) also should contain only one point i.e. zero.  I t  follows from 

* * * 
representation of t he  set b o  ( y  ) t ha t  A u = 0. 

If M = Ry i.e. M consists of nonnegative vectors  then this resul t  coincides 

with one obtained from example 2. 

2. LOCALLY SMOOTH MAF'S 

Let K be  a convex cone in a Banach space X. I t  is obvious t ha t  

LinK = K  - K  

is the  minimal l inear manifold containing K. If M is  a convex set, then 

LinM =con(M - 2 )  -con(M - 2 )  , 

where z is  a n  a rb i t r a ry  point of M .  I t  is not difficult t o  show tha t  LinM does not 

depend upon z E M . 



W e  shall  say  t h a t  t h e  point x belongs t o  t h e  re la t ive  in te r io r  of M (denote i t  

r iM) ,  if f o r  some E > 0 

x + (EB) n Lin M c M , 

wnere B is  t h e  unit ball of t h e  space  X with t h e  c e n t e r  in t h e  origin. 

If X = R", then  i t  i s  well known [Z], [3], t h a t  r iM + 4. In genera l  th i s  r esu l t  i s  

not t r u e .  

Let M b e  an  a r b i t r a r y  set of X. 

DEFINITION Call t h e  set  K marquee for M at t h e  po in t  x € M, if 'K is  t he  con- 

v e x  cone a n d  for each € K ex i s t  v a l u e s  E > 0, d > 0 a n d  c o n t i n u o u s l y  d i f -  

ferentiable in t h e  neighborhood of t h e  o r i g i n  f u n c t i o n  +: X -4 X ex i s t  s u c h  t h a t  

1 +(O) = 0, +'(O) = I  ( u n i t  operator); 

2 z + +(y) E M for al l  

This definition i s  based on ideas of V.G. Boltyanski, h e  developed them f o r  n- 

dimensional space.  But t h e s e  ideas can not b e  generalized on infinite dimensional 

space  without changes.  For  th i s  r eason  t h e  introduced definition di f fers  from V.G. 

Boltyanski's definition [3]. 

F u r t h e r  i t  i s  convenient t o  suppose without reducing generali ty t h a t  point z 

coincide with t h e  origin. 

THEOREM 4 Let M o  i s  a set ,  0 € M o .  KO t h e  marquee for M o  at po in t  x = 0 

a n d  f u n c t i o n s  f i  ( z ) ,  i = 1, . . . , K satisf'g t h e  condi t ions:  

1 f i ( 0 )  = 0 ,  i = ,  . . . . K; 

2 yi a r e  c o n t i n u o u s l y  Freshet-dinerentiable in t h e  neighborhood of zero 

a n d  de r i va t i v e s  f i ( 0 )  a r e  l i n e a r l y  i ndependen t  o n  Lo  = Lin KO. 

Then  

i s  t h e  Local marquee a t  t h e  po in t  x = 0 for t h e  set  



PROOF Since f i ( 0 )  are linearly independent on linear manifold L o ,  then vec- 

t o r s  ej E Lo exis t  [ I ] ,  such tha t  

Let E K. Then 

and smooth in t he  neighborhood of zero. Therefore exis ts  function q0 such tha t  

q O ( o )  = 0 ,  q&o) = I ,  

fo r  all  

i7 E [con(z  + ( E B )  n L O ) ]  n ( 6 B )  , 

fo r  E > 0 ,  6 > 0 .  

Let 

k 

where z is  t he  vector  with components z j ,  j = 1,  . . . , k .  

Let us consider the  system of equations 

g i ( y ,  z )  = 0 ,  i = I , .  . . , k 

with respec t  t o  z . I t  is  evident 

Since gi are compositions of smooth functions, then they a r e  smooth functions. Us-  

ing rules  f o r  differentiation of t he  complex function i t  i s  not difficult t o  get  

gi& ( 0 ,  0 )  = P i  ( O ) q i ,  ( 0 )  - P i  ( 0 )  = 0  , 

Because 4'6 ( 0 )  = I .  Fur ther  



Thus, t h e  matrix with elements gi , ,  (0, 0) i s  non-degenerate and according t o  t h e  
1 

implicit functions theorem [4] t h e  solution z (y') of t h e  system (7) exis ts ,  such t h a t  

z (0) = 0. F u r t h e r  according t o  t h e  same theorem z (c) i s  continuously differenti-  

ab le  in t h e  neighborhood of t h e  origin of coordinates and taking into account (8) 

Let now 

Then Q(0) = 0 ,  and  

according t o  (10). Denote 

Let us  choose el > 0, dl > 0 sufficiently small s o  t h a t  t h e  inclusion 

y' E [con (5 + (clB) fl LO)] n ( ~ I B )  (12) 

ensure  t h a t  c sat is f ies  t h e  inclusion (5). I t  is possible, because  ( lo ) ,  but  if c sa- 

t isfies (5) then 

Denote 

L1 = ) Z :  f i (0 )Z  = O f  i = 1 , .  . . , K {  . 

I t  i s  easy t o  see t h a t  

LinK G L o  r-?L1 . 

Let now 

y E [con (5 + (elB) r\ LinK)] n (dlB) . (13) 

The set from t h e  r i g h t  p a r t  of (13) i s  t h e  subset  of set from t h e  r igh t  p a r t  of (12). 

For  th is  r eason  (13) implies t h e  inclusion Q(G) E Mo. Fur the r ,  s ince  E L1, then 



E L1. Therefore due to (7) and (6) 

Thus (13) assumes 'k(y) E M and consequently K is the  local marquee f o r  M .  

Since the  proofs of t he  following theorems r epea t  the  similar p a r t s  of the  

theorem 4 proof the  details will be  omited. 

THEOREM 5 Let M 1  a n d  M 2  be two se ts ,  M = M 1  n M 2 ,  0 E M a n d  K1, K2 be 

respec t i ve ly  m a r q u e e s f o r  M 1  a n d  M 2 .  V the  Linear manifolds  ex i s t  s u c h  tha t :  

1 L 1 c L i n K 1 , L 2 ~ L i n K 2 ;  

2 L1 + L 2  = X  ; 

3 for a l l  x l  E L l ,  x2 E L2 

t h e n  K = K1 n K2 is  the  marquee for M a t  the po in t  0. 

PROOF In accordance t o  t he  condition 2 a rb i t r a ry  x E X  can be  represented 

as follows 

That representation is  unique, because if different representation exis ts  

then 

i.e. x l  = x i ,  x 2  =xi. 

Consequently opera tors  P 1  and P 2  are defined such that  

Due t o  the condition 3 



i t  i s  easy t o  see t h a t  o p e r a t o r s  Pi are l inear  and consequently they are l inear  and 

continuous o p e r a t o r s .  

Let now 5 EK1 n K 2  and E ,  di ,  \ki correspond t o  5 in t h e  marquee Ki. Consid- 

er t h e  equation 

with r e s p e c t  t o  z .  I t  i s  easy t o  see 

In accordance t o  t h e  implicit functions theorem t h e  smooth function z ( c )  i s  de- 

fined in t h e  neighborhood of z e r o  and z  ( 0 )  = 0 ,  z  ' ( 0 )  = 0.  

Suppose 

Taking into account  z  ' ( 0 )  = 0 ,  i.e. 

z  (-1 + 0 ,  f o r  I I ~ O  --,o 
I I  Y I1 

i t  i s  not difficult t o  p rove  t h a t  \k i s  t h e  des i red function f o r  E .  

This proof i s  based on t h e  f a c t  t h a t  f o r  c close t o  t h e  direction 

'kl(ii + p l z  (5))  E M 1  . 
\k2(Y + P ~ Z  (GI)  E M 2  I 

and consequently due t o  (15)  \k(y) E M l  n M 2 .  In th i s  connection if y E LinKi, 

i = 1 ,  2 ,  then 5 + Plz  (c) E L l ,  - P2z (5 )  E L 2  and taking into account  t h e  

smallness of z  ( y )  all conditions re la ted  with t h e  choice  of E ,  6 can be  satisfied. Be- 

s ides  

because \k; (3 )  = I ,  z ' (0 )  = 0.  The proof is  completed. 



REMARK Conditions 1-3 f o r  X = Rn can be  replaced by t h e  condition 

In a general  c a s e  t h a t  condition is not sufficient because  condition 2 means t h a t  

t h e  s e t s  M1 and M2 have  sufficiently l a r g e  dimensions. The condition 3 means t h a t  

l inear  manifolds in te r sec t  at some angle. Indeed, if X is  a Hilbert  s p a c e  with inner  

product  [ x ,  y ]  then condition 3 i s  equivalent t o  condition 

Let us consider now t h e  theorem about  implicit functions f o r  nonconvex multivalued 

maps. 

THEOREM 6 Let a be a m u l t i v a l u e d  map, K be a m a r q u e e f o r  g~' a L X X Y at 

t h e  p o i n t  z = (xo ,  y o ) ,  

If t h e  following conditions are satisfied 

1 int  dom a,, # @ ; 

2 exis t  a l inear  r e s t r i c t e d  o p e r a t o r  P : X -+ Y such t h a t  ( z  , P z )  E Lin K ; 

* 
a,O (0) = I O j  , then  f o r  any exis ts  d > 0 such t h a t  

a ( x o  +Xz')  # 4 f o r  X E [ O ,  dl  . 

If X and I' have finite dimensions then  t h e  f i r s t  two conditions are satisfied and be- 

sides value d > 0 exis ts  such t h a t  a ( x o  + z )  # @ f o r  a l l  5 E (dB). 

PROOF Without loss of t h e  generali ty w e  consider x = 0,  y o  = 0. 

Lemma 2 implies 

i.e. f o r  any ji EX t h e  v e c t o r  exis ts  such t h a t  (z, c) E K. Consequently f o r  any 

z E X t h e  v e c t o r  c EY ex i s t s  such t h a t  ( z ,  c )  E Lin K. 



Thus, l e t  Zo b e  a v e c t o r  from X and z o  = (Zo,  g o )  E K.  Since K is  t h e  marquee 

then E > 0 ,  6 > 0  and ex i s t s  smooth function 9(0 )  = 0 ,  9'(O) = I,, where  I, i s  t h e  

unit o p e r a t o r  in Z and 9 ( z )  E gf a f o r  a l l  

where  B, i s  t h e  unit ball in Z. Since Z = X x Y, then 

and condition 9 ' (0)  = I, can  b e  rewr i t t en  as follows 

i.e. 91;-(0, 0 )  =I,, 9 '  (0,  0 )  = 0 ,  ' k k ( 0 ,  0 )  = 0 ,  'k&(O, 0 )  =Iy. 
lfi 

Consider t h e  system of equations 

where  A E R', z E X. Taking in to  account  previous re la t ions  w e  g e t  

Thus due to t h e  theorem about  implicit functions t h e  system (17) h a s  t h e  solution 

r (A) and a lso  

Let  us  consider  now t h e  point 

; (A) = (Ago + r (A),  Ago + Pr (A))  . 

Taking in to  account  r ' ( 0 )  = 0 ,  r (A) = o (A) f o r  sufficiently s m a l l  A > 0  inclusion 

(16) i s  sat isf ied,  because  by definition of t h e  o p e r a t o r  P w e  have  ;(A) E LinK. 

Consequently 

.k(z(A)) E gf a 

f o r  small A. But 



h e r e  t h e  condition (17) w a s  used. Thus 

i.e. a ( A s o )  # t$ f o r  small A. Thus t h e  f i r s t  p a r t  of t h e  theorem is  proved. Let us  

consider t h e  case with t h e  finite dimension. Condition 1 can b e  omitted in accor-  

dance t o  lemma 1 and 2. W e  will show t h a t  condition 2 can  b e  omitted too. 

Indeed because  LinK G Rn X Rm then exis t  t h e  matr ices  A and B with dimen- 

sions r x n and r X m respect ively  such t h a t  t h e  points (x  , y ) E LinK and only 

they satisfy t h e  equations 

where rows of t h e  matrix (A, - B )  with t h e  dimension r x ( n  + m )  are linearly in- 

dependent. This follows from t h e  f a c t  t h a t  in t h e  f inite dimensional space  l inear  

manifold can  b e  descr ibed as set of solution of some l inear  equations system. 

Since t h e  rows of t h e  matrix (A, - B )  are linearly independent then exis t  

non-degenerate submatrix of th i s  matrix with dimension r x r .  Consequently system 

(18) has  solution y f o r  a r b i t r a r y  x . For  th i s  r eason  (see  example 1 5 1) 

KernB* c_ Kern A *  (19) 

* * 
However KernB* = fO 1. Indeed l e t  y E R ~ ,  y # 0 and B* y * = 0, then due t o  

(19) A* y * = 0. This means t h a t  exis t  t h e  non-zero v e c t o r  y * orthogonal t o  a l l  

columns of t h e  matrix (A, -B) .  The l as t  statement contradic ts  t h e  exis tence of 
* 

non-degenerated r X r submatrix of t h e  matrix ( A ,  - B) .  Thus K e r n B  = fOj, i.e. 

columns of t h e  matrix B* are linearly independent. For  th is  r eason  B* (and conse- 

quently B )  contains non-degenerated submatrix B1 with r a n k  r X r .  Let 

B = (B1, B2). Consider t h e  v e c t o r s  y 

where y E R~ and 0, -, i s  t h e  non-zero v e c t o r  with dimension m - r .  I t  i s  c l e a r  

t h a t  By = Bly l. If y = B1-lAx, then v e c t o r  

satisfies (18). I t  i s  obvious t h a t  t h e  l inear  o p e r a t o r  



satisfies condition 2 of t h e  theorem. Q.E.D. 

REMARK Let us consider  t h e  condition 2 in general .  Let L C X XY i s  a l inear  

manifold. Denote 

I t  i s  not difficult t o  see t h a t  

1 1 (x  ) i s  a n  affine manifold; 

2 1 ( x l  + x z )  = 1 (xl)  + 1 (xz);  

3 L ( X x ) = X l ( z ) f o r X + O .  

Let in accordance t o  t h e  theorem 6 dom 1 = X. Thus t h e  map 1 from t h e  space  X t o  

t h e  set of affine manifolds of y is l inear.  Condition 2 of theorem 6 implies t h a t  ex- 

i s t  a l inear  continuous map P such t h a t  Pz € 1 (x) .  Since 1 is a l inear  map then  ex- 

i s tence of P is  a na tu ra l  condition. A s  was shown e a r l i e r  in a finite dimensional 

space ,  th is  o p e r a t o r  exists .  I t  would b e  interesting in genera l  t o  formulate a n  addi- 

tional condition f o r  L guaranteeing existence of a continuous l inea r  selector of P. 

Let us consider  now t h e  questions connected with t h e  const ruct ion of a mar- 

quee f o r  a convex set. 

THEOREM 7 Let M be a convex s e t  in  B a n a c h  s p a c e  X, 0  E M and r i M  + 4. 
Then t h e  cone 

K = con ( r iM) 

is t h e  m a r q u e e  f o r  s e t  M a t  t h e  p o i n t  z = 0. 

PROOF It  i s  evident t h a t  r iM c M ,  f o r  th is  r e a s o n  Lin ( r i  M) c LinM and 

LinL L LinM. 

- 
Let 5 E K  i.e. z = y x ,  y >0,  z E r i M .  If x f O  then f o r  some E > O  

x + (EB) n LinM c M in accordance  t o  t h e  definition of t h e  re la t ive  in te r io r  of a 

set M. 

Let 

where y is  an  a r b i t r a r y  point of Lin K ,  11 y 1) g 1. If 



then y' E M due t o  t h e  definition ri M .  Since 5 + 0 ,  then  

For  th i s  r eason  if < (Ig (1 then 

Thus if > 0 ,  6 > 0 are chosen s o  t h a t  

then f o r  y satisfying condition 

y E [con ( g  + ( c l B )  n LinK)] n ( d B )  

the, following inciusion is t r u e :  c E M .  Thus, in th is  c a s e  9(5) = c can be taken.  

If 5 = 0 then in accordance  with t h e  definition of t h e  re la t ive  in te r io r  exis ts  

such E > 0 t h a t  

( E B )  n Lin K L M 

i.e. any point of LinK L K with norm less than  E belongs t o  M. lt is c l e a r  t h a t  in 

th i s  case  9(y )  = 5 too. Q.E.D. 

Let us  now consider some applications of t h e s e  resul ts .  In pa r t i cu la r  it is in- 

teres t ing f o r  us  t o  generalize t h e  implicit functions theorem in cases  when solu- 

tions belong t o  some set M. I t  is formulated below. 

THEOREM 8 Let t h e  funct ions  f c ( z ) ,  i = 1, . . . , K be def ined o n  t h e  space 

Z = X x Y, these  m n c t i o n s  be smooth in t h e  neighborhood of t h e  o r i g i n  of coor- 

d i n a t e s ,  M be a convex se t  c o n t a i n i n g  0. Let in a d d i t i o n :  

1 g r a d i e n t s  f i ( z o )  a r e  Linearly  i n d e p e n d e n t  o n  subspace LinM; 

2 e x i s t  p o i n t  z s u c h  that 



3 for a n y  vector u E Rk the set 

* 
i s  empty or consis ts  from the u n i q u e  vector f ;  u . 

Then for a n y  vector z, [I 2 1) < d ex is t s  vector s u c h  tha t  

PROOF Define 

a ( x )  = l y : f i ( x ,  y )  = O , i  =I. . . . ,  k ,  ( x ,  y )  E M J  . 

In accordance with t he  theorems 4 and 7 the  cone 

is t he  marquee f o r  gf a at the  point z o  = ( x o ,  y o ) .  Taking into account assumptions 

and well known theorems of convex analysis w e  get  

where f ; ( z O )  is t h e  Freshet  derivative of t he  map f : Rn +m -+ Rk , i.e. matrix with 

rows pi, ( z o )  E Rn + m. Condition 3 of t he  theorem 6 means t ha t  relations 

( X I * ,  y * )  E (con(M - zo) )*  

* * 
Y + f $  ( z 0 b  = D  

assume the  equality 

* * 
x +p3; ( z 0 ) u  = o  . 

The last  condition is  equivalent t o  condition 3 of t he  theorem. 

THEOREM 9 Let Z = Rn X Rm, Pi ( z ) ,  i = 1, . . . , k be a smooth funct ion  and 

U be a convex set in Rn . Ip ( x  o ,  y O )  i s  a point s u c h  tha t  

t hen  for the  existence of the va lue  d > 0 s u c h  that  for a n y  E Rn exist  vector 

5 E Rm sat is j5ing 



i t  i s  su.tj%cient 

1 the vectors f f;  ( z o )  a r e  LinearLy independent; 

2 exis t  vector ( z l ,  y l )  such  that  

3 The set 

contains  onLy zero. 

The proof follows d i rec t ly  from t h e  previous  theorem,  taking into account  t h e  

equivalence of equali t ies f g ( z o ) u  = 0 and u = 0 which, in t u r n  follows from l inea r  

independence of v e c t o r s  f t; ( z O ) ,  i = 1, . . . , k 

Let us  consider  now t h e  solvability of t h e  system of inequali t ies 

for any x from vicinity of some point x o .  Suppose t h a t  t h e  point ( x o ,  y o )  i s  one  of 

t h e  solutions of t h i s  system. 

This problem c a n  b e  reduced  to t h e  previous  one by introducing auxi l iary  

va r i ab les  w i ,  i = 1, . . . , k and considering t h e  following system: 

The theorem 8 can  b e  appl ied  now. To do  th i s  let us  t a k e  X = Rn and t h e  s p a c e  Y 

from th i s  theorem will b e  t h e  s p a c e  of p a i r s  ( y ,  w )  E Rm X R ~ .  The set M i s  now 

t h e  set ( R n ,  R m ,  R:) .  T h e r e f o r e  LinM = ( R n .  R m ,  R k ) .  Let us note  t h a t  in t h e  

conditions (21)  e a c h  new var iab le  cor responds  to s e p a r a t e  equality, t h e r e f o r e  

condition 1 of theorem 8 i s  t r u e .  Fur thermore ,  w e  c a n  assume without loss of gen- 

e ra l i ty  t h a t  



This assumption will considerably simplify the  argument. What is needed now f o r  

fulfillment of the  second condition of the theorem is existence of the  vector 
- 
z l  = (5 l, GI) such tha t  

Due to  the  f ac t  tha t  M = (Rn,  R m ,  Rk+) w e  have 

* 
[con (M - Zo)l = (On, O m ,  Rk,) . 

The third condition of theorem 8 easily follows now from the  assumption tha t  condi- 
* * 

tions u r 0, f$  (z0)u  = 0 imply  f $  (zo)u  = 0. O r  in o ther  words 

* 
Kern f; (zO) 2 (Kern fi* (20)) f7 R* 

Thus, we have obtained the  following result:  

THEOREM 10  Suppose t h a t  x E R n ,  y E k m ,  j 'unctions Pi (z) ,  i = 1, . . . , k 

a r e  smooth for  z = ( x ,  y )  a n d  the po in t  z o  = (xo, y o )  is s u c h  t h a t  

Let US take in a d d i t i o n  the following assumptions: 

1 Ex i s t s  vector zl = (z l ,  GI) s u c h  t h a t  

* 
2 Kern I; (zO) 2 (Kern f$(zO))  n Rk+ 

Then ez is t s  d > 0 s u c h  t h a t  for  a n y  z, llz' 11 < d ez i s t s  s u c h  t h a t  

REFERENCES 

1 Pshenichny, B.N.: Convex analysis and extremal problems. Moscow, Nauka, 1980 
(in Russian). 

2 Rockafellar, T. : Convex analysis. Princeton Univ. Press ,  Princeton NJ, 1970. 

3 Boltiansky, B.G.: The method of marquees in the  theory of extremal problems. 
Uspekhi motematicheskih nauk, 1975, v. 30, No. 3,  pp. 1-55 (in Russian). 


