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FOREWORD

A stochastic approach to the development of interactive algorithms for mul-
ticriteria optimization is discussed in this paper. These algorithms are based on
the idea of a random search and the use of a decision-maker who can compare any
two decisions. The questions of both theoretical analysis (proof of convergence,
investigation of stability) and practical implementation of these algorithms are dis-
cussed. The paper was prapared within the activities of the System and Decision
Sciences Program on stochastic optimization and multiple criteria decision making.

A. Kurzhanski
Program Leader
System and Decision Sciences Program.
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STOCHASTIC APPROACHES TO INTERACTIVE MULTI-CRITERIA
OPTIMIZATION PROBLEMS

M. Mikhalevich

1. INTRCDUCTION

Multicriteria problems often appear in applications, especially in technology.
economics, engineering design. In many cases, another aspect is added to the mul-
ticriteria character of the problem — it includes elements of uncertainty. For
example, the simplest formulation of the problem of system deszign for hazardous

waste treatment has the following criteria:

1) system's malfunction probability

Fi(z)=Pi® >z{ = 1-pif sz},

2} system cost
Jaz) =2z |,

where x is the system capacity, @ is a random quantity of the hazardous waste, z is
the unit cost of the system. Another example deals with energy system planning,
where alternative variants consist of stochastic and deterministic components,
such as energy consumption, energy resources and options, results of scientific
progress. [n a nuclear power design problem there are the following stochastic
components: wind direction, weather, environmental situation, etec. In such prob-
lems it is rather difficult to define a single function which measures the utility of
different components. Therefore, in this work, interactive numerical methods are
developed that do not require a utility function construction. These methods use
information supplied by the decision-maker (DM) who can compare different vari-

ants (decisions) in the course of iterations.

A mathematical model of such DM's ability are preference relations. A preference
relation R is introduced on the set X of all decisions as follows: z R v if and only

if the DM says that decision z is no worse than y .

When a DM compare different variants, he makes errors. Therefore the subjective
uncertainty to be connected with the DM's errors appears in decision-making prob-

lems. It should be noted that these errors are usually random by their character
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in a more or less serious degree. This stochastic aspect of the decision-making
problems will be discussed at the end of this paper. Now let assume that the DM can
compare decisions in an absolutely correct manner. It is actually not necessary
for the DM to compare all different decisions from the decision set X. Algorithms
discussed in this paper require only comparison of two different alternatives,

given by the computer at each interaction.

By introducing the relation &, the decision-making problem is reduced to the
optimization problem on the preference field (X.X). The latter assumes the follow-
ing formutation which is rather general. The sel af all possible decisicns X = [z
and its subset of all admissible decisions D are specified. A binary relation & is
also specified on the set X. It is necessary to choose such z° €D that for ¥

z €D, xR z holds. This problem is called the most preferable element search

problem is denoted as follows:
x — pref (1)
T el

If the relation & possesses such properties as reflexivity, completeness, transi-
tivity, continuity [8], a continuous utility Index u (z) (called also value function)
exists and the problem (1) formally {s reduced to the mathematical programming

problem: miE%u(z). However, it should be noted thal neither analytical form of
I

u (z ) nor its values in given points are known. This fact constitutes the basic diffi-
culty when problem (1) is solved. Sometimes, when vector £ consists of stochastic
components, it is known [1] that u (x) has a form of Ev(zx, «), where v(z , «) is an
unknown function and w-random parameters. In applied problems, assumptions
about the analytical form of u (z) are often taken, for example: uw(z) is a linear

function ?a,zi. But even in this case a difficult problem of the identification of
weights a,; arises.

The lack of information about the objective function w(z) makes problem (1)
appears similar to the stochastic programming problems. Therefore, it is natural

to use the approach of the stochastic programming to solve the problem (1).
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2. THE BASIC ALGORITHM OF SEARCH FOR A MOST PREFERABLE ELEMENT

Let us illustrate this idea for the simplest case when the set D is a compact subset
from £™ and the relation K possesses the properiies of convexity and regularity
[3] besides the properties required above. In this case the utility function u(z) is
a continuous quasiconvex function (i.e. the function with the convex level sets
jw: u(y) su (z)!. The differentiability of w (x) is an additional assumption for

this case.

It should be noted that in this case, at every point z, and for every direction A
{except dlrections from a set of measure zero), there exists y(z .,k ) < 0 such that
either (z + v(x .A)h) Rz or (zx — y(x,h)h) Bx holds. Therefore, a random vector

£(x.?) can be constructed by the formula

@, if(z+y(xz.?)3)FRx
tHz,P) = -2, if(x —y(zx 2)3 )Rz @)

(where @ is a random direction vector uniformly distributed over the n-
dimensional unit sphere) which will be, with probability 1, the direction of a
decrease of w (z). This fact makes it possible to use, in order to sclve problem

(1), random search procedures of the stochastic quasigradient type.

Let us give some definitions which will help in the calculation of £(&(x.6)). The
support functional to the convex set ¢ at the point z is a bounded vector {(z) such
that ({(x), z—~y) <0 holds for any ¥ € ¢ [10]. The set of all support functionals
to set ¢ at point £ is the support set L(z). It is known [10] that if w(zx) is a
quasiconvex function, then the set of all support functionals to set
fv:w(y)=u(z) in point &, which is not optimal, is not empty. If this function is
differentiable, then for every li(x)el(z) and Lo(z) € L(z),

T, T = T ]

than one point. If the gradient of the function « (z) in point z is not equal 0, then

W_lﬂlT_ “e &) olds, wh (z) is th dient of w(z). H th
=£(z) = m os.wereu:z 1S e gradient oI w(x}. ence, e

support functional to fy: w(y) < u(zx)} is the generalization of the gradient for

holds for every z such that fy: u(y) =< w(z)! has more

quasiconvex functions.

Now let us calculate the value of E{£,(z ,#)). It is clear for z #z' that i-th com-

ponent of £ (£,(z,@)) is equal to:

1 1
(E(&(x.0))]; ='2-;f"'fttdt1-'-dtn + Ef"'f(_t{)dh"‘df“
w(r +y(x,t)t)sulz) u(r —y{z.t)t) = u(x)
Nell =1 Teilmn



-4 -

where v is the measure of n-dimensional sphere. According to the definition of

the support functional:

[ fdtdty = [ f(~t)dty - dt, (3)
u(xr +y(x,l)t)<u{c) ulz —7{x,t) <u{x)
Tellst e lls1

&0

= [ [ tat, - di,
[t

el

where [ (z) is the support funclional to the set {y:u (¥ ) S w (z}]at the point z.

L {z)
I{z)
become collinear with one of the axls in new system {see Flgure 1) we can obtaln:

Rotating the coordinate system for integral {(2) in such a way that will

I{z)

E¢(z.8)) = ’CW

(4)

where & > 0 depends only on 7.

This statement was proved in details in [2]. The statement (4) justifies the idea of
using the direction £(x,7) as an analogue of the stochastic quasigradient in sto-
chastic quasigradient projection method. In this fashion the following interactive

method is obtained.

Take the initial point £° to be an arbitrary n-dimensional vector. The algorithm
consists of constructing the sequence {x%1{ by the following rule. Suppose that the
approximation ¥ 1 to the solution z° of the probiem (1) is obtained before the
beginning of the s-th step of algorlthm. On step numbers s computer generates g*
-- the s-th independenl observation of the realization of random vector @ and cal-
culates z¥ 1 + y85. If DM considers that 5 "14+vy8% is no worse than z¥ 71, then
¢z5165) =6°%; otherwise DM should compare decisions 251 — 6% and z5~1. If
DM considers that z 1 —+9° is no worse than z% 7!, then ¢z571,85) = —0°5;
otherwise the wvalue of 7 is decreased and the procedure of comparison of
25 14905 251 251 535 continues for a new value of 7 (but for the old value of

6%). Having defined £(z°5 ~1,6%), computer calculates z° by the formula:
z5 =mp(xs L+ p (x5 710%)) (5)

where mp(°) is the projector on set D, i.e. the point from D being nearest to the

argument. The choice of the step og must satisfy the conditions:

pe 20, ) ps =, as., ¥ p.,‘.2 < oo, @.s. (6)

5 =0 s =0



{y:ulyl <uix)}

£{x)
[H&{x}]|

N
2

Old coordinate system

——=—— New coordinate system

Figure 1. Rotating the coordinate system in the case n =2.

It should be noted that the sequence of ¥ is a random sequence determined on

some probability space {(0,4,P]. According to (4)

E(f(zs‘l,esﬂxo,....z5"1)=k.£(4“~'s_12-— (1)
L (zs 1) |

This fact is the basis for the proof of convergence of the algorithm. But its con-
vergence does not follow immediately from the convergence of an analogous algo-
rithm given in [4]. A quasiconvex function is not always convex hence the proof of
the algorithm (5) convergence is an independent problem. However, it is possible
to prove that £ (£(x5.605%Y) 2% ...,z5) possesses the main properties of a quasi-
gradient that are needed in the proof of convergence. Namely it is the direction in
which distance between point z° and the set X* of optimal points decreases. Let us

prove it.

Lemma 1. Let % » x’(w) €X* for some weR, Bed, P(B)>0. Then there exists
such A>0 which depends only on £’ and « that



[(z%) zS

. —z* (5 — A <0
l (zs)y: !

for sufficient large numbers s, for any @ € # and any z* € X™*.
Proof:
Because of z5 -+ z'(w) € X* for @ € B, the following statements holds:

(A) for any « € B and £>0 such s,(w,£) exists, that for s > s, we have

z3 €z llz —z'li<e]

(B) forany « € B such 4(w) exists that

min |z’ —z*l >4(w)
" eX

Let in (A) £ = 6(w)/ 2, then the statement

(C) forany @ € B such 4;(w) >0 exists, that for s > 5, we have

z5 € {z: min lz — z»l >8, (W)
T e X

this follows from (A) and (B).
According to (C) and continuity of w(z), there exists such s,, which depends only
5
on z’ and w, that for § > s, and for all x* € X* the points z* - GE—ESI—)L belong
)

totheset jy : u(y) < u(x5)|

Therefore for any w € B, any £* € X* and any § > §,,

s s 3
Az—L,,:;s—z*——z A&.zs_x*_dzﬂz_L
llg ¢z %)l Iz (z %)l (2 3)l
holds. If we define the point z 1S as follows:
s (=)

=z* -4, Lz ely u(y) su(z®)]

We obtain the inequality ({(z%).z* —z 1)) <0 from the definition of the support

functional This means that

3
A:_)T' S_xat S--<52=—)\SO

L (zs)"

Lemma is proved.



-7 -

Using this lemma, let us prove the following theorem.

Theorem 1.

Let the sequence {z%{ be constructed by (5) and the step p satisfy the conditions

(6). Then

min lz¥ —z=ll 50 as.
r* € X° § +m

Proof:

Let us show that if 25 » 2z '(w) € X* for some w € B, P(8) > 0, then for sufficiently

large §

i ! |
min 'z%* —z*l2 < min g5 —z*?® - N pe + W, (8)
r* € X" r* €X"

holds, where A’ > 0 depends only on * and ¢,

EW, iz% ... ,z5) =0 EW,) <=
5 =0
Indeed,
min St —z=!l2 ol g5+ _gu(@StH[2 5| 25+ _gx(z %) (9)

r* € X
where z*(z") € X* is such z*, for which

min gV ==l = zV —z*(x "')Hz holds.
' X

According to (D) and projection properties (4},
” xS+1 _z¢:52 = !| ,n.D(xS + ps E (xS’ BS+1)) _x* (zS)“z <
slzs +pg (x5, 05 —zx(@)I2 <l 25 — z=(z5)!12 +

+2pg (£ (@S.0°5*Y), 2% — z*(z%)) + pF = minX 25 —z*{l? 4
F A -

5
+2p, k ill— xS —z* (@5)| + pZ +2p; (£ (x5, 65%1) ~

f sl

— k—ﬁz_s_)—, xs _— xt(xs))

LSy

According to lemma 1 for &8 >sg,and w € F



5
2P J—iuz—L ¥ —xz* (%)= -2 p5 Ak
(@Sl

where A > 0 depends only on ' and «; according to the theorem assumptions for
sufficiently large s (i.e. for & >s’) Ak > p¢ holds.

Therefore if s > max(s,,s’) then for arbitrary v € B

|25+l — o= (ZS)HZ < minx | 28 — z%}1® — g ps + Wy (10)
x' E L]

holds, where

W, =2p |€(z5, G S +1) _k_l(‘_z_sL' s —z* (z%)
Iz (zs)l

According to (7)
EW, /s z°%...z%) =0
According to the theorem assumptions E(Wsz) ScE(pf) , where ¢<e, so

Y EWE) <.

s =0

By combining (9) and (10), the statement (8) is obtained. The conclusion of the
proof of the theorem is based on Nurminsky's results (6) and is fully analogous to

the proof of theorem 3 from Chapter 4 [4].

Method (5) analysed above is the basis for an interactive decision-making method
which uses comparison procedures. There can be different ways of implementing
such procedures such as a direct comparison of the values of criteria by the DM; a

direct compariscn of all components of decisions by DM; simulation.

Several numerical experiments based on these ideas were made with an applied

decision-making system for a dynamic planning model of an economic system.
The basic model in this example has the form:

(v@),..., y(T), £(T+1)) » pref

z(t)=az(t) +b(z(t+1) —xz(t)) +y(t), t =1.T
z(t+1) 2z(t), y(t) =20, ¢t =1.T
z(1) =2z°

where z {¢) is the value of the system total product at the time interval ¢, v (¢) is

the value of the system final product at the time interval ¢, z% is the known value
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of the system Lotal product at the beginning,a, b are known parameters.
Information for the comparison procedure was introduced in a combined form: the
information about (¥ (1), ....,¥(T)) was given in graphical form, and the informa-

T
tion about z(T+1) (together with information about E w(t)) in numerical form
t=1

{see Figure 2).

ylt)d

Var. 1
— Var_ 2

Variant 1: Total product at T+ 1 equals 12.32
Total consumption eguals 47 .6

Variant 2: Total product at 7+ 1 equals 116
Total consumption equals 49.7

What variant is better?

Figure 2. Example of the information given to DM in the dynamic planning model

for economic system.

Tests were made for a case when T =5. In the test runs, a known utility function
uly(1),..., ¥y (T.z(T+1})) was used as a DM model. Sufficiently good approxi-
males to solutions (with the accuracy from 5% to 1% of z* measured by the distance
Mz —z= “) were obtained between 41 and 65 iterations of method (5) (these
results depend on the accuracy and assumed utility function). Experiments with

this algorithm in interactive aption were made also.

Another set of numerical experiments were made also with consumption models.
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3. Generalizations of main algorithm

It is rather difficult to find the prdject.ion of the point on set D if the dimension of
z is large and D is given by many constraints. Therefore a method that substitutes
the projection by solving a llnear problem in each iteration might be useful. The
idea of this method is the following: it is known that, if gradient of wx(z) is not a

uz (z)
zero vector, then ﬂi E:;—W = i (z)“'
\ I T |

l zs—l
- , T
L (2l

This makes it possible Lo minimize at each

iteration the linear approximation — 2571 of the function u(z),

I -1
g (z 5 1l
may be approximated by its statisltical estimate z® which is obtained by the for-
mula: 2% =z51 4 8, (—¢ (z31,6%5)-25hH s=012,...

0

where z¥ L is the point obtained in the previous iteration. The value of

where z° is an arbilrary vector, §; must possess the properties:
oo fd “ s-1 _ s “2”
Y 6icw ¥ 4, = z =2 -0 as.
£ =0 =0 ds Foo=

Such approximations were investigaled in (4) where it was proved that

lzs —g(—¢ (51, 65)!1 2% ...,z |l 50 as.

5 »m

These estimates are used in the so-called stochastic linearization method, which
produces the sequence {z°, z%{ according to the rule:

z%is an arbitrary admissible decision

z%is an arbitrary vector from £™,

28 =25 T4 5 (—¢(x57L,8%) —25 7Y (11)

(2%, %) = min (2%, z).
x €D

25 =571 + 8, (Z° -z Y, s=1p2,. |,

where the steps 65.93 satisfy the conditions:

2 dsz<°°'2 ds=°°' ps/ds »0, (SSEO,

s =0 s =0 F o=

Osp. =1, 5 =1,2,.... a.-s.

This method is convenient for the case when the set D is given by a set of linear

5-1

equations and inequalities. In this case the decision Z may be used as the
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starting approximation of the solution for solving the problem minD(zs. ).
T €

For a case when the set D is specified by non-linear inequalities, special penalty
function methods are presented in (7). These methods are applicable for cases
when some constraints are specified by preference relations or have a form of
E f, (r,«) s 0 where I3 {(z,0) are convex with respect to x for almost every

realization of stochastic variable w.

Another approach to the multicriteria problems is connected with constructing the
Pareto-optimal decision set. Let the consequences of decision z in problem (1) be
described by the criteria vector (fy(x).....fn(z)). Typically, scalarizing func-
tions G{(x , d) of known analytical form which depend on additional parameters a
are used to parametrize the set of all Pareto decisions. It ls done by solving the

problem:

G{xz.a) » min (12)
I

z €D,

For all parameter values a from a specified set i the Pareto-optimal decision set
with respect to the criteria (f((z).....f, (2)) will be either covered or approxi-
mated by the set of problem (12) solutions. Examples of such scalarizing functions
m
are 2 a; fi(x), max (a; f;(z}), and many others (see [11]).
i=1 t=1m
Hence, the solution of problem (1) may be obtained as the solution of problem (12)
for some "'best” value of a”. Qur idea is tc use the search for the most preferable

elements Lo identify this "best" value.

Let z* (a) be the solution of the problem (12) obtained for a given value a. The
new relation ®; may be constructed on the set A of all possible values of a in the
following way:

afl) Ry a‘?) if, and only if, =* (a(”) Rx* (a<2)) holds. (Usually,H = E™ or is a unit
simplex from £™.) Now the problem (1) is substituted by the problem:

a & pre
R‘p f
a€H.

This problem may be solved by the above mentioned methods, for example, by
method (9). The advantages of such an approach is the possibility of using fast

deterministic methods (such as variable-metric methods (5) or quadratic
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approximation methods) for the solving of problem (12) in the case when D is given
by non-linear constraints; often, another advantage is the decrease of dimen-
sionality of the problem. This approach gives good possibilities for DM's learning
(11). But the assumption about quasiconvexity and differentiability of the function
V(a) = u (x* (a)) Is not necessarily justified even in the case of quasiconvexity and
differentiability of the functions u (z) and ¢ (z,a). Therefore, it is interesting to
substantiate the methods of search for the most preferable element such as (5) for

the case when we do not require the differentiability and quasiconvexity of w{(z).

Let us start with the case when function u {(z ) is quasiconvex but nondifferentiable.
The approach similar to the stochastic smoothing (9) is used for this case. Because
of its quasiconvexity, the function u (z) will be differentiable with probability 1 at
a randomly chosen point £ = z + i, where i is the random vect:or with independent
components uniformly distributed over [—a,a], a>0. Therefore, the vector

£(x¥71 @%5)in (5) may be constructed by the rule:

Gs’ if (55‘*1 +7(£'s—1|6s)gs)R£-sﬁ1

s-1 5§y =
{z L B7) = S if(fs_l—7(55_1.95)95)1?55_1

(13)

1

where £5 1 =z51 + 45 u° is the observation of the random vector with indepen-

dent components uniformly distributed over [—a., a.].

Because of the differentiability of w (z ) at the point £ _1, we have:

a _ l 58—'1
E(=¢( @S Le5) 1 z%. ..,z ut, L uS) =k
H @& 5l
and
~5 -1
E(—{(zs_l,GS)[xo,...,zs_1)=kE—L£z—)— ‘ 0,...,.1:,'5'1
g (&S Lyl

This fact indicates that ¢ (z° -1 @%) determined by (13) is not a stochastic quasi-
gradient of u (x). But it possess the basic property necessary for the conver-
gence of the algorithm (5) - it is the direction in which the distance to X*

~5 -1

decreases, if = is not Loo close to X*.

Lemma 2. Let z° » 2z’ € X* for some w € B, P(F) >0, let £ (z%, 8°5*!) be deter-
mined by (13) and a - 0

5§ +* =

Then there exists A > 0, which depends only on z’ and w, such that:
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E(—¢ (xS, 605%*)y | 2% ... ,z8), 285 —z*) =
~5 -1
AC-he N 1z ...z, 2% —z*| s — A
lgezs ~Hl!

for sufficiently large numbers s, for any @ € B and any x* € X*,

The proof of Lhis lemma is not principally different from the proof of lemma 1.
Lemma 2 shows that the dlrection £(z5, @5 *1) being determined by (13) may be used
in the frame of method (5) if a; » 0 froms -+ = holds. For example, while using

lemma 2 instead of lemma 1, it is possible to prove the following theorem (which

proof does not differ from the proof of theorem 1):

Theorem 2

Let { £5 | be constructed by algorithm (5), where £(x5 1, #%) is specified by (13)

and suppose that

Z Pg = o=, Z pf(m. a, +0 holds a.s.

s =0 s=0 s +w
Then

min | z% —az*|l +0 with probability 1.
T € Xv s -

The convergence of methods (5) and (11) were examined alsc for the case when
function wuw(x) is non-convex, but differentiable. The convergence of these
methods to the set of points which satisfied the Kutin~-Tucker conditions was proved
with the additional assumption about the choice of the parameter 7y (:z:s_l, %),

namely, that 7 (z571, 2%) » 0 a.s.

5 »ow

4. Stability analysis
The stability of the method (5) was investigated in the following model,

Let a randomization R, (representing distortion by DM's random errors) be used in
(1) instead of relation & and let p (x ,%¥) characterize the distortion by specifying

the probability of an erroneous comparison of the decisions z and y .

It was proved in [7] that if p(z , ¥) s p, <1/2forall z, y, then the usage of &,

in (2), (13), instead of & does not influence the convergence of the method (5).
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[n particular, the following theorems were proved in [7].

Theorem 3

Let the function u (z) be convex and differentiable, p(x , ¥v) =p, <1/2 for any

z ,y, and let y(z.?) ¥ where Y, - 0 a.s. be used in (2) instead of »(z , &) (s

£ - oo

denotes here the number of iteration of the method (5)). Let {z%{ be constructed

by (5) with the use of R, instead of £. Then

min | z% —z*'| >0 with probability 1 (a.s).
r* € X* 5+

Theorem 4
Let the function u () be convex and differentiable, p(z ., y) <1/2forany z , v

and let D =E™. Let | z5{ be constructed by (5) with the use of &, instead of R.
Then

min |lz5 —z*!' -0 a.s.

r' X g =+
Similar results were proved also for more general cases.

The idea of proofs of these theorems is the following. Let us examine the conver-

gence of a random process of the form:

s+l = 'J'TD(IS + pg 7)), §=012....

0

where z° is an arbitrary vector ' z%. < ¢ = e, 5% is an arbitrary random vector.

The conditions for n* vectors that ensure the convergence of |z51{ to the set X* of
extreme points of some convex differentiable function w{(z) can be specified as

follows:

(1) if z% » z'(w) € X* for some @ € B, P (B) > 0, implies
(E(ns| z° ... L x5), 25 —z*) = —6(x'(w),w)<0 (14)

for w € B, for sufficient large s and for every * € X*, and if the step size of

p¥ satisfy the conditions:

i g = o, i 8% <, a.s.
=0 £ =0

then

min lizS —z*il -0 as.
r* X S + o
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(2 x¥ s x'(w) €EX* for some w € B, P(H) > 0, implies:
(Vu(zs), (E(m* z%...,z%), s =&, (z'(v)e) <0 (15)

for almost every w € B, P (B) > 0, for sufficient large s and for every

z* € X*, and if the step size of p; satisfy the conditions:

Z §. = o, i 552<°°‘ a.s.

5
5 =0 5 =0

then

min 'zf —z*!l 50 as.
J:'EX' g ~ =

Therefore we have to estimate the value of
E(gzS7 1, 65)z% . .. ,z5™h

assuming that &(z¥ -1 @5 is obtained by (2) with the use of R, instead of R
and to show that, under the adopted assumptions, this value satisfies the con-

dition (14) or the condition {15).

[t should be noted that under this assumption the value of
E(fzS 7t 85)iz% ..., 2571

may be far from the gradient of u {x), but it possesses the property (14) or the

property (15) to ensure the convergence of the algorithm (5).

The conditions (14) and (15) and their generalizations may be successfully used for
the analysis of stability of the stochastic quasigradient method for the case of

errors in the calculation of stochastic quasigradient [6].

These results make it possible to use the proposed methods even under the assump-
tion that DM might do random errors. These results are very helpful in the cases
of nontransitivity of DM's answers (if this nontransitivity could be explained as

random errors of DM), for example, in collective decision-making problems.

Computer implementation is being developed on the basis of the above described
methods. They include step control procedures to control p¢, §; and other param-
eters and special procedures which make it possible for DM to offer his own deci-

sions and check their consequences.

These software packages are oriented towards their incorporation in a system of

applied software for decision support.
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