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An Interactive Fuzzy Satisficing Method for Multiobjective 

Nonlinear Programming Problems with Fuzzy Parameters 
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Abstract 

This paper presents an interactive fuzzy satisficing method for multiobjective 

nonlinear programming problems with fuzzy parameters. The fuzzy parameters 

in the objective functions and the constraints are characterized by the 

fuzzy numbers. On the basis of the a-level sets of the fuzzy numbers, the 

concept of a-multiobjective nonlinear programming and a-Pareto optimality is 

introduced. Through the interaction with the decision maker (DM), the fuzzy 

goals of the DM for each of the objective functions in a-multiobjective 

nonlinear programming are quantified by eliciting the corresponding 

membership functions. After determining the membership functions, in order 

to generate a candidate for the satisficing solution which is also a-Pareto 

optimal, if the DM specifies the degree a of the a-level sets and the 

reference membership values, the augmented minimax problem is solved and the 

DM is supplied with the corresponding a-Pareto optimal solution together 

with the trade-off rates among the values of the membership functions and 

the degree a. Then by considering the current values of the membership 

functions and as well as the trade-off rates, the DM responds by updating 

his reference membership values and/or the degree a. In this way the 

satisficing solution for the DM can be derived efficiently from among an 

a-Pareto optimal solution set. Based on the proposed method, a time-sharing 

computer program is written and an illustrative numerical example is 

demonstrated along with the corresponding computer outputs. 

* Department of Systems Engineering, Faculty of Engineering, 
Kobe University, Kobe 657, Japan 

** Department of Information Science, College of Economics, 
Kagawa University, Kagawa 760, Japan 



CONTENTS 

I. INTRODUCTION 

11. a-PARETO OPTIMALITY 

111. AUGMENTED MINIMAX PROBLEMS 

IV. TRADE-OFF RATES 

V. AN INTERACTIVE ALGORITHM 

VI. AN INTERACTIVE COMPUTER PROGRAM AND AN 
ILLUSTRATIVE EXAMPLE 

VII. CONCLUSION 

REFERENCES 



I. INTRODUCTION 

In most multiobjective nonlinear programming problems, multiple-objective 

functions usually conflict with each other in that any improvement of one 

objective function can be achieved only at the expense of another. 

Accordingly, the aim is to find the satisficing solution of the decision 

maker (DM) which is also Pareto optimal (e.g.[2],[24] etc.). However, 

when formulating the multiobjective nonlinear programming problem which 

closely describes and represents the real decision situation, various 

factors of the real system should be reflected in the description of the 

objective functions and the constraints. Naturally these objective 

functions and the constraints involve many parameters whose possible values 

may be assigned by the experts. In the conventional approach, such 

parameters are fixed at some values in an experimental and/or subjective 

manner through the experts' understanding of the nature of the parameters. 

In most practical situations, however, it is natural to consider that 

the possible values of these parameters are often only ambiguously known to 

the experts. In this case, it may be more appropriate to interpret the 

experts' understanding of the parameters as fuzzy numerical data which can 

be represented by means of fuzzy subsets of the real line known as fuzzy 

numbers [4,5]. The resulting multiobjective nonlinear programming problem 

involving fuzzy parameters would be viewed as the more realistic version of 

the conventional one. 

Recently, Tanaka and Asai [19,20] formulated the multiobjective linear 

programing problems with fuzzy parameters. Following the fuzzy decision 

or minimum operator proposed by Bellman and Zadeh [I] together with 

triangular membership functions for fuzzy parameters, they considered two 

types of fuzzy multiobjective linear programming problems; one is to 



decide the nonfuzzy solution and the other is to decide the fuzzy solution. 

More recently, Orlovski [ 12,131 formulated general multiobjective 

nonlinear programming problems with fuzzy parameters. He presented two 

approaches to the formulated problems by making systematic use of the 

extension principle of Zadeh [23] and demonstrated that there exist in some 

sense equivalent nonfuzzy formulations. 

In this paper, in order to deal with the multiobjective nonlinear 

programming problems with fuzzy parameters characterized by fuzzy numbers, 

the concept of a-multiobjective nonlinear programing and a-Pareto optimality 

is introduced on the basis of the a-level sets of the fuzzy numbers. Then 

by assuming that the fuzzy goals of the DM for each of the objective 

functions in a-multiobjective nonlinear programming can be quantified by 

eliciting the corresponding membership functions, an interactive fuzzy 

satisficing method to derive the satisficing solution of the DM efficiently 

from among an a-Pareto optimal solution set is presented as a generalization 

of the results obtained in Sakawa et a1.[14-171. 



11. a-PARETO OPTlMALITY 

In general, the multiobjective nonlinear programming (MONLP) problem 

is represented as the following vector-minimization problem: 

T min f(x) b - (fl(x)9f2(x),**.'fk(x)) 

n 
subject to x r X = { x r E I gj(x) < - 0, j=l,. . .,m ) - 

where x is an n-dimensional vector of decision variables, fl(x), ..., fk(x) 
are k distinct objective functions of the decision vector x, gl(x), ..., 
gm(x) are inequality constraints, and X is the feasible set of constrained 

decisions. 

Fundamental to the MONLP is the Pareto optimal concept, also known as a 

noninferior solution. Qualitatively, a Pareto optimal solution of the 

MONLP is one where any improvement of one objective function can be 

achieved only at the expense of another. Mathematically, a formal 

definition of a Pareto optimal solution to the MONLP is given below: 

Definition 1. (Pareto optimal solution) 

x* E X is said to be a Pareto optimal solution to the MONLP, if and 

only if there does not exist another x E X such that fi(x) < f.(x*), 
= 1 

i=l, ..., k, with strict inequality holding for at least one i. 
In practice, however, it would certainly be appropriate to consider 

that the possible values of the parameters in the description of the 

objective functions and the constraints usually involve the ambiguity of 

the experts' understanding of the real system. For this reason, in this 

paper, we consider the following multiobjective nonlinear programming 

problem with fuzzy parameters (MONLP-FP) : 



n - 
subject to x E x(G) { x E E 1 g.(x,b.) < 0, j=l, --• m } - J J = 

- 
where ai 

a vector 

- - - 
= ail,.., a , 6. = (bjl ,..., 6 ) represent respectively 

i~ J Iqj 

of fuzzy parameters involved in the objective function f . (x,;. ) 
1 1 

and the constraint function g. (x,s.). 
J J 

These fuzzy parameters are assumed to be characterized as the fuzzy 

numbers introduced by Dubois and Prade [3,4] . It is appropriate to review 

here that a real fuzzy number 6 is a convex continuous fuzzy subset of the 
real line whose membership function IJ-(p) is defined as: 

P 

(1) A continuous mapping from E' to the closed interval [0,1] . 
(2) IJ- (p) = 0 for all p E (-- 

P ,PI I 
(3) Strictly increasing on [p ] 1 4 2  

(4) IJ?(P) = 1 for all p E [p2,p3] 

(5) Strictly decreasing on [p3,p4] 

( 6 )  IJ-(p) = 0 for all p c [p4,+-] . 
P 

Fig.1 illustrates the graph of the possible shape of the fuzzy number $. 
- 

We now assume that air and in the MONLP-FP are fuzzy numbers whose 
j s 

membership functions are IJ; (air) and P6 (bjs) respectively. For 
i r j s 

simplicity in the notation, define the following vectors: 

a = a i l ,  a , bj = (bjl ,..., b ) 
ipi Jqj - - - - - - 

a = ( a l  a ,  a = a , .  . . a 1 , b = b , . . , b = (bl - ,b ) - k 1 m 



Fig. 1 .  Membership function of fuzzy 6 



Then we can introduce the following a-level set or a-cut [4] of the 

.. 
fuzzy numbers air and gjs. 

Definition 2. (a-level set) 

The a-level set of the fuzzy numbers iir(i=l ,..., k, r=l, ...,p i) and 
.. .. G .  (j=l, 

J s 
..., m, s=l, ...,q ) is defined as the ordinary set La(a,b) for 

j 

which the degree of their membership functions exceeds the level a: 

pg 
(b. ) > a(j=l, ..., m, s=l,.. ., qj) ] 
JS = I s 

It is clear that the level sets have the following property: 

a < a, if and only if L (2,E) 2 L (:,%I 
1 = a 

1 a 2 

For a certain degree a ,  the MONLP-FP (2) can be understood as the 

following nonfuzzy a-multiobjective nonlinear programming (a-MONLP) 

problem. 

a -MONLP 

T 
min f(x,a) A - (fl (x,al ),f2(x,a2),-- ,fk(x,ak)) - 

subject to x r X(b) _d - {x r I gj(x,b .) < 0, j=l, ..., m } 
J = 

It should be emphasized here that in the a-MONLP the parameters (a,b) 

are treated as decision variables rather than constants. 



On the basis of the a-level sets of the fuzzy numbers, we introduce 

the concept of a-Pareto optimal solutions to the a-MONLP. 

Definition 3. (a-Pareto optimal solution) 

x* E X(b) is said to be an a-Pareto optimal solution to the a-MONLP(4), 

if and only if there does not exist another x E X(b), (a,b) E L  (2,E) such a 

that fi(x,ai) 5 - fi(x*,a? ), i=l, ..., k, with strict inequality holding for 
at least one i, where the corresponding values of parameters a* and b* are 

called a-level optimal parameters. 

For practical purposes, however, since only local solutions are 

guaranteed in solving a scalar optimization problem by any standard 

optimization technique, unless the problem is convex, we deal with local 

a-Pareto optimal solutions instead of global a-Pareto optimal solutions. 

Definition 4. (local a-Pareto optimal solution) 

x* E X(b) is said to be a local a-Pareto optimal solution to the a-MONLP 

(4), if and only if there does not exist another x E ~ ( b )  n N(x*;r), (a,b) 

E La(;,%) n ~(a*,b*;r') such that fi(x,ai) 5 - fi(x*,aT ), i=l,. .. ,k, with 
strict inequality holding for at least one i, where the corresponding values 

of parameters a* and b* are called a-level local optimal parameters and 

n 
N(x*;r) denotes the set {XI x E E , 1 1  x - x*ll < r 1 .  

Usually, (local) a-Pareto optimal solutions consist of an infinite 

number of points, and some kinds of subjective judgement should be added 

to the quantitative analyses by the DM. The DM must select his 

(local) satisficing or compromise solution from among (local) a-Pareto 

optimal solutions. 



In a minimization problem, a fuzzy goal stated by the DM 

may be to achieve "substantially less I' than A . This type of state- 

ment can be quantified by eliciting a corresponding membership function. 

In order to elicit a membership function p (x,a.) from the DM for 
fi 1 

each of the objective functions fi (x,ai) in the a-MONLP ( 4 ) ,  we first 

min max 
calculate the individual minimum fi 

and maximum f i 
of each 

objective function fi(x,ai) under given constraints. By taking account 

of the calculated individual minimum and maximum of each objective 

function, the DM must determine his subjective membership function 

pf (x,ai) which is a strictly monotone decreasing function with respect 
i 

to fi(x,ai). Fig. 2 illustrates the graph of the possible shape of the 

membership function representing the fuzzy goal to achieve substantially less 

than A . 
So far we have considered a minimization problem and consequently 

assumed that the DM has a fuzzy goal such as " fi(x,ai) should be 

substantially less than A ". In the fuzzy approaches, we can further 

treat a more general case where the DM has two types of fuzzy goals, 

namely fuzzy goals expressed in words such as " fi(x,ai) should be in the 

vicinity of B I' (called fuzzy equal) as well as " fi(x,ai) should be 

substantially less than A " (called fuzzy min). Such a generalized a-MONLP 

(Ga-MONLP) problem may now be expressed as: 

fuzzy min f i(~,ai) (i E 1) 

fuzzy equal f i(x,ai) (i E j) 



subject to x E X(b) 

where I U T  = {1,2 ,..., k}. 
In order to elicit a membership function from the DM for a fuzzy goal 

like I1fi(x,ai) should be in the vicinity of B ", it is obvious that we 

can use different functions to the left and right sides of B . 
Fig.3 illustrates the graph of the possible shape of the fuzzy equal 

membership function representing the fuzzy goal to be in the vicinity of B . 
Now we introduce the concept of (local) M-a-Pareto optimal solutions 

which are defined in terms of membership functions instead of objective 

functions . 

Definition 5. ((local) M-a-Pareto optimal solution) 

x* E X is said to be a (local) M-a-Pareto optimal solution to the 

Ga-MONLP, if and only if there does not exist another x c X(b) (nN(x*;r)), 

(a,b) c ~~(;,6) (nN(a*,b*;rl)) such that pf (x,ai) 2 pf (x*,af ), i=l,..., k, 
i i 

with strict inequality holding for at least one i. 

Observe that the set of (local) a-Pareto optimal solutions is a subset 

of the set of (local) M-a-Pareto optimal solutions. 

Having elicited the membership functions p (x,ai), i=l, ..., k from the 
fi 

DM for each of the objective functions fi(x,ai), i d ,  ..., k, the a-MONLP (4) 
and/or the Ga-MONLP (5) can be converted into the fuzzy a-MONLP (Fa-MONLP) 

problem defined by: 



Fig. 2. An example of a fuzzy min membership function 



Fig. 3. An example of a fuzzy equal membership function 



max ( r x , a 1 ,  P (x,a2), --• r (xgak) ) 
1 2 fk 

x E X(b) 

By introducing a general aggregation function 

a general fuzzy a-multiobjective decision problem (Fa-DMP) can be defined by: 

max rD( rf(x,a) 1 (8 )  

x E X(b) 

(a,b) t La(;,$) 

Observe that the value of rD(rf(x)) can be interpreted as the overall 

degree of satisfaction of the DM'S fuzzy goals. The fuzzy decision or 

minimum-operator of Be1 lman and Zadeh [ 11 

min ( rf (x,al), P (x,a2), , P (x,ak) 

l<i<k 
1 

- - 
f2 fk 

- - 

can be viewed only as one special example of b ( r (x,a) ) . 
D f 

In the conventional fuzzy approaches [25,26] it has been implicitly 

assumed that the minimum-operator is the proper representation of human 

decision makers' fuzzy preferences, and hence the Fa-MDP ( 8 )  has been 

interpreted as follows: 

max min ( r , a l  r (x,a2), --• r (x,ak) ) 

x E X(b) l<i<k 
1 - - 2 fk 

- - 
(a,b) E ~ ~ ( 2 , s )  

or equivalently 



max v 

(a,b) L L~(~,E) 
< pf (x,ai) , i=l,.. .,k . subject to v - - 

i 

However, it should be emphasized here that this approach is preferable only 

when the DM feels that the minimum-operator is appropriate. In other words, 

in general decision situations, human decision maker do not always use the 

minimum-operator when they combine the fuzzy goals and/or constraints. 

Probably the most crucial problem in the Fa-MDP is the identification of an 

appropriate aggregation function which will represents the human decision 

makers' fuzzy preferences. If pD(.) can be explicitly identified, then 

the Fa-MDP reduces to a standard mathematical programming problem. However, 

this rarely happens and as an alternative, it becomes evident that an 

interaction with the DM is necessary. 

Throughout this paper we make the following assumptions. 

Assumption 1. 

The fuzzy goals of the DM can be quantified by eliciting the 

corresponding membership functions through the interaction with the DM. 

Assumption 2. 

p (.) exists and is known only implicitly to the DM, which means the 
D 

DM cannot specify the entire form of p (.), but he can provide local 
D 

information concerning his preference. Moreover, it is increasing and 

continuous. 

Assumption 3. 

.. .. 
A11 fi (x,ai ) , i=l , . . . ,k and all g .(x,bj), j-1 , . . . ,m are continuously 

J 

differentiable in their respective domains. 



111. AUGMENTED MINIMAX PROBLEMS 

Having determined the membership functions for each of the objective 

functions, in order to generate a candidate for the satisficing solution 

which is also (local) (M-) a-Pareto optimal, the DM is asked to specify 

the degree a of the a-level set and the reference levels of achievement 

of the membership functions, called the reference membership values. 

Observe that the idea of the reference membership values [16,17] can be 

viewed as an obvious extension of the idea of the reference point of 

Wierzbicki [21] . 
For the DM'S degree a and the reference membership values ,i=l,. . . ,k, 

fi 
the following augmented minimax problem is solved in order to generate 

the (local) (M-) a-Pareto optimal solution which is in a sense close 

to his requirement ( or better, if the reference membership values are 

attainable). 

min max ( F f  - v f  (x,ai) ) + P I ( if - pf (x,ai) 
i i i=l 1 i 

x E ~ ( b )  lzizk - - 

or equivalently 

- ~ - 
min v + P I  ( p f  - (x,ai> 

i=l i 
x,v,a,b 

Pfi 

- 
subject to pf - pf (x,ai) f - v , i=l, ..., k 

i i 



k 
The term augmented is adopted because the term P 1 (if - pf (x,ai) ) 

i=l i i 
is added to the usual minimax problems, where p is a sufficiently 

small positive scalar. Naturally, P should be a sufficiently small, but 

computationally significant, positive scalar. In most case, a computationally 

-5 significant value of p = 10 should suffice. Such an augmented 

minimax problem can be viewed as a modified fuzzy version of the augmented 

Tchebycheff norm problem of Steuer and Choo [18] or Choo and Atkins [3]. 

The relationships between the (local) optimal solutions of the 

augmented minimax problem and the (local) a-Pareto optimal concept of the 

a-MONLP can be characterized by the following theorems. 

Theorem 1. 

If (x*,v*,a*,b*) is a (local) optimal solution to the augmented minimax 

- 
problem for some pf , i=l,..., k, with 0 < p (x*,a* ) < 1 holding for all 

fi 
1 i 

i, then x* is a (local) a-Pareto optimal solution and a*,b* are a-level 

(local) optimal parameters to the a-MONLP. 

(Proof) 

Assume that x* is not a (local) a-Pareto optimal solution and a*,b* are 

not a-level (local) optimal parameters to the a-MONLP, then there exists 

- 
x E ~(b)(n~(x*,r)), (;,6) r ~~(;,6)(n~(a*,b*;r')) such that f(f,i) - < f(x*,a*). 

- - - - - 
This implies that ef(x,a) - < pf(x*,a*) or vf- pf (x,a) - < if- pf(x*,a*), 
since by the hypothesis 0 < pf (x*,a*) < 1 for all i, where P (x,a) = 

i f 
- - - 

(Pr (x,al),-- .,P (x,ak)) and Lf = P , .  . . , . Then it holds that 
1 k 



This means that 

- - 

< max ( iif - P (x*,at) + P 1 ( if - (x*,.;) ) 
i i i=l i l<i<k 

Pfi 

which contradicts the fact that (x*,v*,a*,b*) is a (local) optimal solution 

to the augmented minimax problem. Hence x* is a (local) a-Pareto optimal 

solution and a*,b* are a-level (local) optimal parameters to the a-MONLP. 

Theorem 2. 

If x* is a (local) a-Pareto optimal solution and a*,b* are a-level 

(1ocal)optimal parameters to the a-MONLP with 0 < p (x*,a*) < 1 holding 
fi 

for all i, then there exist .i , i=l,. . . ,k such that (x*,v*,a*,b*) is a 
f: 

I 

(local) optimal solution to the augmented minimax problem. 

(Proof) 

Assume that (x*,v*,a*,b*) is not a (local) optimal solution to the 

augmented minimax problem for any ,i=l , . . . ,k, satisfying 
i 

Then there exists x E X(nN(x*,r)) and (8,6) E L (;,6)(n~(a*,b*;~')) such that a 

max ( Ffi - pfi(x*,a:) + P 1 ( Lf - (x*,at) 

l<i<k 
i=l i 

- - - - 
Pf i 



This implies that 

- - 
Now if either any pf (x*,aT ) - Pf (x,ai) is positive or all Pf (x*,a; ) - 

i i i - - 
Pf (x,ai), i=l, ..., k, are zero, this inequality would be violated for 
i 

sufficiently small positive P .  Hence 

must hold. Since by the assumption 0 < p (x*,a*) < 1 , we have f(x*,a*) > 
f - 

f(x,a), which contradicts the fact that x* is a (local) a-Pareto optimal 

solution and a*,b* are a-level (local) optimal parameters to the a-MONLP, 

and the theorem is proved. 

Using the concept of (local) Ma-Pareto optimality, the following 

M-a-Pareto version of Theorem 1 and 2 can be obtained. 

Theorem 3. 

x* E X(b) is a (local) M-a-Pareto optimal solution and a*,b* are a-level 

- 
(local) optimal parameters to the Ga-MONLP, if and only if there exist 

pf i 
i=l, ..., k, such that (x*,v*,a*,b*) is a (local) optimal solution to the 

augmented minimax problem. 

The proof of this theorem is much like that of Theorem 1 and 2 and 

thus is omitted. 

It is significant to note here that from the property of the a-level 

set, the following relation holds for any two optimal solutions 



2 2 2 2  
( x l y v l y a l y b l )  and (x ,v ,a ,b ) to the augmented minimax problems 

1 2 
corresponding to a and a with the same reference membership values: 

a1 - < a2 if andonly if 1 1  2 2 - P£ (X ,ai) - (X ,ai) i=1,2 ,..., k . 
i i 



IV. TRADE-OFF RATES 

Now given the (local)(M-)a-Pareto optimal solution for the degree a 

and the reference membership values specified by the DM by solving the 

corresponding augmented minimax problem, the DM must either be satisfied with 

the current (local)(M-)a-Pareto optimal solution, or update the reference 

membership values and/or the degree a. In order to help the DM express 

his degree of preference, trade-off information between a standing membership 

function and each of the other membership functions as well as between the 

degree a and the membership functions is very useful. Fortunately, such a 

trade-off information is easily obtainable since it is closely related to 

the strict positive Lagrange multipliers of the augmented minimax problem. 

To derive the trade-off information, we first define the Lagrangian 

function L for the augmented minimax problem (13)-(16) as follows: 

In the following for notational convenience we denote the decision 

variable in the augmented minimax problem (13)-(16) by y = (x,v,a,b) and 

let us assume that the augmented minimax problem has a unique local optimal 

solution y* satisfying the following three assumptions. 

Assumption 4. 

y* is a regular point of the constraints of the augmented minimax problem. 



Assumption 5. 

The second-order sufficiency conditions are satisfied at y* . 
Assumption 6. 

There are no degenerate constraints at y* . 
Then the following existence theorem, which is based on the implicit 

function theorem [6] , holds. 

Theorem 4. 

Let y* = (x*,v*,a*,b*) be a unique local solution of the augmented 

minimax problem (13)-(16) satisfying the assumptions 4,5 and 6. Let A* = 

p* a* b* g* 
(A A ,A ,A ) denote the Lagrange multipliers corresponding to the 

constraints (14)-(16). Then there exist a continuously differentiable 

vector valued function y(.) and A(.) defined on some neighborhood N(a*) so 

that y(a*) = y*, A(a*) = A*, where y(a) is a unique local solution of the 

augmented minimax problem (13)-(16) for any a E N(a*) satisfying the 

assumptions 4,5 and 6, and A(a) is the Lagrange multiplier corresponding 

to the constraints (14)-(16). 
k 

In Theorem 4, inf { v + p I (Ff -P (x,ai)) I if -pf (',ai) v , - 
x,v,a,b i=l i i i 

( k), ( a )  E L , x c X(b) } can be viewed as the optimal 

value function of the augmented minimax problem (13)-(16) for any a E N(a*). 

Therefore, the following theorem holds under the same assumptions in 

Theorem 4. 

Theorem 5. 

If all the assumptions in Theorem 4 are satisfied, then the following 

relations hold on some neighborhood N(a*) of a*. 



If all the constraints (14) of the augmented minimax problem are active, 

- 
namely if v(a*) = p - pi (x(a*),a.(a*)), then the following theorem holds. 

i 1 
i 

Theorem 6. 

Let all the assumptions in Theorem 4 are satisfied. Also assume that 

all the constraints (14) of the augmented minimax problem are active. Then 

it holds that 

Regarding a trade-off rate between P (x) and p (x) for each i=2, ..., k, 
1 'i 

by extending the results in Haimes and Chankong [7] , it can be proved that 

the following theorem holds [ 221 . 
Theorem 7. 

Let all the assumptions in Theorem 4 are satisfied. Also assume that 

the constraints (14) are active. Then it holds that 

It should be noted here that in order to obtain the trade-off rate 

information from (19) and (20), all the constraints (14) of the augmented 

minimax problem must be active. Therefore, if there are inactive 

constraints, it is necessary to replace for inactive constraints by 
i 

Pi (~*,a*~) and solve the corresponding augmented minimax problem for 
i 

obtaining the Lagrange multipliers. 



V. AN INTERACTIVE ALGORITHM 

Following the above discussions, we can now construct the interactive 

algorithm in order to derive the (local) satisficing solution for the DM 

from among the   local)(^-)a-Pareto optimal solution set. The steps marked 

with an asterisk involve interaction with the DM. 

Step 0 (Individual minimum and maximum) 

Calculate the individual minimum fmin and maximum fmax of each objective 
i i 

function f.(x) under given constraints for a=l. 
1 

Step I* (Membership functions) 

Elicit a membership function p (x,a.) from the DM for each of the objective 
f 2 1 
1 

functions. 

Step 2* (Initialization) 

Ask the DM to select the initial values ofa(0 < a < 1) and set the initial 

reference membership values - (1)- 
pf 

- l , i ,  k .  Set the iteration index 
i 

r=l . 
Step 3 ((local) (M-)-Pareto optimal solution) 

Set ii - - (r) 
- )Ifi 

, i=l,...,k, solve the corresponding augmented minimax 
i 

problem to obtain the (local)(M-)a-Pareto optimal solution x(') , f ( X(r) ,ah]) 

and the membership function value p (x(r),a(r)) together with the trade-off 
f 

rate information between the membership functions and the degree a. 

Step 4* . (Termination or updating) 

If the DM is satisfied with the current levels of Pf(x(r),a(r)),i=l,o .. ,k 
of the (local) (M-)a-Pareto optimal solution, stop. Then the current (local) 

( 1  (r)) (M-)a-Pareto optimal solution f(x ,a (r) (r) 
= ( fl(x ,a 1 , - - - ,  

fk(x(r),a(r)) ) is the (local) satisficing solution of the DM. 



- (r) 
Otherwise, ask the DM to update the current reference membership values pf 

i - (r+l) 
and/or the degree a(r) to the new reference membership values Pf 

i=l, ..., k and/or the degree a (rfl) by considering the current va1:es of the 

membership functions together with the trade-off rates between the membership 

functions and the degree a. Set r=r+l and return to Step 3. 

Here it should be stressed for the DM that (1) any improvement of one 

membership function can be achieved only at the expense of at least one of 

the other membership functions, and (2) the greater value of the deg~ee a 

gives worse values of the membership functions for some fixed reference 

levels. 



VI. AN INTERACTIVE COMPUTER PROGRAM AND AN ILLUSTRATIVE EXAMPLE 

Interactive fuzzy satisficing processes for multiobjective nonlinear 

programming problems with fuzzy parameters include eliciting a membership 

function for each of the objective functions and reference membership 

values and/or degree a from the DM. Thus, interactive utilization of 

computer facilities is highly recommended. Based on the method described 

above, we have developed a new interactive computer program. Our new 

package includes graphical representations by which the DM can figure the 

shapes of his membership functions, and he can find incorrect assessments 

or inconsistent evaluations promptly, revise them immediately and proceed 

to the next stage more easily. 

Our program is composed of one main program and several subroutines. 

The main program calls in and runs the subprograms with commands indicated 

by the user (DM). Here we give a brief explanation of the major commands 

prepared in our program. 

(1) MINMAX: Displays the calculated (local) individual minimum and 

maximum of each of the objective functions under the given 

constraints for a=l. 

(2) MF: Elicit a membership function from the DM for each of the 

objective functions. 

(3) GRAPH: Depicts graphically the shape of the membership function for 

each of the objective functions. 

( 4 )  GO: Derives the (local) satisficing solution for the DM from among 

the (local) (M-) a-Pareto optimal solution set by updating the 

reference membership values and/or the degreea. 

(5) STOP: Exists from the program. 



(6) SAVE: Saves all the necessary information, which has been put in, 

in a file. 

(7) READ: Restores the information which was saved in the file. 

In our computer program, the DM can select his membership function in 

a subjective manner from among the following five types of functions; 

linear [25], exponential, hyperbolic [ll], hyperbolic inverse and piecewise 

linear [ a ]  functions. Then the parameter values are determined through the 

0 
interaction with the DM. Here, it is assumed that pf,(x) = 0 if fi(x) 2 fi 

1 0 
I 

and pf (x) = 1 if fi(x) f - fi, where fi is an unacceptable level for 
L 

1 
fi(x) and fi is a totally desirable level for fi(x). 

(1) Linear membership function: 

0 0 
pf 

(x) = ( fi(x) - fi 1 ( f; - fi 
i 

The linear membership function can be determined by asking the DM to 

specify the two points and within 
min 
fi and 

max a 
fi , where fi 

represents the value of fi(x) such that the degree of membership function 

(2) Exponential membership function: 

pf 
( 1  = ai( I - exp ( -bi( fi(x) - f: I ( f1 - f: i 
i 

The exponential membership function can be determined by asking the DM to 

0 0.5 1 max min 
specify the three points fi, fi and fi within fi and fi . 



(3) Hyperbolic membership function: 

f 
(x) = a tanh ( ( fi(x) - bi ) ai ) + C 

i i 
i 

The hyperbolic membership function can be determined by asking the DM to 

0 0.5 1 max min 
specify the four points fi,fi ,fi and bi within fi and fi . 
( 4 )  Hyperbolic inverse membership function: 

- 1 " £ 
(x) = a tanh ( (  fi(x)-bi ) a i )  + C 

i i 
i 

The hyperbolic inverse membership function can be determined by asking the 

0 0.5 1 max min 
DM to specify the four points f f ,f and bi within f and f . 
( 5 )  Piecewise linear membership function: 

Here, it is assumed that Irf (x) = t irf i(x) + sir for each segment 
i 

< fib) 5 giro gir-1 = The piecewise linear membership function can be 

determined by asking the.DM to specify the degree of membership in each of 

max min 
several values of objective functions within fi and fi . 

We now demonstrate the interaction processes using our computer 

program by means of an illustrative example which is designed to test the 

program. 

Consider the following three objective nonlinear programming problem 

with fuzzy parameters. 



2 - 
fuzzy min fl(x,l) = (xl + 5) + all': + Z(X - i )2 

3 12 

5 2 2 
fuzzy min f2(x,Z2) = a21(~1 - 45) + (x2 + 15) + 3(x + ;22)2 3 

... - 2 
fuzzy equal f3(x,a3) = ajl(xl + 20) + SJ2(x2 - 4512 + (x3 + 15) 2 

2 2 
subject to gl(x,bl) = bllxl + b x + b x2 < 100 12 2 13 3 = 

- ... 
The membership functions for the fuzzy numbers a a and in 

1' 2' 3 1 

this example are explained in Table 1. where L and E represent 

respectively linear and exponential membership functions. 

In applying our computer program to this problem, suppose that the 

interaction with the hypothetical DM establishes the following membership 

functions and corresponding assessment values for the three objective 

functions. 

0 0.5 1 
fl : exponential, (fl, fl , fl) = (5400,5000,3300) 

0 0.5 1 
f2 : hyperbolic, ( f2 ,f2 ,f2 ,b2) = (6900,4600,3900,4400) 

I left : exponential, ($, cm5, f:) = (7800,8200,10000) 

f3 I 5 1 right : hyperbolic inverse, (6) ,Po ,f b ) = (13300,11000,10000,12000) 
3 3  3'3 



Table 1. Fuzzy numbers 

- 
P 

- 
a l l  - 
a12 - 
a2 1 - 
a 22 - 
a 
3 1 - 

a 32 

11 - 
b 1 2  - 
13 

( P , P , P , P )  

( 3.8, 4.0, 4.0, 4.3) 

( 48.5, 50.0, 50.0, 52.0) 

1.85, 2.0, 2.0, 2.2) 

( 18.2, 20.0, 20.0, 22.5) 

( 2.9, 3.0, 3.0, 3.15) 

( 4.7, 5.0, 5.0, 5.35) 

( 0.9, 1.0, 1.0, 1.1) 

( 0.8, 1.0, 1.0, 1.2) 

( 0.85, 1.0, 1.0, 1.15) 

TYPE 

l e f t  r ight  

L E 

E E 

E L 

L E 

E L 

L L 

E E 

E E 

E L 



In Fig. 4, the interaction processes using the time-sharing computer 

program under TSS of ACOS-1000 digital computer in the computer center of 

Kobe University in Japan are explained especially for the first iteration 

through the aid of some of the computer outputs. H-a-Pareto optimal solutions 

are obtained by solving the augmented minimax problem using the revised 

version of the generalized reduced gradient (GRG) [ 9 ]  program called G R G ~ [ ~ o ] .  

In this example, at the 4th iteration, the satisficing solution of the 

DM is derived and the values of the objectives and decision variables are 

shown in Fig. 5. The whole interactive processes are summarized in Table 2. 

CPU time required in this interaction process was 3.713 seconds and the 

example session takes about 10 minutes. 



COMMAND : 
=GO 

I N P U T  S U F F I C I E N T L Y  SMALL  P O S I T I V E  SCALAR FOR AUGEMENTED TERM: 
=0.001 

I N P U T  THE DEGREE A L F A  OF T H E  A L F A  L E V E L  S E T S  
FOR THE F U Z Z Y  PARAMETERS: 
=0.4 

..................... < I T E R A T I O N  1 >---------------------- 

I N I T I A T E S  A N  I N T E R A C T I O N  W I T H  A L L  THE I N I T I A L  REFERENCE 
MEMBERSHIP VALUES ARE I 

( KUHN-TUCKER C O N D I T I O N S  S A T I S F I E D  ) 

M-ALFA-PARETO O P T I M A L  S O L U T I O N  
TO THE AUGEMENTED M I N I M A X  PROBLEM 
FOR I N I T I A L  REFERENCE MEMBERSHIP VALUES 
- - - - - - - - - - - - - - - - - - - - - -- 

MEMBERSHIP I O B J E C T I V E  F U N C T I O N  
-----------------------------+---------------------------- 

M ( F 1 )  = 0.7274 I F(1) = 4663.3827 
M ( F 2 )  = 0.7274 1 F(2) = 4302.5119 
M ( F 3 )  = 0.7274 1 F(3) = 1 0 3 2 3 . 4 8 4 9  .......................................................... 
X(  I) = 8.4836 X (  2) = 5.8945 
X (  3) = 2.1681 .......................................................... 

TRADE-OFFS AMONG MEMBERSHIP FUNCTIONS 
- D M ( F 2 ) / D M ( F l )  = 1.3260 
- D M ( F 3 ) / D M ( F l )  = 2.6925 ---------------------------------------------------------- 

TRADE-OFFS BETWEEN A L F A  AND MEMBERSHIPS 
-DM(F) /DALFA = 0.1560 

ARE YOU S A T I F I E D  W I T H  THE CURRENT MEMBERSHIP VALUES OF 
THE M-ALFA-PARETO O P T I M A L  S O L U T I O N  ? 
=NO 

..................... < I T E R A T I O N  2 >---------------------- 

CONSIDER T H E  CURRENT MEMBERSHIP VALUES OF 
THE M-ALFA-PARETO O P T I M A L  S O L U T I O N  TOGETHER W I T H  
T H E  TRADE-OFFS AMONG THE MEMBERSHIP FUNCTIONS.  

THEN I N P U T  YOUR REFERENCE MEMBERSHIP VALUES 
FOR EACH O F  T H E  MEMBERSHIP FUNCTIONS:  
~ 0 . 6  0.8 0.7 

I N P U T  T H E  DEGREE A L F A  OF THE A L F A  L E V E L  S E T S  
FOR THE F U Z Z Y  PARAMETERS: 
43.45 

Fig. 4. Interactive fuzzy satisficing processes 



ARE YOU S A T I F I E D  WITH THE CURRENT MEMBERSHIP VALUES OF 
THE M-ALFA-PARETO OPTIMAL SOLUTION ? 
=YES 

THE FOLLOWING VALUES ARE YOUR SATISFICING SOLUTION : 

.......................................................... 
MEMBERSHIP I ORJECTIVE FUNCTION 

COMMAND : 
=STOP 

**+ t CPU-TIME = 3 . 7 1 3  SEC. 3 *** 

Fig. 5. Satisficing solution of the DM 



Table 2. Interactive processes 

Iteration 

Fl  

$2 

$3 

a 

P 
'1 

P 
'2 

P ' 3 

' 1 

' 2 

' 3 

X 
1 

X 
2 

3 

a~ l a p f  ' 2 1 
a~ l a p  ' 3 ' 1 

apf/aa 

1 2 3 4 

1 0.6 0.65 0.67 

1 0.8 0.78 0.77 

1 0.7 0.7 0.69 

0.4 0.45 0.45 0.5 

0.69 0.57 0.61 0.62 

0.69 0.77 0.74 0.72 

0.69 0.67 0.66 0.64 

4740.64 4912.43 4856.50 4846.98 

4356.56 4243.79 4282.59 4313.28 

10412.46 10445.48 10468.40 10529.64 

8.52 8.71 8.68 8.67 

7.53 5.65 5.62 5.54 

2.30 1.47 1.76 1.85 

-1 -19 -0.79 -0.91 -0.95 

-2.10 -1 -42 -1 -55 -1.48 

-0.25 -0.26 -0.25 -0.24 



VII. CONCLUSION 

In this paper, we have proposed an interactive fuzzy satisficing method 

in order to deal with the imprecise nature of the DM'S judgement in 

multiobjective nonlinear programming problems with fuzzy parameters 

characterized by fuzzy numbers. Through the use of the concept of the 

a-level sets of the fuzzy numbers, a new solution concept called the a-Pareto 

optimality has been introduced. In our interactive scheme, after determining 

the membership functions, the (local) satisficing solution of the DM 

can be derived by updating the reference membership values and/or the degree 

based on the current values of the membership functions and a together with 

the trade-off rates between the membership functions and the degree a . 
Furthermore, (local) (M-)a-Pareto optimality of the generated solution in each 

iteration is guaranteed. Based on the proposed method, the time-sharing 

computer program has been written to facilitate the interaction processes. 

An illustrative numerical example demonstrated the feasibility and 

efficiency of both the proposed method and its interactive computer program 

by simulating the responses of the hypothetical DM. However, further 

applications must be carried out in cooperation with a person actually 

involved in decision-making. From such experiences the proposed method 

and its computer program must be revised. 
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