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INPLICIT FUNCTION THEOREMS FOR
MULTI-VALUED MAPPINGS

B.N. Pshenichny

V. Glushkov Institute of Cybernetics
Kiev, USSR

Let us consider three Banach spaces X, Y, Z and operator F: X XY — Z. We

are interested in the solution of the following equation:
F(z,y)=0 (1)

Suppose that the points (z, Yoy satisfy this equation. Then implicit function

theorems yield certain sufficient conditions for solvability of the equation (1) with

respect to y for all x from the certain neighborhood of z,.

Let us somewhat reformulate the problem now. Define
a(z) ={y:F(z,y) =0}

Then implicit function theorems give conditions for a (z) # ¢ in the neighborhood

of z,. We shall be concerned mostly with this reformulation.

Let us introduce some notations. Take Z =X X Y. Dual spaces of continuous
linear functionals will be denoted by X*. Y*, z". Pair of points from X and Y will
be defined (z, vy ) while <z, z">is reserved for the value of the functional z" at
the point z. Taking z = (z, v), z* = (z*, y*) we obtain

<z,z*>=<:z:,:c*>+<y.y*>

Multivalued mapping transforms each point £ € X into set a(z) ¢ Y. The set a(z)

may be empty.

Some more notations:
gfa =z, y¥):y €a(x)
doma ={z:a(z) + ¢}

Mapping a is called convex if gf a is a convex set and closed if gf a is closed. Some

more notations will be introduced in due course. Terminology is close to [1].
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1. IMPLICIT FUNCTION THEOREMS FOR CONVEX MAPPINGS
Let us start with some definitions. For any convex set M exist
conM ={Ax:A >0,z €M}

which is convex cone associated with the set #. For convex mapping a let us de-

fine

K (z) =con(gfa —2) .
Suppose that z € gfa. Then

a, () =1y :(Z, V) €K, (2)}

a)(y") =tz (=27, y ) €K, () .

where K;(z) is cone dual to K, (z). Thus,

z* €a)(y") if and only if

—<E, z">+<7,y >20,(%,7) €K, (2)

Let us prove two auxiliary lemmas:

LEMMA 1 @, (0) = —(dom a,)" .
PROOF The mapping a, is a positively homogenious convex mapping and there-

fore dom a, is convex cone and dual cone to this cone exists. According to defini-

tion of a.z* (0) it contains those and only those elements z" which satisfy the follow-

ing condition:

—<E,z >+ <7, 0>20,(Z,.7) €K, (2) .
which is equivalent to

<%, -z >20,% €doma,
The last inequality means that

-z € (dom a.z)*

The proof is completed.
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LEMMA 2 Suppose that K is cone in X, int XK # 0 and K" = {0). Then K =X.
If X =R™ then requirement int k # ¢ can be dropped.

PROOF It follows from the well-known theorems of convex analysis that
K™ = clK, where symbol cl defines closure of the set. The fact that ¥~ = {0} im-
plies clX = K*™ =X. Therefore cone X is dense everywhere in X and it is left to
prove that it coincides with X. Let us assume the opposite, namely suppose that ex-
ists z, such that £, € K. Take z, € intX and select £ =2z, —z,. The cone X is
dense everywhere in X, thus exist sequence £, € K such that £, — £. Let us take

Zqy = 2%y —Z;. It is clear that z,;, — X and for large k we have z,;, €X. Ac-
cording to definition zy = -%—xk + %Ek. and due to convexity of X we obtain z, € X.

The proof is completed because in the finite-dimensional case assumption intX # ¢
is fulfilled automatically, which can be verified in the standard way. These two
lemmas lead to the following result:

THEOREM 1 Suppose that a is a convexr mapping, 2 =(z,, ¥, € egfa and the

Jollowing condifions are satisfied:

1 int doma # {0}
2 a;(0) = {0}

Then for any element T exist such number & >0, that a(z, + AZ) # ¢ for
all A €0, 6]. If X is of finite dimension then the first requirement can be
dropped and in addition, exist such a member 6 >0 that a(zx, + z) # ¢ for all
z,|lz| = 6.

Before starting the proof let us make one comment. We have in the statement
of the theorem certain point vy, € a.(:co) and it is not defined how to select it. It

might seem therefore that the result of the theorem depends on appropriate selec-
tion of this point. Let us show that this is not the case. Firstly we shall introduce

the following notations [1]:

W (z, ) =i2f§<y, y >y €G(x)) ,

a(z, y )=ty €a@) i<y, vy >=W(z, ¥")

Notice that W, (z, v *) =+ o if a(xz) = ¢ and the function Wolz, v *) is convex with

respect to x. Let us take

e )= ¢ if y Talz, y")
@y 16* Wa(x,y*) if v €a.(x,y*)



If y* =0 then

Wy (z,0) = 6(zldoma) =4 %, 1 - éggm

a(z,0) =a(x)

Therefore &, W (x,0) = @ 6(x |doma) = - [con(doma -—z)]*. Comparison of

these statements leads to the conclusion that

a:z,y)(o) =8, W, (z, 0) = — [con(doma —z)]"

for any point ¥ € a(z). Therefore we can take an arbitrary point in the statement
of the theorem 1. Let us start the proof now. If assumption 1 is satisfied then it is
easy to get that doma, =X. Let us select arbitrary . We have z € doma, and
therefore exist vector ¥ such that (z,y) €Kk, (z) ie =7z —z),

1

y =y - Y 7 >0, (z,v) € gla Taking now § =y~ ~ we obtain

(o +AZ, Yo+ AY) =((1 —AMze+ A7z, (1 =AY, +A7Y) €gfa

for A € [0, 8] i.e. a(z, + AZ) # 0. In the case of a finite dimension the first as-
sumption is not necessary. Furthermore, if X = E™ then it is possible to find such
vectors z;, i =1,...,n +1 that simplex S ={AjZ; + " + A 41Ty +1:2; 20,
2{‘;11 A; =1} contains 0 as inner point. If we reduce the length of the vectors 51
appropriately we can obtain that all sets a(z, + 51) are not empty. Therefore any

point £ from the certain neighborhood of zero can be represented as follows:

_ - n+1
xz =Alzl+ et +An+1, Ai 20, 2 A‘t =1 f
i=1

This together with properties of the convex maps implies

n

_ +1 _ ] n_+1 _
a(z, +x)=a[2 Mo +Zx)lz 3 MNalzg+Zz)#0¢ .

i=1 i=1
The proof is completed.

This proof is fairly simple, but the result is quite interesting. Let us illustrate
this with some examples:

EXAMPLE 1 Take X =R™, Y =R™, 4 and B are matrices » Xn and r X m.
Define gfa = {(z, y):4z — By =0} and select z,=0, yo=0. Then K,(0) =
iz, y):4z - By =0},
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K;(O) = i(z*, y*):z* =4%u, y* =-B"u, u €R™
Therefore ag(y*) = {A*u = B%u, u € R7{. Condition a.;(O) = {0{ means now
that 8% w = 0 which implies A%u =0, Thus, for solvability of the system of equa-
tion Az — By =0 with respect to vy for all z, it is sufficient that Kern B* C
Kern 4™ . Here, as usual, Kern C = fv:Cv =0}

EXAMPLE 2 Take the same assumption as in the previous example and consid-

ergfa = {(z,y):4x — By <=0, ¥y =20{. Now we have

K;(O) = !(—-A*u.B*u +v):iu €RT, v €eR}Y ;

where R, and R are positive orthants. This gives
a;(y*) = SA*u Yyt =B u +v,u €ER,u €ERTY .

Hence condition a.:; (v™) = {0} implies in this case that from inequalities B* u <0,
u 20 the equality A%wu =0 follows. Therefore for solvability of the system
Az — By =0, y 2 u for all z it is sufficient that the following inclusion is satis-
‘tied: Kern 4~ >= ju 20:B u s0}.

EXAMPLE 3 Suppose now that X, Y, W are Banach spaces, Z =X XY, F-
convex multivalued map from Z into W, i.e. F(zx, ¥) € W, M-convex subset of W.
Define a(z) = {y :F(z,y) "M # ¢{. It is clear that points (z, ¥) € gfa if and
only if exist such point w that (z, vy, w) € gf F, w € M. Let us select the point z,
such that a(zy) # ¢, yo € alzy) i.e. (x4 vo) € gfa. Suppose that w, is such a

point from M that (z,, v wo) € gf . Let us denote z, = (x4 v() and define
»* * . e aas *>* * * .. .
a.ZO(y ) as follows. According to definition z ¢ a,ZO(y ) if and only if — <z —z,,

z >+ <y — Yo y* >20, (z,vy) €gfa. Taking into account the description of
gf a given above, we arrive at the conclusion that the last inequality is equivalent

to the following:
* »* *
—<z —zpg,x >+ <Y =Yg Y >+ <w —w, 0,>20

for all (z, vy, w) € gfF, w € M, where 01: is zero of the space w*. But the last

inequality is equivalent to the following:

*

(—z", y™,0,) € f(con(gfF = (zg, vy wp)) (M (con(X xY x M



= (Zg, Yo Ug))

Suppose now that exist the point (z, ¥, ¥) € ¢f F such that (2) v € int M. This im-
plies gf F N int (X XY X M) # 0. It is consequence of the well-known results of

convex analysis that under this assumption the cone in the right hand side of (2) is
equal to the sum of convex cones dual to the intersected ones. Taking into account

easily established relations
> > > 3
(con(X XY XM —(Zg, Yo: Wp))) = (07, 0,, (con(M —wy)) )
we obtain that (2) is equivalent to the following statement.:
> > E 3 > E 3 E 3
(—z", ¥™, 0,) €Kp(Zg, Yo o) + (0, 0y, (con (M —w)™)

or, in other words, exist functional w* € (con(M - wo))* such that the following

inclusion holds:

L > > >
(—z ,y ,—w ) €Kp(xy Yo W) -

And, finally using a definition of the conjugate mapping introduced before we ob-

tain that z~ € G:o(y*) only if for some w” e (con(M - wo))‘ the following inclu-

sion holds:
* * L3 *
(x 1—y )€F(zow0)(—w ) ]
* * E 3

i.e. (z , —y*) €F(z°‘wo)(—(con(M —wy)) ) .
Hence a.;o(O) = {0} only if the following inclusion

(:c*, O;) €F'('z°‘wo)(— con (M —wo))*)
implies equality z* = O.:, i.e.

Flaqwe (~ (con® = zo)™) = 107, 0

THEOREM 2 Suppose that X, Y, W are Banach spaces, M is a convex sei

which belongs to W, F is convex multivalued mapping from X XY to W and

a()={y:Flz.y) "NM{#¢ .
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suppose that y, € a(z,) and wy € M are poinits such that (x,, v, wy) € gf F.
Then the following conditions are sufficient for existence of number & > 0 for
any z such thata(zy + Az) # ¢, A € [0, 81

1 int doma # ¢;

2 gf F N\ (X XY xXint M) # &;

*

3 F’(.;o.wo) (= (con (M —wo))*) = ;o:, Oy“

If X is of finite dimension then it is not necessary to check the first condition.
The proof follows directly from theorem 1 and the above argument.

EXAMPLE 4 Suppose that b and ¢ are convex multivalued mappings from X to
Yanda(z) =b(z) N c(z).

THEOREM 3 Suppose that y, € a(x,) and the following conditions are sa-
tisfied:
1 int doma # ¢;

2 gf b N int gfc # ¢;
* * * * * . .
3 for any v either one of the sets bZO(y ), cz°(—y ) is empty, or exisis

such functional z" that b;o(y*) = (™}, c;o(—y*) = {—~z"|. Then for
any £ € X exist 6 > 0 such that a(z, + Ax) # ¢ for A € [0, &]. IfX is of fin-
ite dimension then il is not necessary to check condition 1.

The proof of the theorem follows from theorem 1, the fact that

gfa =gfb M gfc and direct calculation of a.;o(O) by using convex analysis tech-
niques.

Let us show how to use this theorem by the following example. Take
b(z) =iz :Axz — By <0}, c(x) =M where M is a fixed convex set in R™, 4 and B
are matrices of dimension  Xn and » Xm, X =R™, Y = R™. Suppose that 0 € #

and exist points z,, ¥, such that Az, ~By,; <0, y, €int M. A straightforward ar-

gument shows that
Ky (0) = {(Z, ¥):AZ — By <0
KO =(z*, y*):z” =-4"u,y" =B"wu, u 20}

bo(w )=t4"u:y" =B u, u 20|



K.(0) =X x conM

KX (0) = {0} x (conM)™ ,

- = foiy if y* €(conM)* ,
Co(y ) = * *
¢ i vy € (conM)

We can obtain more from the following result by applying theorem 3. In order that
the system of inequalities Az — By =0, y € M has a solution with respect to y for

all £ from some neighborhood of zero it is sufficient that conditions

uw =0, -B u € (conM)"=

imply equality A¥u =0. In fact b;(y*) = ¢ if y"= can not be represented in the

form 'y* =B*'u., u 0. In case if 'y"= =B*u, «w =0, and -B*u < (conM)*. If,

however,

L L
-~B uw €(conM) ,y =0,

then for _]""= = B™ u we have c;(— y*) = {0]. Therefore according to the theorem
3 the set b;(y*) also should contain only one point i.e. zero. It follows from

representation of the set b; (v *) that 4™ u =0.

If M =RT i.e. M consists of nonnegative vectors then this result coincides

with one obtained from example 2.

2. LOCALLY SMOOTH MAPS

Let K be a convex cone in a Banach space X. It is obvious that
Link =K —K

is the minimal linear manifold containing XK. If M is a convex set, then
LinM =con(M —z) —con(M —x) ,

where z is an arbitrary point of M. It is not difficult to show that LinM does not

depend uponx € M.
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We shall say that the point £ belongs to the relative interior of M (denote it

riM), if for some £ >0
z +EB)YNLInM C M,

where B is the unit ball of the space X with the center in the origin.

If X = R™, then it is well known [2], [3], that riM # ¢. In general this result is
not true.

Let M be an arbitrary set of X.

DEFINITION Call the seli K marquee for M at the pointx €M, if K is the con-
vexr cone and for each T € K exist values € >0, § >0 and continuously dif-
Sferentiable in the neighborhood of the origin funciion ¥:X — X exist such that

1 v(0) =0, ¥'(0) =7 (unit operator);

2 z + VYY) €M for all

v €[con(z + (¢B) N Link)] N (6B) .

This definition is based on ideas of V.G. Boltyanski, he developed them for n-
dimensional space. But these ideas can not be generalized on infinite dimensional
space without changes. For this reason the introduced definition differs from V.G.

Boltyanski’s definition [3].

Further it is convenient to suppose without reducing generality that point z

coincide with the origin.

THEOREM 4 Let M, is a set, 0 € M,, K, the marquee for M, at point z =0

and functions f;(z), i =1,..., K satisfy the conditions:
i J4(0)=0,1=,....,K;
2 fi are continuously Freshet-differentiable in the neighborhood of zero

and derivatives f/(0) are linearly independent on L, = LinK,,

Then
K=iE€K0:ft’(0)E=O.i=1,...,Ic{ 3)
is the local marquee at the point £ =0 for the set

M=lz:xz €My fi(z)=0,%1=1,...,k} . (4)
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PROOF Since f;(0) are linearly independent on linear manifold L,, then vec-

tors e; € L, exist [1], such that

riwy =0 = {3 £ 34
i, =1...,k
Let £ € K. Then
£z =0,1=,...,k

and smooth in the neighborhood of zero. Therefore exists function ¥, such that

¥o(0) = 0, ¥0) =1,
Yoly) €M

for ail
Yy €[con(z +(eB) N\ L] N (8B) , 3)

fore >0, 6 > 0.

Let
— —-— k —
9T, 2) =1 | V|7 + X zie|| —£{O)F (6)
j=1
where z is the vector with components zy, jg=1...,k.

Let us consider the system of equations

g9;(y.2)=0,1=1,...,k ¢9)
with respect to z. It is evident

9;(0,0)=0,1i=1,...,k

Since g, are compositions of smooth functions, then they are smooth functions. Us-

ing rules for differentiation of the complex function it is not difficult to get
giy (0, 0) =S{ (0)¥%,(0) —f{(0) =0 , (8)
Because ¥, (0) = . Further

94z; (0. 0) = f{ (0)¥; (O)e; = &;; . @)
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Thus, the matrix with elements gi’zj (0, 0) is non-degenerate and according to the

implicit functions theorem [4] the solution z (¥ ) of the system (7) exists, such that
z(0) = 0. Further according to the same theorem z (¥) is continuously differenti-

able in the neighborhood of the origin of coordinates and taking into account (8)

z'(0) =0 10)
Let now
—— — k -—
Y)Y =%y + L z;()e (11)
i=1
Then ¥(0) = 0, and
k
¥'(0) = ‘Pt;(O) I+ 2 ey zj’(O) =7
<,
according to (10). Denote
ad — k -
T=9y+ ) z;(¥)ey .
Let us choose &; > 0, §; > 0 sufficiently small so that the inclusion
¥ €lecon(z + (&4B) N LI N (6,B) (12)

ensure that 7 satisfies the inclusion (5). It is possible, because (10), but if v sa-

tisfies (5) then
YY) =¥ (¥) €My .
Denote
L,y=iz:f{(0)z =0,1 =1,..., K}
It is easy to see that
LinK ¢Ly Ly .
Let now
y € [con(z + (&4B) N LinK)] N (6,8) . (13)

The set from the right part of (13) is the subset of set from the right part of (12).

For this reason (13) implies the inclusion ¥(y) € M,. Further, since z € L,, then
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Y € L,. Therefore due to (7) and (6)

Fi(¥EN=0,i=1,...,k

Thus (13) assumes ¥(¥ ) € M and consequently X is the local marquee for M.

Since the proofs of the following theorems repeat the similar parts of the

theorem 4 proof the details will be omited.
THEOREM 5 Let M1 and M, be two sets, M =M; N\ M, 0€M and K,, K, be

respectively marquees for M, and M,. If the linear manifolds exist such that:
1 L, cLinky, L, CLinkK,;

2 Li+L,=X;

3 Jorallzy €Ly, z, €L,

lzy +zoll 2 clizyll +lz,lD, ¢ €0, 1) ,

then K = Ky M K, is the marquee for M at the point O.

PROOF In accordance to the condition 2 arbitrary £ € X can be represented

as follows
T =x,+Zx,, €L, z,€L, .
That representation is unique, because if different representation exists
z=x;+xy,x{€Ly,xz,€L, ,
then
(xq —z{)+(xz;—x25,)=0,
Ozc(lzy —zill+izg —z3) .

ile.zy=zq, 2, =2x,.

Consequently operators P, and P, are defined such that
Pz €Ly, P,x €Ly, Pz + Pz =x

Due to the condition 3
lzllzecdlPizll + [Pzl ,

i.e.
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1
I|P¢xlls?llxll .

it is easy to see that operators P, are linear and consequently they are linear and

continuous operators.

Let now £ €Ky N K, and &, §;, ¥, correspond to z in the marquee K;. Consid-

er the equation

9, 2) =Y (Y +Pyz) — Y (y¥ —Ppz) =0, (14)
with respect to z. It is easy to see

gg’ (0,0 =¥{(0) —¥,(0) =0

g, (0,0) =¥ (0)Py + ¥,(0O)P, =Py + P, =1 .

In accordance to the implicit functions theorem the smooth function z(y) is de-

fined in the neighborhood of zeroand z(0) =0, z'(0) =0.

Suppose
V() =¥y +P12(y)) =¥,y —Pez(¥)) . (15)
Taking into account z’'(0) =0, i.e.

28D o for 7] —0
o |l

it is not difficult to prove that ¥ is the desired function for z.

This proof is based on the fact that for 7/ close to the direction =
Yi(y +Pi2(y)) €My
‘1’2(17 +P22(’!-/-)) €M, ,

and consequently due to (15) ¥(y) € M; N\ M,. In this connection if ¥ € Link|,
i =1,2, then ¥ +Pyz(y) €Ly, ¥ —Pyz(y¥) €L, and taking into account the
smallness of z (¥ ) all conditions related with the choice of £, § can be satisfied. Be-

sides
¥(0) = \Ifl(O) =0 ,
¥v'(0) = ¥ O + P,z 0] = I

because ¥{ (0) =7, z'(0) = 0. The proof is completed.
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REMARK Conditions 1-3 for X = R™ can be replaced by the condition
LinK; +LinK, =X .

In a general case that condition is not sufficient because condition 2 means that
the sets M; and M, have sufficiently large dimensions. The condition 3 means that
linear manifolds intersect at some angle. Indeed, if X is a Hilbert space with inner

product [z, ¥ ] then condition 3 is equivalent to condition
[z, 2] =1 —2¢% [zl =1, llz /i =1,
::1 €L1. xz €L2 .

Let us consider now the theorem about implicit functions for nonconvex multivalued

maps.

THEOREM 6 Let a be a multivalued map, K be a marquee for gf a ¢ X XY at

th-e po‘l.'nt 20 = (x0| '.Uo).

o, (B)=(T:(, 7)€k} .
ay (¥ )=tz :(-z .,y ) ek} .

If the following conditions are satisfied
1 int doma, #¢;

2 exist a linear restricted operator P:X -— Y such that (z, Px) € LinK ;

3 a;o(O) = {0} , then for any Z exists § > O such that
a(zy+AZ) # ¢ for A €[0, 8] .

If X and Y have finite dimensions then the first two conditions are satisfied and be-
sides value & > O exists such that a(z, + z) # ¢ for all £ € (8B).
PROOF Without loss of the generality we consider x4, =0, yo = 0.

Lemma 2 implies

domazo =X ,

i.e. for any £ €X the vector ¥ exists such that (z, ¥) € K. Consequently for any

Z € X the vector ¥ €Y exists such that (z, ) € Link.
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Thus, let Z, be a vector from X and z, = (Z,, ¥,) € K. Since K is the marquee
then ¢ >0, 6 >0 ané exists smooth function ¥(0) =0, ¥'(0) =[,, where I, is the

unit operator in Z and ¥(z) € gf a for all
z €[con(z, + (£B,) N LinK)] N (6B,) , (16)
where B, is the unit ball in Z. Since Z2 =X XY, then

(v,(z, 7))

Y& =g,z 7)

and condition ¥'(0) = I, can be rewritten as follows

¥'(0) =

I
ie ¥,2(0,0)=1; \I/l’g(o, 0) =0, ¥,=(0, 0) =0, \1/2’17(0. 0) =1,.

Consider the system of equations

g\ ) =¥ A2y + 7, Ay +Pr) — Az, =0 , (17)
where A € Rl, 2z € X. Taking into account previous relations we get

g5 (0, 0) = ¥,= (O, O)xo+\ll-(0 0)Yoy—Z, =0,

g; (0,0) =¥, (0, 0) + \Ifl’y-P =1

Thus due to the theorem about implicit functions the system (17) has the solution

r (A) and also
r(0)=0,r(0)=0 .
Let us consider now the point
z(\) = (AZy + 7(A), AU +Pr(A)) .

Taking into account r’(0) =0, r(A) =o(A) for sufficiently small A >0 inclusion
(18) is satisfied, because by definition of the operator P we have z()\) € Link.

Consequently
Y(z(N\) €gfa
for small A. But

RACTES) AE, |

¥z (z)) = [q, (z(x)). ~I/2(z(>\))



-16 -

here the condition (17) was used. Thus
(AZy, ¥o(2(N))) €gf(a) ,

ie. a()\:':o) # ¢ for small A. Thus the first part of the theorem is proved. Let us
consider the case with the finite dimension. Condition 1 can be omitted in accor-
dance to lemma 1 and 2. We will show that condition 2 can be omitted too.

Indeed because LinK C R™ X R™ then exist the matrices 4 and B with dimen-
sions r X n and r X m respectively such that the points (#, ¥v) € LinK and only

they satisfy the equations
Az =By =0 , (18)

where rows of the matrix (4, — FB) with the dimension r X (n + m) are linearly in-
dependent. This follows from the fact that in the finite dimensional space linear

manifold can be described as set of solution of some linear equations system.

Since the rows of the matrix (4, ~B) are linearly independent then exist
non-degenerate submatrix of this matrix with dimension r X . Consequently system

(18) has solution y for arbitrary x. For this reason (see example 1 § 1)
*x *x
KernBP ¢ KernA (19)

However KernB™ = 10]. Indeed let y‘ € RT, y‘ # 0 and B‘y‘ = 0, then due to
(19) A*y* = 0. This means that exist the non-zero vector y‘ orthogonal to all
columns of the matrix (4, —B). The last statement contradicts the existence of
non-degenerated » X r submatrix of the matrix (4, — B). Thus KernB™ = 104, i.e.
columns of the matrix B* are linearly independent. For this reason B* (and conse-
quently B) contains non-degenerated submatrix B, with rank r xXr. Let
B = (B4, B;). Consider the vectors y

A vt

0 ,

—_p 1
m-T,

y:

where y,; € RT and Om is the non-zero vector with dimension m = r. It is clear

-T

that By = B,y,. If y, = B; 14z, then vector

-1
B laz

Y=io

m —T

satisfies (18). It is obvious that the linear operator
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e ]

satisfies condition 2 of the theorem. Q.E.D.

REMARK Let us consider the condition 2 in general. Let L € X XY is a linear

manifold. Denote

lz)y={y:(xz,y)el} .

It is not difficult to see that

1 l(x) is an affine manifold;
2 Iz +z,) =1l(zy) +1(zy,);
3 L(Axz) = Al (z) for A #0.

Let in accordance to the theorem 6 dom!l =X. Thus the map [ from the space X to
the set of affine manifolds of y is linear. Condition 2 of theorem 6 implies that ex-
ist a linear continuous map P such that Px € [(z). Since [ is a linear map then ex-
istence of P is a natural condition. As was shown earlier in a finite dimensional
space, this operator exists. It would be interesting in general to formulate an addi-

tional condition for L guaranteeing existence of a continuous linear selector of P.

Let us consider now the questions connected with the construction of a mar-

quee for a convex set.

THEOREM 7 Let M be a convex set in Banach space X, 0 € M and riM ## ¢.

Then the cone
K =con(riM)

is the marquee for set M at the pointx = 0.

PROOF It is evident that riM c M, for this reason Lin(riM) ¢ LinM and
LinZ ¢ LinM.

Let T €K ie. Z =y, >0, z €riM. If £ #0 then for some & >0

z + (eB) N LinM ¢ M in accordance to the definition of the relative interior of a

set M.

Let
- - £
Y =AMz +5Y) = Ay +5Y) = Av(Z +7y) . (20)

where ¥y is an arbitrary point of Link, |y | = 1. If
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&4
— <& Ay <1,
Yy

then ¥ € M due to the definition riM. Since £ # 0, then
lgll=alz +eqvllzrdlz] —&y) .
For this reason if & <||Z || then

rs el

izl - &
Thus if £, > 0, 4 > 0 are chosen so that

S

- <1, &g =z g <7e ,
E - &y

then for ¥ satisfying condition
y €con(z + (£,8) N Link)] N (8B)

the following inciusion is true: ¥ € M. Thus, in this case ¥(¢) = ¥ can be taken.

If £ =0 then in accordance with the definition of the relative interior exists

such € > O that
(eB) Y LinkK ¢ M

i.e. any point of LinKX ¢ K with norm less than ¢ belongs to M. It is clear that in

this case ¥(y) = ¥ too. Q.E.D.

Let us now consider some applications of these results. In particular it is in-
teresting for us to generalize the implicit functions theorem in cases when solu-

tions belong to some set M. It is formulated below.

THEOREM 8 Let the functions f;(2), i1 =1,..., K be defined on the space
Z =X XY, these functions be smooth in the neighborhood of the origin of coor-

dinates, M be a convexz set containing 0. Let in addiiion:

1 gradients f{(z,) are linearly independent on subspace LinM;

2 exist point z such that

fi(zg)2 =0,4=1,...,k, 2 €riMl ;
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3 for any vector u € Rk the set

iz (z", f,_;*(zo)u) € [con(M —z]"}

. 3 *
is empty or consisis from the unique vector f; w.

Then for any vector z, ||z || < § exists vector ¥ such that
Fi@o+Z, Yo +¥)=0,1=1,...,k ,
(Zo+Z,Yo+Y)EM .
PROOF Define
az)=ly:fi(z.¥y)=0,1=1,...,k, (z,y) €M .

In accordance with the theorems 4 and 7 the cone
K=1{Z:f{(zg)2 =0,1=1,...,k, z € con(riM)}

is the marquee for gf a at the point z, = (z,, ¥,)- Taking into account assumptions

and well known theorems of convex analysis we get
K* = (con(M — zo))* + {fz'*(zo)u tu € R™Y

where f;(z,) is the Freshet derivative of the map f :R™" *™ —» R*, i.e. matrix with

rows fi; (z¢) € R™ *Mm  Condition 3 of the theorem 6 means that relations
L »* »*
(' .,y ) e(con(M —zy)
L /*
¥ +fy (Zo)u =0
assume the equality
»* »*
z + f_g (zg)u =0 .

The last condition is equivalent to condition 3 of the theorem.

THEOREM 9 Let Z =R™ X R™, f;(2),i =1,..., k be a smooth function and

U be a convex set in R™. If (g, Y o) is @ point such that
fi(zOI yo) =O:i =1l"'lkl yOEU

then for the existence of the value 8§ > 0 such that for any £ € R™ exist vector

Y € R™ satisfying
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fi(z0+£|yo+y—)=osi=1:---;kl
Yo+y €U
it is sufficient
1 the vectors f;. (z,) are linearly independent;
2 exist vector (4, Y1) such that
Jiz (30)51 +fify (20)171 =0, 171 €(ril —vy)
3 The set

fu :f!;' (zo)u € [con(U —y )"}

contains only zero.

The proof follows directly from the previous theorem, taking into account the
equivalence of equalities f/(zy)u =0 and u = 0 which, in turn follows from linear

independence of vectors f;jz (z¢), 1 =1,..., k%

Let us consider now the solvability of the system of inequalities
fi(@.y)s0,i=1,..,r,z €R™, y €¢R™

for any z from vicinity of some point z,. Suppose that the point (z,, v,) is one of

the solutions of this system.

This problem can be reduced to the previous one by introducing auxiliary

variablesw,;, i =1, ..., k£ and considering the following system:
iz, y)+w; =0,1 =1,...,k
w, 20,1 =1,...,%k

The theorem 8 can be applied now. To do this let us take X = R™ and the space Y
from this theorem will be the space of pairs (v, w) € R™ x R*. The set M is now
the set (R™, R™, R%). Therefore LinM = (R™, R™, R¥). Let us note that in the
conditions (21) each new variable corresponds to separate equality, therefore
condition 1 of theorem 8 is true. Furthermore, we can assume without loss of gen-

erality that

fi(xo:yo)=o,i =1,...,k%k
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This assumption will considerably simplify the argument. What is needed now for
fulfillment of the second condition of the theorem is existence of the vector

z4 = (Z4, ¥4) such that

le(ZO)z_l =0 .
Due to the fact that ¥ = (R™, R™, R% ) we have

* k

[con(M —Zy)] =(0,.,04,.RY) .
The third condition of theorem 8 easily follows now from the assumption that condi-
tions u =0, f!;* (zg)u =0 imply fé* (zg)u =0. Or in other words

K -~ K - R*

ern f, (z4) 2 (Kern Ty (zo)) M

Thus, we have obtained the following result:

THEOREM 10 Suppose that x € R™, y € k™, functions f;(z), 1 =1,....,k

are smooth for z = (x, y) and the point z, = (24, ¥ ) is such that
Ji(®g. ¥g) =0,7i =1,...,k

Let us take in addition the following assumptions:

1  Exists vector Z, = (X4, ¥) such that
2 Kernf. (zo) 2 (Kern £(zo)) N R%
Then exists & > 0 such that for any z, ||z | < § exists ¥ such that

Fi@o+Z, Yo +¥)<0,i=1,...,7

REFERENCES

1 Pshenichny, B.N.: Convex analysis and extremal problems. Moscow, Nauka, 1980
(in Russian).

2 Rockafellar, T.: Convex analysis. Princeton Univ. Press, Princeton NJ, 1970.

3 Boltiansky, B.G.: The method of marquees in the theory of extremal problems.
Uspekhi motematicheskih nauk, 1975, v. 30, No. 3, pp. 1-55 (in Russian).



